Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94579
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄zh_TW
dc.contributor.advisorHao-Hsiung Linen
dc.contributor.author張世喆zh_TW
dc.contributor.authorShi-Zhe Zhangen
dc.date.accessioned2024-08-16T16:50:53Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation[1] Y. Essouda, H. Fitouri, R. Boussaha, N. Elayech, A. Rebey, and B. E. Jani, “Bismuth catalyzed growth of GaAsBi nanowires by metalorganic vapor phase epitaxy,” Materials Letters, vol. 152, pp. 298–301, Aug. 2015, doi: 10.1016/j.matlet.2015.03.071.
[2] S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, “Band gap of GaAs1−xBix, GaAs1−x Bix , 0<x<3.6%,” Applied Physics Letters, vol. 82, no. 22, pp. 3874–3876, Jun. 2003, doi: 10.1063/1.1581983.
[3] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, “Giant Spin-Orbit Bowing in GaAs 1 − x Bi x,” Phys. Rev. Lett., vol. 97, no. 6, p. 067205, Aug. 2006, doi: 10.1103/PhysRevLett.97.067205.
[4] F. Ishikawa et al., “Metamorphic GaAs/GaAsBi Heterostructured Nanowires,” Nano Lett., vol. 15, no. 11, pp. 7265–7272, Nov. 2015, doi: 10.1021/acs.nanolett.5b02316.
[5] J. Sadowski et al., “Bi incorporation and segregation in the MBE-grown GaAs-(Ga,Al)As-Ga(As,Bi) core–shell nanowires,” Sci Rep, vol. 12, no. 1, p. 6007, Apr. 2022, doi: 10.1038/s41598-022-09847-w.
[6] F. Bastiman, Y. Qiu, and T. Walther, “GaAsBi atomic surface order and interfacial roughness observed by STM and TEM,” J. Phys.: Conf. Ser., vol. 326, p. 012060, Nov. 2011, doi: 10.1088/1742-6596/326/1/012060.
[7] R. B. Lewis, M. Masnadi-Shirazi, and T. Tiedje, “Growth of high Bi concentration GaAs 1−x Bi x by molecular beam epitaxy,” Appl. Phys. Lett., vol. 101, no. 8, p. 082112, Aug. 2012, doi: 10.1063/1.4748172.
[8] Y. Takehara et al., “Lattice Distortion of GaAsBi Alloy Grown on GaAs by Molecular Beam Epitaxy,” jjap, vol. 45, no. 1R, p. 67, Jan. 2006, doi: 10.1143/JJAP.45.67.
[9] G. F. Harrington and J. Santiso, “Back-to-Basics tutorial: X-ray diffraction of thin films,” J Electroceram, vol. 47, no. 4, pp. 141–163, Dec. 2021, doi: 10.1007/s10832-021-00263-6.
[10] R. Castaing, “Electron Probe Microanalysis,” in Advances in Electronics and Electron Physics, vol. 13, Elsevier, 1960, pp. 317–386. doi: 10.1016/S0065-2539(08)60212-7.
[11] T. Paulauskas et al., “Epitaxial growth of GaAsBi on thin step-graded InGaAs buffer layers,” Semicond. Sci. Technol., vol. 37, no. 6, p. 065004, Jun. 2022, doi: 10.1088/1361-6641/ac61ff.
[12] S. Adachi, Properties of Semiconductor Alloys: Group‐IV, III–V and II–VI Semiconductors, 1st ed. Wiley, 2009. doi: 10.1002/9780470744383.
[13] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys, ” Journal of Applied Physics, vol. 89, no. 11, pp. 5815–5875, Jun. 2001, doi: 10.1063/1.1368156.
[14] S. Q. Wang and H. Q. Ye, “First‐principles study on elastic properties and phase stability of III–V compounds, ” Physica Status Solidi (b), vol. 240, no. 1, pp. 45–54, Nov. 2003, doi: 10.1002/pssb.200301861.
[15] H. Nagai, “Structure of vapor-deposited Ga x In1− x As crystals,” Journal of Applied Physics, vol. 45, no. 9, pp. 3789–3794, Sep. 1974, doi: 10.1063/1.1663861.
[16] J. A. Olsen et al., “X-ray reciprocal-space mapping of strain relaxation and tilting in linearly graded InAlAs buffers,” Journal of Applied Physics, vol. 79, no. 7, pp. 3578–3584, Apr. 1996, doi: 10.1063/1.361410.
[17] Chia-Che Yang “以分子束磊晶成長 GaAsBi / GaAs (001)之特性分析, ”2023, doi:10.6342/NTU202303983
[18] T. Sasaki et al., “Growth temperature dependence of strain relaxation during InGaAs/GaAs(0 0 1) heteroepitaxy,” Journal of Crystal Growth, vol. 323, no. 1, pp. 13–16, May 2011, doi: 10.1016/j.jcrysgro.2010.10.005.
[19] B. W. Dodson and J. Y. Tsao, “Relaxation of strained-layer semiconductor structures via plastic flow,” Applied Physics Letters, vol. 51, no. 17, pp. 1325–1327, Oct. 1987, doi: 10.1063/1.98667.
[20] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers,” Journal of Crystal Growth, vol. 27, pp. 118–125, Dec. 1974, doi: 10.1016/S0022-0248(74)80055-2.
[21] Huang Jing-Yun, Ye Zhi-Zhen, Que Duan-Lin, and 浙江大學矽材料國家重點實驗室, “CALCULATION OF CRITICAL LAYER THICKNESS BY TAKING INTO ACCOUNT THE THERMAL STRAIN IN Si1-xGex /Si STRAIN LAYER HETEROSTRUCTURES,” Acta Phys. Sin., vol. 46, no. 10, p. 2010, 1997, doi: 10.7498/aps.46.2010.cu
[22] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for Ge x Si1− x /Si strained-layer heterostructures,” Applied Physics Letters, vol. 47, no. 3, pp. 322–324, Aug. 1985, doi: 10.1063/1.96206.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94579-
dc.description.abstract我們在半絕緣偏斜角為±0.1°砷化鎵(001)基板,半絕緣偏斜角為±0.1°砷化鎵(111)A基板上用分子束磊晶法成長了GaAs buffer和GaAsBi薄膜,這層buffer我們以1μm/h的速率成長,成長溫度落在650℃,As2/Ga BEP維持在6。而在磊晶層的部分,我們以0.33μm/h的速率成長,將As2/Ga的BEP比從3逐漸調整至2,Bi/Ga 的BEP比從0.084逐漸調整至0.12,並逐漸降低長晶溫度。
對於(111)A基板的樣品,我們使用SEM在樣品上觀察到了奈米線(NWs)的出現,我們通過EDX的結果和僅成長buffer的樣品確定了奈米線為純GaAsBi的材料而非core shell的結構,也排除了Vapor-Liquid-Solid的生長機制。根據成長條件我們找到了最適合GaAsBi NW成長的growth window,我們發現最佳生長溫度為300°C,As2/Ga BEP比率為2且Bi/Ga BEP比率範圍在0.1-0.12之間時有助於奈米線的成長。我們獲得了具有1:10縱橫比的砷化鎵鉍奈米線。此外,通過 TED 分析,我們在奈米線的頂部發現了twinning的存在。
對於(001)基板的樣品,我們使用了HRXRD、SEM、EPMA和RSM這些儀器和技術進行量測。我們先用HRXRD的結果判斷磊晶品質,再用SEM確定樣品表面是否有液滴,鉍的組成則通過電子探針微區分析和倒置空間映射進行了分析,從RSM的結果也得到了磊晶層的relaxation。我們樣品大部分的砷化鎵鉍層是鬆弛的。
從測量結果來看,降低生長溫度對磊晶層中鉍含量的影響似乎並不顯著,但這一改變可以有效降低磊晶層的弛豫程度。在低溫生長條件下,我們觀察到鉍原子的粘附係數接近1。僅提升Bi/Ga的BEP比例,我們的樣品中鉍含量也會線性的增加而不受其他條件影響。同時,較高的鉍含量也會導致更高弛豫程度。然而在僅降低As2/Ga的BEP Ratio的樣品中,降低As2/Ga BEP比率能夠顯著降低Relaxation的程度。然而,隨著As量的減少,Relaxation的降低幅度也會逐漸變小。
zh_TW
dc.description.abstractWe grew GaAs buffer and GaAsBi films on semi-insulating GaAs (001) and GaAs (111)A substrates with a misorientation angle of ±0.1° using molecular beam epitaxy (MBE). The buffer layer was grown at a rate of 1 μm/h at a temperature of 650°C, with an As2/Ga BEP ratio maintained at 6. For the epitaxial layer, we grew it at a rate of 0.33 μm/h, gradually adjusting the As2/Ga BEP ratio from 3 to 2 and the Bi/Ga BEP ratio from 0.084 to 0.12, while gradually lowering the growth temperature.
For the samples on the (111)A substrate, we observed the formation of nanowires (NWs) using SEM. EDX results and samples with only the buffer layer confirmed that the nanowires were made of pure GaAsBi material rather than a core-shell structure, and we ruled out the Vapor-Liquid-Solid growth mechanism. Based on growth conditions, we identified the optimal growth window for GaAsBi NWs. We found that the best growth temperature was 300°C, with an As2/Ga BEP ratio of 2 and a Bi/Ga BEP ratio range of 0.1-0.12, which facilitated NW growth. We obtained GaAsBi nanowires with an aspect ratio of 1:10. Additionally, TED analysis revealed the presence of twinning at the tops of the NWs.
For the samples on the (001) substrate, we used HRXRD, SEM, EPMA, and RSM for measurements. We assessed the epitaxial quality using HRXRD results, confirmed the presence of droplets on the sample surface using SEM, and analyzed the bismuth composition through EPMA and reciprocal space mapping (RSM), which also revealed the relaxation of the epitaxial layer. Most of the GaAsBi layers in our samples were relaxed.
Our measurement results indicate that lowering the growth temperature does not significantly affect the bismuth content in the epitaxial layer, but it effectively reduces the relaxation degree of the epitaxial layer. Under low-temperature growth conditions, we observed that the sticking coefficient of bismuth atoms approached 1. By only increasing the Bi/Ga BEP ratio, the bismuth content in our samples increased linearly without being affected by other conditions. However, higher bismuth content also led to higher relaxation. In samples where only the As2/Ga BEP ratio was decreased, lowering the As2/Ga BEP ratio significantly reduced the degree of relaxation. However, as the arsenic amount decreased, the reduction in relaxation also gradually diminished.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:50:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:50:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
目次 VII
圖次 IX
表次 XI
第一章 序言 1
1.1 研究背景及研究目的 1
1.2 論文架構 2
第二章 樣品成長 3
2.1 樣品成長 3
第三章 (111)A樣品量測與分析 5
3.1 奈米線的表面形貌 5
3.2 奈米線晶體結構 9
第四章 (001)樣品量測與分析 12
4.1 薄膜的表面形貌 12
4.2 晶格結構與Bi成分 14
4.2.1 HRXRD和EPMA的結果分析 14
4.2.2 磊晶層應力應變的分析與理論推導 19
4.2.3 彈性模量 23
4.2.4 倒置空間映射圖譜結果分析 24
4.2.5 HRXRD與RSM (004)面結果的聯繫 37
4.2.6 RSM和EPMA 的Bi含量 39
4.3 Bi/Ga BEP Ratio對EPMA 的Bi含量 40
4.4 Relaxation和磊晶條件的關係 41
4.4.1 Relaxation的理論模型 41
4.4.2 磊晶溫度和Bi含量及Relaxation的關係 42
4.4.3 Bi/Ga BEP Ratio和Bi含量及Relaxation的關係 43
4.4.4 As2/Ga BEP Ratio和Bi含量及Relaxation的關係 44
4.4.5 臨界厚度 45
第五章 結論 47
參考文獻 48
-
dc.language.isozh_TW-
dc.titleGaAsBi / GaAs奈米結構的成長與特性分析zh_TW
dc.titleGrowth and Characterization of GaAsBi/GaAs Nanostructuresen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王智祥;金宇中;黃朝興zh_TW
dc.contributor.oralexamcommitteeJyh-Shyang Wang;Yu-Chung Chin;Chao-Xing Huangen
dc.subject.keyword分子束磊晶,鉍砷化鎵奈米線,鉍砷化鎵薄膜,鉍砷化鎵應變,zh_TW
dc.subject.keywordMolecular beam Epitaxy,GaAsBi nanowires,GaAsBi films,Strain in GaAsBi,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202402963-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.62 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved