Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94583
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭安妮zh_TW
dc.contributor.advisorAnnie On-Lei Kwoken
dc.contributor.author王顓沂zh_TW
dc.contributor.authorChuan-I Wangen
dc.date.accessioned2024-08-16T16:52:21Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citation[1] Abo-Zena, A. (1979). Dispersion function computations for unlimited frequency values. Geophysical Journal International, 58(1), 91-105.
[2] Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bulletin of the Earthquake Research Institute, 35, 415-456.
[3] Beaty, K. S., Schmitt, D. R., & Sacchi, M. (2002). Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure. Geophysical Journal International, 151(2), 622-631.
[4] Bolt, B. A. (1993). Earthquakes and geological discovery. Scientific American Library.
[5] Bullen, K. E., Bullen, K. A., & Bolt, B. A. (1985). An introduction to the theory of seismology. Cambridge university press.
[6] Comina, C., Foti, S., Boiero, D., & Socco, L. (2011). Reliability of Vs,30 evaluation from surface-wave tests. Journal of Geotechnical and Geoenvironmental engineering, 137(6), 579-586.
[7] EPRI. (1993). Guidelines for Determining Design Basis Ground Motions Volume 1: Method and Guidelines for Estimating Earthquake Ground Motion in Eastern North America (TR-102293).
[8] Foti, S., Comina, C., Boiero, D., & Socco, L. (2009). Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29(6), 982-993.
[9] Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.-Y., Comina, C., Cornou, C., Cox, B., & Di Giulio, G. (2018). Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16, 2367-2420.
[10] Geometrics, I. (2006). SeisImager/SW Manual Windows Software for Analysis of Surface Waves. Geometrics, Inc.
[11] Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the seismological Society of America, 43(1), 17-34.
[12] Hayashi, K., & Suzuki, H. (2004). CMP cross-correlation analysis of multi-channel surface-wave data. Exploration Geophysics, 35(1), 7-13.
[13] Heisey, J., Stokoe, K., & Meyer, A. (1982). Moduli of pavement systems from spectral analysis of surface waves. Transportation research record, 852(22-31), 147.
[14] Itasca. (2011). FLAC — Fast Lagrangian Analysis of Continua, Ver. 7.00. User’s Manual. Itasca Consulting Group, Inc.
[15] Kausel, E., & Roësset, J. M. (1981). Stiffness matrices for layered soils. Bulletin of the seismological Society of America, 71(6), 1743-1761.
[16] Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice Hall.
[17] Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5), 421-427.
[18] Kwok, O. L. A., Stewart, J. P., Kwak, D. Y., & Sun, P.-L. (2018). Taiwan-specific model for V s30 prediction considering between-proxy correlations. Earthquake Spectra, 34(4), 1973-1993.
[19] Lin, C.-P., Putri, A. S., Wu, T.-J., & Pan, E. (2021). Behavior of apparent dispersion curve and its implications to MASW testing. J. GeoEng., 16, 121-131.
[20] Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the engineering mechanics division, 95(4), 859-877.
[21] Menke, W. (1979). Comment on ‘Dispersion function computations for unlimited frequency values’ by Anas Abo-Zena. Geophysical Journal International, 59(2), 315-323.
[22] Miller, C. A., Costantino, C. J., Pires, I. A., & Higgins, C. J. (2001). Evaluation of the Hualien Quarter Scale Model Seismic Experiment: Geotechnical Site Characterization Review (NUREG/CR-6584, Volume 2).
[23] NCREE. (2009). Engineering Geological Database for TSMIP (EGDT) https://egdt.ncree.org.tw/overview_eng.htm
[24] Okada, H., & Suto, K. (2003). The microtremor survey method. Society of Exploration Geophysicists.
[25] Olafsdottir, E. (2014). Multichannel analysis of surface waves methods for dispersion analysis of surface wave data. University of Iceland, Reykjavik, Iceland.
[26] Olafsdottir, E. A., Erlingsson, S., & Bessason, B. (2018). Tool for analysis of multichannel analysis of surface waves (MASW) field data and evaluation of shear wave velocity profiles of soils. Canadian Geotechnical Journal, 55(2), 217-233.
[27] OYO, C. (2016). Operation Manual MODEL-1109 McSEIS-SW. OYO corporation.
[28] Park, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. In SEG technical program expanded abstracts 1998 (pp. 1377-1380). Society of Exploration Geophysicists.
[29] Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800-808.
[30] Park, C. B., Miller, R. D., Xia, J., & Ivanov, J. (2007). Multichannel analysis of surface waves (MASW)—active and passive methods. The Leading Edge, 26(1), 60-64.
[31] Pelekis, P., & Athanasopoulos, G. (2012). Application of a simplified inversion technique to published surface wave dispersion data–comparisons with advanced methods of inversion. In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering (pp. 2716-2725).
[32] Richart, F. E., Hall, J. R., & Woods, R. D. (1970). Vibrations of soils and foundations Prentice-Hall.
[33] Rix, G. J. (1995). Accuracy and resolutions of surface wave inversion.
[34] Tang, H. T., Graves, H. L., & Yeh, Y. S. (1990). Large-Scale Seismic Test Program at Hualien, Taiwan.
[35] Tang, H. T., Stepp, J. C., Cheng, Y. H., Yeh, Y. S., Nishi, K., Morishita, H., Shirasaka, Y., Gantenbein, F., Touret, J. P., & Sollogou, P. (1991). The Hualien large-scale seismic test for soil-structure interaction research.
[36] Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21(2), 89-93.
[37] Wang, J.-S., Hwang, J.-H., Lu, C.-C., & Deng, Y.-C. (2022). Measurement uncertainty of shear wave velocity: A case study of thirteen alluvium test sites in Taipei Basin. Soil Dynamics and Earthquake Engineering, 155, 107195.
[38] Xia, J., Miller, R. D., Park, C. B., Hunter, J. A., Harris, J. B., & Ivanov, J. (2002). Comparing shear-wave velocity profiles inverted from multichannel surface wave with borehole measurements. Soil Dynamics and Earthquake Engineering, 22(3), 181-190.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94583-
dc.description.abstract剪力波速為土壤動態性質之重要參數,其於工程設計上的應用範圍甚廣,但傳統 測定剪力波速的方法,例如跨孔式、下孔式或懸盪式井測法,因須鑽孔導致成本高昂, 且其代表性受取樣數量限制。相形之下,多頻道表面波譜分析法(MASW)為一個相 當具有潛力的替代方案;惟其可靠度仍待檢驗。
本研究經由數值模擬及現地試驗檢視該方法。數值模擬部分以多組假設地層之分 析結果觀察不同情境下頻散曲線的行為。而現地試驗則透過於台灣強地動觀測網 (TSMIP)中有現地調查資料的測站中實測表面波,並與以懸盪式井測法所得之結果 比對。除了用於比對之測站,本研究以多頻道表面波譜分析法為六個未調查測站建立 剪力波速資料。
分析結果顯示,由多頻道表面波譜分析法所得之頻散曲線穩定且可重現。而即便 表面波譜法所估計之vs30較懸盪式井測法之估計值低,其地盤分類的結果與懸盪式井 測法之結果大致相同。另一方面,於探測深度內若剪力波速有驟增之情形將造成反算 之剪力波速精準度下降。而波速若有隨深度降低的情況,會依其發生深度對頻散曲線 的不同頻段產生影響,造成反算時頻散曲線的有效範圍受到限制,導致反算所得之剪 力波速精度下降。
zh_TW
dc.description.abstractConventionally, geological surveys for the shear wave velocity, such as down-hole, cross-hole, or suspension P-S logging, etc., are expensive, labor-intensive, and must leave a lasting mark in the field. Therefore, there is always a demand for a cost-effective and non-destructive way to conduct the survey. The multichannel analysis of surface waves (MASW) solves this scenario with the developed data-processing techniques. However, concerns regarding the reliability of this method are still under discussion.
This study consists of two parts. Firstly, numerical analysis using FLAC is conducted based on hypothetical profiles and the well-investigated Lotung LSST site to observe the behavior of the dispersion curves and evaluate the applicability of MASW. Secondly, it verifies the reliability of MASW by applying the technique to sites within the Taiwan Strong Motion Instrumentation Program (TSMIP) network and comparing the results with information obtained from PS-logging. The shear wave velocity profiles are also constructed in six non-investigated sites with MASW.
The findings reveal that MASW generates stable and consistent results in experimental dispersion curves, and the uncertainty in shear wave velocity profiles mainly arises from the inversion analysis or mistaking the fundamental mode. From the perspective of site classification, the MASW performs well, although it appears to underestimate the vs30 compared with PS-logging. On the other hand, the potential problems that might interfere with the continuity of fundamental dispersion curves or decrease the accuracy of the shear wave velocity profile are also discussed and displayed.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:52:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:52:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES XV
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 MOTIVATION 1
1.3 OBJECTIVE 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 WAVE PROPAGATION 4
2.1.1 Body Waves 6
2.1.2 Rayleigh wave 7
2.2 SEISMIC VELOCITY MEASUREMENTS 10
2.2.1 Invasive methods 10
2.2.2 Surface waves methods 14
2.2.3 Comparison 18
2.3 AVAILABLE VELOCITY PROFILES 20
2.3.1 Large-scale seismic test sites 20
2.3.2 Taiwan Strong Motion Instrumentation Program sites 23
CHAPTER 3 METHODOLOGY 25
3.1 NUMERICAL ANALYSIS 25
3.1.1 Boundary condition 25
3.1.2 Model geometry 28
3.1.3 Grid size 30
3.1.4 Input motion 31
3.2 FIELD TEST 34
3.2.1 Seismograph 35
3.2.2 Source and receivers 36
3.2.3 Data acquisitions 37
3.3 SURFACE WAVE ANALYSIS 41
3.3.1 Dispersion analysis 41
3.3.2 Inversion analysis 45
CHAPTER 4 NUMERICAL ANALYSIS 49
4.1 MODEL CONFIGURATION 50
4.2 MODEL VERIFICATION 51
4.3 HYPOTHETICAL PROFILES 55
4.4 LOTUNG LSST 64
4.4.1 Comparison of different layering approaches 66
4.4.2 Solution for the numerical analysis 68
4.4.3 Compared with field test data 70
CHAPTER 5 FIELD TEST 73
5.1 TSMIP SITES 73
5.2 SITES WITH EXISTING DATA 76
5.3 COMPARISON IN 𝒗𝒔, 𝟑𝟎 92
5.4 SHEAR WAVE VELOCITY PROFILES FOR NON-INVESTIGATED SITES 93
CHAPTER 6
CONCLUSION 101
REFERENCE 102
APPENDIX 106
-
dc.language.isoen-
dc.title以多頻道表面波譜分析法建立台灣強震測站波速模型zh_TW
dc.titleDevelopment of Velocity Models by MASW for Strong Ground Motion Stations in Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭俊翔;許尚逸zh_TW
dc.contributor.oralexamcommitteeChun-Hsiang Kuo;Shang-Yi Hsuen
dc.subject.keyword多頻道表面波譜分析法,頻散曲線,剪力波速,台灣強地動觀測網,vs30,zh_TW
dc.subject.keywordMASW,dispersion curve,shear wave velocity,TSMIP,vs30,en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202403310-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved