請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94561
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳紀聖 | zh_TW |
dc.contributor.advisor | Jeffrey Chi-Sheng Wu | en |
dc.contributor.author | 邱豔娣 | zh_TW |
dc.contributor.author | Elicia Kusuma | en |
dc.date.accessioned | 2024-08-16T16:44:54Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | Abdullah, Avin & Mohammed, Azad. (2019). Scanning Electron Microscopy (SEM): A Review.
Azhari, N. J., Erika, D., Mardiana, S., Ilmi, T., Gunawan, M. L., Makertihartha, I. G. B. N., & Kadja, G. T. M. (2022). Methanol synthesis from CO2: A mechanistic overview. Results in Engineering, 16, 100711. https://doi.org/10.1016/j.rineng.2022.100711 Ban, H., Li, C., Asami, K., & Fujimoto, K. (2014). Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr Catalyst for CH3OH synthesis from CO2. Catalysis Communications, 54, 50–54. https://doi.org/10.1016/j.catcom.2014.05.014 Balachandar, G., Khanna, N., & Das, D. (2013). Biohydrogen Production from Organic Wastes by Dark Fermentation. Biohydrogen, 103–144. https://doi.org/10.1016/b978-0-444-59555-3.00006-4 Brauer, G. (1965). Manganese. In Handbook of Preparative Inorganic Chemistry (pp. 1459–1460). essay, Academic Press Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319. https://doi.org/10.1021/ja01269a023 Bunaciu, A. A., Udristioiu E.G., & Aboul-Enein, H.Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45(4), 289-299 Chen, X., Qu, Z., Liu, Z., & Ren, G. (2022). Mechanism of oxidization of graphite to graphene oxide by the Hummers method. ACS Omega, 7(27), 23503–23510. https://doi.org/10.1021/acsomega.2c01963 Chinchen, G. C., Denny, P. J., Parker, D. G., Spencer, M. S., & Whan, D. A. (1987). Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: Use OF14C-labelled reactants. Applied Catalysis, 30(2), 333–338. https://doi.org/10.1016/s0166-9834(00)84123-8 Cui, X., Liu, Y., Yan, W., Xue, Y., Mei, Y., Li, J., Gao, X., Zhang, H., Zhu, S., Niu, Y., & Deng, T. (2023). Enhancing methanol selectivity of commercial Cu/ZnO/Al2O3 Catalyst in CO2 hydrogenation by Surface Silylation. Applied Catalysis B: Environmental, 339, 123099. https://doi.org/10.1016/j.apcatb.2023.123099 Deka, T. J., Osman, A. I., Baruah, D. C., & Rooney, D. W. (2022). Methanol fuel production, utilization, and Techno-Economy: A Review. Environmental Chemistry Letters, 20(6), 3525–3554. https://doi.org/10.1007/s10311-022-01485-y Denise, B., Sneeden, R. P. A., & Hamon, C. (1982). Hydrocondensation of carbon dioxide: IV. Journal of Molecular Catalysis, 17(2–3), 359–366. https://doi.org/10.1016/0304-5102(82)85047-5 Duma, Z. G., Dyosiba, X., Moma, J., Langmi, H. W., Louis, B., Parkhomenko, K., & Musyoka, N. M. (2022). Thermocatalytic hydrogenation of CO2 to methanol using Cu-ZnO bimetallic catalysts supported on metal–organic frameworks. Catalysts, 12(4), 401. https://doi.org/10.3390/catal12040401 EPA (2023) Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. U.S. Environmental Protection Agency, EPA 430-R-23-002. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-andsinks-1990-2021. Friedlingstein, P., O'Sullivan, et al.. (2022). Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811-4900. doi:10.5194/essd-14-4811-2022 Galarneau, A., Mehlhorn, D., Guenneau, F., Coasne, B., Villemot, F., Minoux, D., Aquino, C., & Dath, J.-P. (2018). Specific surface area determination for microporous/mesoporous materials: The case of mesoporous fau-y zeolites. Langmuir, 34(47), 14134–14142. https://doi.org/10.1021/acs.langmuir.8b02144 Goehna H. & Koenig P. (1994). Producing methanol from CO2. Chemtech; (United States) 36–39. Goldstein, Lyman, Newbury, Echlin, Joy, Lifshin, Michael, Sawyer, & Goldstein. (2003). Scanning electron microscopy and X-ray microanalysis. Kluwer Academic. Guczi, L., Molnár, & Teschner, D. (2013). Hydrogenation reactions: Concepts and practice. Comprehensive Inorganic Chemistry II, 421–457. https://doi.org/10.1016/b978-0-08-097774-4.00713-0 Hannah Ritchie and Pablo Rosado (2017) - “Fossil fuels” Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/fossil-fuels' [Online Resource] Hu, J.-C. (2023). Hydrophobic h-BN Supported Cu/ZnO for CO2 Hydrogenation to Methanol. https://doi.org/http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/88212 Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339. https://doi.org/10.1021/ja01539a017 IEA (2023), World Energy Outlook 2023, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2023, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A) Ishii, T., & Kyotani, T. (2016). Temperature programmed desorption. Materials Science and Engineering of Carbon, 287–305. https://doi.org/10.1016/b978-0-12-805256-3.00014-3 Jedrzejczak-Silicka, M., Trukawka, M., Dudziak, M., Piotrowska, K., & Mijowska, E. (2018). Hexagonal boron nitride functionalized with au nanoparticles—properties and potential biological applications. Nanomaterials, 8(8), 605. https://doi.org/10.3390/nano8080605 Jiang, S., Weng, Y., Ren, Y., Meng, S., Li, X., Huang, C., Zhang, Y., & Sun, Q. (2023). Conversion of CO2 Hydrogenation to Methanol over K/Ni Promoted MoS2/MgO Catalyst. Catalysts, 13(7), 1030. https://doi.org/10.3390/catal13071030 Kammerer, S., Borho, I., Jung, J., & Schmidt, M. S. (2022). Review: CO2 capturing methods of the last two decades. International Journal of Environmental Science and Technology, 20(7), 8087–8104. https://doi.org/10.1007/s13762-022-04680-0 Kattel, S., Liu, P., & Chen, J. G. (2017). Tuning selectivity of CO2 Hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 139(29), 9739–9754. https://doi.org/10.1021/jacs.7b05362 Kaur, G., & Sharma, S. (2018). Gas Chromatography – A Brief Review. International Journal Of Information and Computing Science, 5(7). Khan, S. A., Khan, S. B., Khan, L. U., Farooq, A., Akhtar, K., & Asiri, A. M. (2018). Fourier transform infrared spectroscopy: Fundamentals and application in functional groups and nanomaterials characterization. Handbook of Materials Characterization, 317–344. https://doi.org/10.1007/978-3-319-92955-2_9 Kitson, F. G., Larsen, B. S., & McEwen, C. N. (1996). What is GC/MS? Gas Chromatography and Mass Spectrometry, 3–23. https://doi.org/10.1016/b978-012483385-2/50002-6 Klier, K. (1982). Methanol synthesis. Advances in Catalysis, 243–313. https://doi.org/10.1016/s0360-0564(08)60455-1 Krishna, D. N., & Philip, J. (2022). Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Applied Surface Science Advances, 12, 100332. https://doi.org/10.1016/j.apsadv.2022.100332 Kundu, A., Shul, Y. G., & Kim, D. H. (2007). Methanol reforming processes. Advances in Fuel Cells, 419–472. https://doi.org/10.1016/s1752-301x(07)80012-3 Li, S., Guo, L., & Ishihara, T. (2020). Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst. Catalysis Today, 339, 352–361. https://doi.org/10.1016/j.cattod.2019.01.015 Lin, L., Yao, S., Rui, N., Han, L., Zhang, F., Gerlak, C. A., Liu, Z., Cen, J., Song, L., Senanayake, S. D., Xin, H. L., Chen, J. G., & Rodriguez, J. A. (2019). Conversion of CO2 on a highly active and stable Cu/FeOx/CeO2 catalyst: Tuning catalytic performance by oxide-oxide interactions. Catalysis Science & Technology, 9(14), 3735–3742. https://doi.org/10.1039/c9cy00722a Liu, G., Hagelin-Weaver, H., & Welt, B. (2023). A concise review of catalytic synthesis of methanol from synthesis gas. Waste, 1(1), 228–248. https://doi.org/10.3390/waste1010015 Liu, Z., Li, J., Ruan, Q., Zhang, K., Ma, W., Dong, H., & Wang, R. (2018). Probing the optimal thermohydrogen processing conditions of titanium alloy shavings via chemisorption method. International Journal of Hydrogen Energy, 43(45), 20783–20794. https://doi.org/10.1016/j.ijhydene.2018.09.081 López, M. del, Palomino, J. L., Silva, M. L., & Izquierdo, A. R. (2016). Optimization of the synthesis procedures of graphene and graphite oxide. Recent Advances in Graphene Research. https://doi.org/10.5772/63752 Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368 Maradin, D. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176–183. https://doi.org/10.32479/ijeep.11027 Martínez-Jiménez, C., Chow, A., Smith McWilliams, A. D., & Martí, A. A. (2023). Hexagonal boron nitride exfoliation and dispersion. Nanoscale, 15(42), 16836–16873. https://doi.org/10.1039/d3nr03941b Mohtar, S. S., Aziz, F., Ismail, A. F., Sambudi, N. S., Abdullah, H., Rosli, A. N., & Ohtani, B. (2021). Impact of doping and additive applications on photocatalyst textural properties in removing organic pollutants: A Review. Catalysts, 11(10), 1160. https://doi.org/10.3390/catal11101160 Monajjemi, M. (2017). Graphene/(h-BN) n/x-doped graphene as anode material in lithium ion batteries (x=Li, be, b and N). Macedonian Journal of Chemistry and Chemical Engineering, 36(1), 101. https://doi.org/10.20450/mjcce.2017.1134 Murthy, P. S., Liang, W., Jiang, Y., & Huang, J. (2021). Cu-based Nanocatalysts for CO2 Hydrogenation to Methanol. Energy & Fuels, 35(10), 8558–8584. https://doi.org/10.1021/acs.energyfuels.1c00625 Obeidat, Y. (2021). The most common methods for breath acetone concentration detection: A Review. IEEE Sensors Journal, 21(13), 14540–14558. https://doi.org/10.1109/jsen.2021.3074610 Ojeda, J. J., & Dittrich, M. (2012). Fourier transform infrared spectroscopy for molecular analysis of Microbial Cells. Microbial Systems Biology, 187–211. https://doi.org/10.1007/978-1-61779-827-6_8 Ojelade, O. A., & Zaman, S. F. (2019). CO2 Hydrogenation to Methanol over PdZn/CeO2 Catalyst. https://doi.org/10.7546/crabs.2019.06.05 Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990 Peppas, A., Kottaridis, S., Politi, C., & Angelopoulos, P. M. (2023). Carbon capture utilisation and storage in extractive industries for Methanol Production. Eng, 4(1), 480–506. https://doi.org/10.3390/eng4010029 Rohde, R. (2023, March 29). Global temperature report for 2022. Berkeley Earth. https://berkeleyearth.org/global-temperature-report-for-2022/ Sahu, T. K., Ranjan, P., & Kumar, P. (2021). Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified hummers’ method. Emergent Materials, 4(3), 645–654. https://doi.org/10.1007/s42247-021-00170-0 Shen, W.-J., Ichihashi, Y., & Matsumura, Y. (2005). Low temperature methanol synthesis from carbon monoxide and hydrogen over Ceria supported copper catalyst. Applied Catalysis A: General, 282(1–2), 221–226. https://doi.org/10.1016/j.apcata.2004.12.046 Sowinska, M., Bertaud, T., Walczyk, D., Thiess, S., Calka, P., Alff, L., Walczyk, C., & Schroeder, T. (2014). In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching TI/HFO2/Tin Cells. Journal of Applied Physics, 115(20). https://doi.org/10.1063/1.4879678 Studt, F., Behrens, M., Kunkes, E. L., Thomas, N., Zander, S., Tarasov, A., Schumann, J., Frei, E., Varley, J. B., Abild‐Pedersen, F., Nørskov, J. K., & Schlögl, R. (2015). The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐based Catalysts. ChemCatChem, 7(7), 1105–1111. https://doi.org/10.1002/cctc.201500123 Todaro, S., Frusteri, F., Wawrzyńczak, D., Majchrzak-Kucęba, I., Pérez-Robles, J.-F., Cannilla, C., & Bonura, G. (2022). Copper and iron cooperation on micro-spherical silica during methanol synthesis via CO2 hydrogenation. Catalysts, 12(6), 603. https://doi.org/10.3390/catal12060603 Vali, S.A., Moral-Vico, J., Font, X. et al. (2024). Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanol: A Mechanistic Study on the Effect of CeO2 and MOF-5 on Active Sites. Catal Lett. https://doi.org/10.1007/s10562-023-04554-1 Wang, C., Li, Y., Xu, C., Badawy, T., Sahu, A., & Jiang, C. (2019). Methanol as an octane booster for gasoline fuels. Fuel, 248, 76–84. https://doi.org/10.1016/j.fuel.2019.02.128 Wang, G., Mao, D., Guo, X., & Yu, J. (2019). Methanol synthesis from CO2 hydrogenation over Cuo-ZnO-ZrO2-MxOy catalysts (M=Cr, Mo and W). International Journal of Hydrogen Energy, 44(8), 4197–4207. https://doi.org/10.1016/j.ijhydene.2018.12.131 Wang, L., Etim, U. J., Zhang, C., Amirav, L., & Zhong, Z. (2022). CO2 activation and Hydrogenation on Cu-ZnO/Al2O3 nanorod catalysts: An in situ FTIR Study. Nanomaterials, 12(15), 2527. https://doi.org/10.3390/nano12152527 Wu, J. C.-S., Lin, Z.-A., Pan, J.-W., & Rei, M.-H. (2001). A novel boron nitride supported Pt catalyst for VOC incineration. Applied Catalysis A: General, 219(1–2), 117–124. https://doi.org/10.1016/s0926-860x(01)00673-1 Wurzel, T. (2006). "Lurgi MegaMethanol technology. Delivering the building blocks for the future fuel and monomer demand." Germany. Xie, Z., Hei, J., Li, C., Yin, X., Wu, F., Cheng, L., & Meng, S. (2023). Constructing carbon supported copper-based catalysts for efficient co2 hydrogenation to methanol. RSC Advances, 13(21), 14554–14564. https://doi.org/10.1039/d3ra01502e Xu, Y., & Zhao, F. (2023). Impact of energy depletion, human development, and income distribution on Natural Resource Sustainability. Resources Policy, 83, 103531. https://doi.org/10.1016/j.resourpol.2023.103531 Yan, Y., Wong, R. J., Ma, Z., Donat, F., Xi, S., Saqline, S., Fan, Q., Du, Y., Borgna, A., He, Q., Müller, C. R., Chen, W., Lapkin, A. A., & Liu, W. (2022). CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 306, 121098. https://doi.org/10.1016/j.apcatb.2022.121098 Yang, N., Kang, F., Zhang, K., Zhou, Y., & Lin, W.-F. (2023). A strategy for CO2 capture and utilization towards methanol production at industrial scale: An integrated highly efficient process based on multi-criteria assessment. Energy Conversion and Management, 293, 117516. https://doi.org/10.1016/j.enconman.2023.117516 Yang, Y.-N., Huang, C.-W., Nguyen, V.-H., & Wu, J. C.-S. (2022). Enhanced methanol production by two-stage reaction of CO2 hydrogenation at Atmospheric Pressure. Catalysis Communications, 162, 106373. https://doi.org/10.1016/j.catcom.2021.106373 Zhu, Jiadong & Su, Ya-Qiong & Chai, Jiachun & Muravev, Valery & Kosinov, Nikolay & Hensen, Emiel. (2020). Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO2 on Cu/CeO2. ACS Catalysis. 10. 11532-11544. 10.1021/acscatal.0c02909. Zhu, T., Song, H., Li, F., & Chen, Y. (2020). Hydrodeoxygenation of benzofuran over bimetallic Ni-cu/γ-al2o3 catalysts. Catalysts, 10(3), 274. https://doi.org/10.3390/catal10030274 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94561 | - |
dc.description.abstract | 自工業革命以來,污染呈指數級增長。二氧化碳是生態系統中最豐富的污染物之一,這是一種導致全球氣溫和海平面上升的溫室氣體。科學界投入了時間和資源來減少溫室氣體排放。隨著不可再生燃料資源的枯竭,回收溫室氣體作為再生燃料的前景日益迫切。二氧化碳可以使用氫氣合成再生燃料、產生甲醇,作為 更容易儲存的氫基燃料。在商業上,該過程是在高壓(50-100 bar)和低溫(200-250 oC)下使用銅基催化劑例如 Cu/ZnO/Al2O3進行的。然而,由於氧化鋁載體的親水性,會很容易發生催化劑失活並降低甲醇產率。
提高甲醇產量的一種方法是透過雙反應器系統除水。在雙反應器系統中,其中一個反應器用於透過反向水煤氣變換生產CO,然後流至乾燥器以除去水,第二個反應器用於減少水。為了提高還原能力,會在 Cu/ZnO/ZrO2 催化劑中加入額外促進劑(例如添加 La、Ce、Mo 和 W)。 加氫反應表明,添加六方氮化硼(hBN)的Cu/ZnO/ZrO2/CeO2催化劑顯示出最佳的逆水煤氣變換和CO2加氫性能。金屬和 hBN 的重量比例為 4:6,因此這裡將其稱為 40CZZC_hBN。使用 40CZZC_hBN 的逆水煤氣轉換的CO 選擇性為 99.64%,CO2 轉化率為 37.95%,CO產率 1026.01 mg/gcat h。 40CZZC_hBN的甲醇選擇性為36.42%,CO2轉化率為12.41%,甲醇產率為140.04 mg/gcat h。此外,40CZZC_hBN在CO加氫製甲醇的CO轉化率3.62%和甲醇產率為97.63 mg/gcat h方面比商業催化劑2.50%轉化率和甲醇產率91.57gcat h更好。 最後,將用於CO2 加氫製甲醇的雙反應器系統與一個反應器系統的性能進行比較,結果顯示甲醇產率幾乎相似,對於在第二個反應器中裝載0.8 g 40CZZC_hBN 的雙反應器系統,甲醇產率為127.69 mg/gcat h,與單一反應器系統的140.04 mg/gcat h 相似;兩者皆在10 bar 下運作。用於兩個反應器之間除水的乾燥劑對甲醇產率有顯著影響,使用 CaCl2 時甲醇產率為86.26 mg/gcath ,比使用分子篩 3A 降低了甲醇產率。增加雙反應器系統的壓力將顯著提高甲醇產率,因為將壓力增加至 30 bar 將使甲醇產率增加一倍以上,甲醇產率為266.11 mg/gcath。透過串聯兩次CO2加氫至甲醇反應,可以獲得最高的甲醇產率為337 mg/gcat h,30 bar。 | zh_TW |
dc.description.abstract | Pollution has exponentially increased since the industrial revolution. One of the most abundant pollutants within our ecosystem is CO2, a greenhouse gas that caused rising global temperature and sea level. The scientific field has poured time and resource to reduce greenhouse gas. Along with the depleting source of non-renewable fuel, the prospect of recycling greenhouse gas as a renewable fuel has been on demand. CO2 pollution can be synthesized as a renewable fuel using H2 which produces methanol as an easier to store hydrogen-based fuel. Commercially, this process is conducted in at high pressure (50-100 bar) and low temperature (200-250 oC) with a copper-based catalyst, such as Cu/ZnO/Al2O3. However, due to the hydrophilic nature of alumina support, catalyst is easily deactivated and thus reduce methanol yield.
One method to increase the production of methanol is water removal via the two-reactor system, where one reactor is used to produce CO by Reverse Water Gas Shift, RWGS, which is then flowed to a desiccator to remove water and the second reactor to reduce mixture of CO and CO2 to methanol by hydrogenation. To improve the reduction capability, an additional promoter to the Cu/ZnO/ZrO2 catalyst (such as addition of La, Ce, Mo, and W) was tested. Catalytic hydrogenation showed that Cu/ZnO/ZrO2/CeO2 (CZZC) catalyst being loaded with an addition of hexagonal Boron Nitride (hBN) showed the best performance for RWGS and CO2 hydrogenation. The ratio of the metal and hBN is 4:6, as such it is referred as 40CZZC_hBN. RWGS using 40CZZC_hBN had CO selectivity of 99.64%, CO2 conversion 37.95%, and CO STY 1026.01 mg/gcat h. 40CZZC_hBN performance of MeOH selectivity of 36.42%, CO2 conversion 12.41%, and methanol STY 140.04 mg/gcat h. In addition, the performance of 40CZZC_hBN in CO conversion of 3.62% and methanol STY of 97.63 mg/gcat h for CO hydrogenation to methanol had better performance than the commercial catalyst with a result of 2.50% conversion and 91.57 mg/gcat h methanol STY. Lastly, the two reactor system was for CO2 hydrogenation to methanol was compared to the performance of one reactor system and the result showed an almost similar methanol STY of 127.69 mg/gcat h for the two reactor system with 0.8 g of 40CZZC_hBN loaded in the second reactor compared to 140.04 mg/gcat h for the one reactor system; both operating at 10 bar. The desiccant that is used for water removal in between the two reactor had a significant effect on the methanol yield as using CaCl2 lowers the methanol STY of 86.26 mg/gcath than using molecular sieve 3A. Increasing the pressure of the two reactor system significantly improved the methanol space time yield as increasing the pressure to 30 bar more than double the methanol STY to 266.11 mg/gcath. By utilizing two CO2 hydrogenation to methanol reaction in series, the highest methanol STY can achieve 337 mg/gcat h at 30 bar. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:44:53Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:44:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Certificate of Thesis/Dissertation Approval from the Oral Defense Committee National Taiwan University i
ACKNOWLEDGEMENT ii ABSTRACT iii ABSTRACT (Chinese) v TABLE OF CONTENT vii LIST OF ILLUSTRATION xi LIST OF TABLES xvii CHAPTER I INTRODUCTION 1 1.1 Background 1 1.2 Problem Formulation 2 1.3 Purpose of Research 2 1.4 Scope of Work 2 1.5 Catalyst Flowchart 4 CHAPTER II LITERATURE REVIEW 6 2.1 CO2 Emission 6 2.1.1 Overview 6 2.1.2 Mitigation 8 2.2 Methanol Production 10 2.3 CAMERE Reaction 14 2.4 Catalyst Material 16 2.5 Hummers Method 33 CHAPTER III EXPERIMENTAL PROCEDURE 37 3.1 Materials and Apparatus 37 3.1.1 Material for Catalyst Synthesis 37 3.1.2 Apparatus for catalyst synthesis 38 3.1.3 Apparatus for Gas Calibration and Analysis 39 3.1.4 Apparatus for Catalytic Test 40 3.1.5 Gas Used 41 3.1.6 Analysis Instrument 41 3.2 Experimental Setup 41 3.3 Experimental Procedure 43 3.3.1 Improved Modified Hummers Method Procedure 43 3.3.2 Catalyst Synthesis Method (without Fe) 44 3.3.3 Catalyst Synthesis Method (with Fe) 46 3.3.4 Catalytic Performance Evaluation (CO2 hydrogenation to Methanol) 47 3.3.5 Catalytic Performance Evaluation (CO hydrogenation to Methanol) 48 3.3.6 Catalytic Performance Evaluation (Reverse Water Gas Shift Reaction) 49 3.3.7 Catalytic Performance Evaluation (CAMERE Reaction) 49 3.4 Catalyst Characteristic Analysis 52 3.4.1 XRD 52 3.4.2 FTIR 53 3.4.3 SEM 54 3.4.4 EDS 55 3.4.5 BET 56 3.4.6 GC 57 3.4.7 XPS 59 3.4.8 H2-TPR and CO2-TPD 60 3.5 Equation Used and Data Processing 62 3.6 Gas Calibration with Gas Chromatography 63 3.6.1 H2 Calibration 63 3.6.2 CO Calibration 64 3.6.3 CO2 Calibration 65 3.6.4 Methanol Calibration 65 CHAPTER IV RESULT AND DISCUSSION 67 4.1 Catalyst Characteristic Test 67 4.1.1 XRD Result 67 4.1.2 FTIR Result 71 4.1.3 BET Result 72 4.1.4 SEM Result 73 4.1.5 Chemical Composiion Analysis Result 75 4.1.6 XPS Result 77 4.1.7 H2-TPR Result 83 4.1.8 CO2-TPD Result 85 4.2 Catalytic Performance Evaluation 86 4.2.1 Metal and hBN Loading Effect (CO2 Hydrogenation) 86 4.2.2 Temperature Effect (CO2 Hydrogenation) 88 4.2.3 Promoter Effect (CO2 Hydrogenation) 89 4.2.4 Pressure Effect (CO2 Hydrogenation) 90 4.2.5 Metal and hBN Loading Effect (CO Hydrogenation) 92 4.2.6 Catalyst Type (CO Hydrogenation) 94 4.2.7 Temperature Effect (RWGS) 95 4.2.8 Metal and hBN Loading Effect (RWGS) 97 4.2.9 Promoter Effect (RWGS) 98 4.2.10 Addition of Fe Effect (RWGS) 99 4.2.11 Catalyst Loading Effect (CO/CO2 Hydrogenation) 101 4.2.12 Catalyst Type Effect (CAMERE) 102 4.2.13 Pressure Effect (CAMERE) 104 4.2.14 Desiccant Type Effect (CAMERE) 105 4.2.15 1 Reactor Compared to 2 Reactors (and reaction type in the first reactor) 106 4.2.16 Pressure Effect (2 CO2 Hydrogenation to Methanol in Series) 108 4.2.17 Addition of Zn and Zr (CO2 Hydrogenation, CO Hydrogenation, CAMERE) 110 4.3 State of the Art 114 CHAPTER V CONCLUSION 116 5.1 Conclusion 116 5.2 Suggestion 116 REFERENCE 117 AUTOBIOGRAPHY 123 | - |
dc.language.iso | en | - |
dc.title | 中高壓雙反應器系統二氧化碳加氢生產甲醇 | zh_TW |
dc.title | CO2 Hydrogenation for Methanol Production using Two Reactor System at Medium-High Pressure | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳朝煌;林哲民;陳誠亮 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Huang Chen;Zhe-Min Lin;Cheng-Liang Chen | en |
dc.subject.keyword | CO2加氫,銅基催化劑,甲醇合成,逆水煤氣轉換,雙反應器系統, | zh_TW |
dc.subject.keyword | CO2 hydrogenation,copper based catalyst,methanol synthesis,reverse water gas shift,two-reactor system, | en |
dc.relation.page | 123 | - |
dc.identifier.doi | 10.6342/NTU202403130 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 化學工程學系 | - |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.78 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。