請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94554完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰 | zh_TW |
| dc.contributor.advisor | Shiang-Tai Lin | en |
| dc.contributor.author | 黃晨軒 | zh_TW |
| dc.contributor.author | Chen-Hsuan Huang | en |
| dc.date.accessioned | 2024-08-16T16:42:32Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 1. Pollak, P., Fine chemicals: the industry and the business. John Wiley & Sons: 2011.
2. Lee, J.-C.; Chai, J.-D.; Lin, S.-T., Assessment of density functional methods for exciton binding energies and related optoelectronic properties. RSC Advances 2015, 5, (123), 101370-101376. 3. Gerbaud, V.; Rodriguez-Donis, I.; Hegely, L.; Lang, P.; Denes, F.; You, X., Review of extractive distillation. Process design, operation, optimization and control. Chemical Engineering Research and Design 2019, 141, 229-271. 4. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9, (6), 1955-1988. 5. Research, G. V. Specialty Chemicals Market Size, Share & Trends Analysis Report By Product (Institutional & Industrial Cleaners, Flavor & Fragrances, Food & Feed Additives), By Region, And Segment Forecasts, 2020 - 2027; July, 2020; p 250. 6. Mousavi, S.; Zare, S.; Mirzaei, M.; Feizi, A., Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. Canadian Journal of Infectious Diseases and Medical Microbiology 2022, 2022, 2044282. 7. Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.-M., Advanced Materials for Energy Storage. Advanced Materials 2010, 22, (8), E28-E62. 8. Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A. H.; Olabi, A. G., Outlook of carbon capture technology and challenges. Science of The Total Environment 2019, 657, 56-72. 9. Santagate, J. Improving the Product Innovation Process in the Chemicals Industry Through Data Access, Collaboration, and Visibility International Data Corporation (IDC): Mar., 2016. 10. Miremadi, M.; Musso, C.; Oxgaard, J. Chemical innovation: An investment for the ages; McKinsey & Company: May 1, 2013. 11. ChemADVISOR® Online. In UL Solutions: 2023. 12. Lawson, A., The Beilstein Database. In 2008; pp 608-628. 13. ChemSpider | Search and share chemistry. http://www.chemspider.com/ 14. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E., PubChem 2023 update. Nucleic Acids Research 2023, 51, (D1), D1373-D1380. 15. Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A., Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data 2014, 1, (1), 140022. 16. Blum, L. C.; Reymond, J.-L., 970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13. Journal of the American Chemical Society 2009, 131, (25), 8732-8733. 17. Fink, T.; Reymond, J.-L., Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery. Journal of Chemical Information and Modeling 2007, 47, (2), 342-353. 18. Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L., Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17. Journal of Chemical Information and Modeling 2012, 52, (11), 2864-2875. 19. Onken, U.; Rarey-Nies, J.; Gmehling, J., The Dortmund Data Bank: A computerized system for retrieval, correlation, and prediction of thermodynamic properties of mixtures. International Journal of Thermophysics 1989, 10, (3), 739-747. 20. Dortmund Data Bank (DDB). In 2023 ed.; DDBST Dortmund Data Bank Software & Separation Technology GmbH: 2023. 21. Todeschini, R.; Consonni, V., Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references. John Wiley & Sons: 2009. 22. Fabian, W. M. F., Accurate thermochemistry from quantum chemical calculations? Monatshefte für Chemie - Chemical Monthly 2008, 139, (4), 309-318. 23. Ungerer, P.; Nieto-Draghi, C.; Rousseau, B.; Ahunbay, G.; Lachet, V., Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions. Journal of Molecular Liquids 2007, 134, (1), 71-89. 24. Zhan, C.-G.; Nichols, J. A.; Dixon, D. A., Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies. The Journal of Physical Chemistry A 2003, 107, (20), 4184-4195. 25. Coley, C. W., Defining and Exploring Chemical Spaces. Trends in Chemistry 2021, 3, (2), 133-145. 26. Drew, K. L. M.; Baiman, H.; Khwaounjoo, P.; Yu, B.; Reynisson, J., Size estimation of chemical space: how big is it? Journal of Pharmacy and Pharmacology 2012, 64, (4), 490-495. 27. Ogata, K.; Isomura, T.; Yamashita, H.; Kubodera, H., A Quantitative Approach to the Estimation of Chemical Space from a Given Geometry by the Combination of Atomic Species. Qsar & Combinatorial Science 2007, 26, (5), 596-607. 28. Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A., Estimation of the size of drug-like chemical space based on GDB-17 data. Journal of Computer-Aided Molecular Design 2013, 27, (8), 675-679. 29. Gorse, A.-D., Diversity in Medicinal Chemistry Space. Current Topics in Medicinal Chemistry 2006, 6, (1), 3-18. 30. Achenie, L.; Venkatasubramanian, V.; Gani, R., Computer-Aided Molecular Design: Theory and Practice. 1st ed ed.; Elsevier: Netherlands, 2003; Vol. 12. 31. Doucet, J.-P.; Weber, J., Computer-Aided Molecular Design: Theory and Applications. 1st ed.; Academic Press: San Diego, CA 92101, 1996. 32. Austin, N. D.; Sahinidis, N. V.; Trahan, D. W., Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design 2016, 116, 2-26. 33. Cheng, Y.; Gong, Y.; Liu, Y.; Song, B.; Zou, Q., Molecular design in drug discovery: a comprehensive review of deep generative models. Briefings in Bioinformatics 2021, 22, (6), bbab344. 34. Elton, D. C.; Boukouvalas, Z.; Fuge, M. D.; Chung, P. W., Deep learning for molecular design—a review of the state of the art. Molecular Systems Design & Engineering 2019, 4, (4), 828-849. 35. Reker, D.; Schneider, G., Active-learning strategies in computer-assisted drug discovery. Drug Discovery Today 2015, 20, (4), 458-465. 36. Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F., Artificial intelligence in drug discovery: applications and techniques. Briefings in Bioinformatics 2022, 23, (1), bbab430. 37. Floudas, C. A., Nonlinear and mixed-integer optimization: fundamentals and applications. Oxford University Press: 1995. 38. Gani, R.; Brignole, E. A., Molecular design of solvents for liquid extraction based on UNIFAC. Fluid Phase Equilibria 1983, 13, 331-340. 39. Joback, K. G. Designing molecules possessing desired physical property values. Dissertation, Massachusetts Institute of Technology, 1989. 40. Odele, O.; Macchietto, S., Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection. Fluid Phase Equilib. 1993, 82, (Supplement C), 47-54. 41. Achenie, L.; Venkatasubramanian, V.; Gani, R., Computer-Aided Molecular Design : Theory and Practice. 1st ed ed.; Elsevier: Netherlands, 2003; Vol. 12. 42. Schneider, G.; Fechner, U., Computer-based de novo design of drug-like molecules. Nat. Rev. Drug. Discov. 2005, 4, 649. 43. Gelin, B. R., Current Approaches in Computer-Aided Molecular Design. In Computer-Aided Molecular Design, Reynolds, C. H.; Holloway, M. K.; Cox, H. K., Eds. American Chemical Society: 1995; pp 1-11. 44. Austin, N. D. Tools for Computer-Aided Molecular and Mixture Design. Dissertation, Carnegie Mellon University, 2017. 45. Kutchukian, P. S.; Shakhnovich, E. I., De novo design: balancing novelty and confined chemical space. Expert Opinion on Drug Discovery 2010, 5, (8), 789-812. 46. Schneider, G.; Fechner, U., Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery 2005, 4, (8), 649-663. 47. Reymond, J.-L.; Ruddigkeit, L.; Blum, L.; van Deursen, R., The enumeration of chemical space. WIREs Computational Molecular Science 2012, 2, (5), 717-733. 48. McLeese, S. E.; Eslick, J. C.; Hoffmann, N. J.; Scurto, A. M.; Camarda, K. V., Design of ionic liquids via computational molecular design. Computers & Chemical Engineering 2010, 34, (9), 1476-1480. 49. Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports 2017, 7, (1), 42717. 50. Dong, J.; Wang, N.-N.; Yao, Z.-J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.-P.; Cao, D.-S., ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics 2018, 10, (1), 29. 51. Folić, M.; Adjiman, C. S.; Pistikopoulos, E. N., Design of solvents for optimal reaction rate constants. Aiche Journal 2007, 53, (5), 1240-1256. 52. Sahinidis, N. V.; Tawarmalani, M.; Yu, M., Design of alternative refrigerants via global optimization. Aiche Journal 2003, 49, (7), 1761-1775. 53. Marcoulaki, E. C.; Kokossis, A. C., On the development of novel chemicals using a systematic synthesis approach. Part I. Optimisation framework. Chemical Engineering Science 2000, 55, (13), 2529-2546. 54. Samudra, A. P.; Sahinidis, N. V., Optimization-based framework for computer-aided molecular design. Aiche Journal 2013, 59, (10), 3686-3701. 55. Brown, W. M.; Martin, S.; Rintoul, M. D.; Faulon, J.-L., Designing Novel Polymers with Targeted Properties Using the Signature Molecular Descriptor. Journal of Chemical Information and Modeling 2006, 46, (2), 826-835. 56. Churchwell, C. J.; Rintoul, M. D.; Martin, S.; Visco, D. P.; Kotu, A.; Larson, R. S.; Sillerud, L. O.; Brown, D. C.; Faulon, J.-L., The signature molecular descriptor: 3. Inverse-quantitative structure–activity relationship of ICAM-1 inhibitory peptides. Journal of Molecular Graphics and Modelling 2004, 22, (4), 263-273. 57. Faulon, J.-L.; Churchwell, C. J.; Visco, D. P., The Signature Molecular Descriptor. 2. Enumerating Molecules from Their Extended Valence Sequences. Journal of Chemical Information and Computer Sciences 2003, 43, (3), 721-734. 58. Song, Z.; Hu, X.; Zhou, Y.; Zhou, T.; Qi, Z.; Sundmacher, K., Rational design of double salt ionic liquids as extraction solvents: Separation of thiophene/n‐octane as example. Aiche Journal 2019, 65, (8), e16625. 59. Chéron, N.; Jasty, N.; Shakhnovich, E. I., OpenGrowth: An Automated and Rational Algorithm for Finding New Protein Ligands. Journal of Medicinal Chemistry 2016, 59, (9), 4171-4188. 60. Fechner, U.; Schneider, G., Flux (2): Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. Journal of Chemical Information and Modeling 2007, 47, (2), 656-667. 61. Fechner, U.; Schneider, G., Flux (1): A Virtual Synthesis Scheme for Fragment-Based de Novo Design. Journal of Chemical Information and Modeling 2006, 46, (2), 699-707. 62. Sandler, S., Chemical, Biochemical, and Engineering Thermodynamics. 5th ed.; John Wiley & Sons: 2017. 63. Wigh, D. S.; Goodman, J. M.; Lapkin, A. A., A review of molecular representation in the age of machine learning. WIREs Computational Molecular Science 2022, 12, (5), e1603. 64. Landrum, G.; Tosco, P.; Kelley, B.; Ric; Cosgrove, D.; Sriniker; Gedeck; Vianello, R.; NadineSchneider; Kawashima, E.; N, D.; Jones, G.; Dalke, A.; Cole, B.; Swain, M.; Turk, S.; AlexanderSavelyev; Vaucher, A.; Wójcikowski, M.; Take, I.; Probst, D.; Ujihara, K.; Scalfani, V. F.; Godin, G.; Lehtivarjo, J.; Walker, R.; Pahl, A.; Berenger, F.; Jasondbiggs; strets rdkit/rdkit: 2023_03_3 (Q1 2023) Release, Release_2023_03_3; Zenodo: 2023. 65. O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., Open Babel: An open chemical toolbox. Journal of Cheminformatics 2011, 3, (1), 33. 66. Norman, N. C.; Pringle, P. G., Hypervalence: A Useful Concept or One That Should Be Gracefully Retired? In Chemistry, 2022; Vol. 4, pp 1226-1249. 67. Ahmad, W.-Y.; Omar, S., Drawing Lewis structures: A step-by-step approach. Journal of Chemical Education 1992, 69, (10), 791. 68. Rao, S. S., Engineering optimization: theory and practice. John Wiley & Sons: 2019. 69. Sahinidis, N. V.; Grossmann, I. E., Convergence properties of generalized benders decomposition. Computers & Chemical Engineering 1991, 15, (7), 481-491. 70. Geoffrion, A. M., Generalized Benders decomposition. Journal of Optimization Theory and Applications 1972, 10, (4), 237-260. 71. Warr, W. A., Representation of chemical structures. WIREs Computational Molecular Science 2011, 1, (4), 557-579. 72. Faulon, J.-L.; Bender, A., Handbook of Cheminformatics Algorithms. Chapman and Hall/CRC: 2010. 73. Hanson, R. M., Jmol SMILES and Jmol SMARTS: specifications and applications. Journal of Cheminformatics 2016, 8, (1), 50. 74. Apodaca, R.; O’Boyle, N.; Dalke, A.; Drie, J. v.; Ertl, P.; Hutchison, G.; James, C. A.; Landrum, G.; Morley, C.; Willighagen, E.; Winter, H. D.; Vandermeersch, T.; May, J. OpenSMILES specification. http://opensmiles.org/opensmiles.html 75. Heller, S. R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D., InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics 2015, 7, (1), 23. 76. Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A., Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. Machine Learning: Science and Technology 2020, 1, (4), 045024. 77. Reveil, M.; Clancy, P., Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation. Molecular Systems Design & Engineering 2018, 3, (3), 431-441. 78. Rogers, D.; Hahn, M., Extended-Connectivity Fingerprints. Journal of Chemical Information and Modeling 2010, 50, (5), 742-754. 79. Capecchi, A.; Probst, D.; Reymond, J.-L., One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. Journal of Cheminformatics 2020, 12, (1), 43. 80. Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G., Reoptimization of MDL Keys for Use in Drug Discovery. Journal of Chemical Information and Computer Sciences 2002, 42, (6), 1273-1280. 81. O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., Open Babel: An open chemical toolbox. J. Cheminf. 2011. 82. Landrum, G.; Tosco, P.; Kelley, B.; sriniker; gedeck; NadineSchneider; Vianello, R.; Ric; Dalke, A.; Cole, B.; AlexanderSavelyev; Swain, M.; Turk, S.; N, D.; Vaucher, A.; Kawashima, E.; Wójcikowski, M.; Probst, D.; godin, g.; Cosgrove, D.; Pahl, A.; JP; Berenger, F.; strets123; JLVarjo; O'Boyle, N.; Fuller, P.; Jensen, J. H.; Sforna, G.; DoliathGavid rdkit/rdkit: 2020_03_1 (Q1 2020) Release, Release_2020_03_1; Zenodo: 2020. 83. Amigó, J. M.; Gálvez, J.; Villar, V. M., A review on molecular topology: applying graph theory to drug discovery and design. Naturwissenschaften 2009, 96, (7), 749-761. 84. Ferreira, L. G.; Dos Santos, R. N.; Oliva, G.; Andricopulo, A. D., Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, (7). 85. Ban, F.; Dalal, K.; Li, H.; LeBlanc, E.; Rennie, P. S.; Cherkasov, A., Best Practices of Computer-Aided Drug Discovery: Lessons Learned from the Development of a Preclinical Candidate for Prostate Cancer with a New Mechanism of Action. Journal of Chemical Information and Modeling 2017, 57, (5), 1018-1028. 86. Stan, M., Discovery and design of nuclear fuels. Materials Today 2009, 12, (11), 20-28. 87. Frenkel, D.; Smit, B., Understanding Molecular Simulation: From Algorithms to Applications. 2nd ed.; Academic Press: 2002; p 664. 88. Hossain, S.; Kabedev, A.; Parrow, A.; Bergström, C. A. S.; Larsson, P., Molecular simulation as a computational pharmaceutics tool to predict drug solubility, solubilization processes and partitioning. European Journal of Pharmaceutics and Biopharmaceutics 2019, 137, 46-55. 89. Maginn, E. J.; Messerly, R. A.; Carlson, D. J.; Roe, D. R.; Elliott, J. R., Best Practices for Computing Transport Properties 1. Self-Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article v1.0]. Living Journal of Computational Molecular Science 2018, 1, (1). 90. Orozco, G. A.; Moultos, O. A.; Jiang, H.; Economou, I. G.; Panagiotopoulos, A. Z., Molecular simulation of thermodynamic and transport properties for the H2O+NaCl system. The Journal of Chemical Physics 2014, 141, (23), 234507. 91. Kataoka, Y.; Yamada, Y., Phase Diagram of a Lennard-Jones System by Molecular Dynamics Simulations. Journal of Computer Chemistry, Japan 2014, 13, (2), 115-123. 92. Zhang, Y.; Maginn, E. J., A comparison of methods for melting point calculation using molecular dynamics simulations. The Journal of Chemical Physics 2012, 136, (14), 144116. 93. Ytreberg, F. M.; Swendsen, R. H.; Zuckerman, D. M., Comparison of free energy methods for molecular systems. The Journal of Chemical Physics 2006, 125, (18), 184114. 94. Joshi, S. Y.; Deshmukh, S. A., A review of advancements in coarse-grained molecular dynamics simulations. Molecular Simulation 2021, 47, (10-11), 786-803. 95. Dubbeldam, D.; Walton, K. S.; Vlugt, T. J. H.; Calero, S., Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations 2019, 2, (11), 1900135. 96. Sizova, O. V.; Skripnikov, L. V.; Sokolov, A. Y., Symmetry decomposition of quantum chemical bond orders. Journal of Molecular Structure: THEOCHEM 2008, 870, (1), 1-9. 97. Parr, R. G.; Szentpály, L. v.; Liu, S., Electrophilicity Index. Journal of the American Chemical Society 1999, 121, (9), 1922-1924. 98. Ochterski, J. W. Thermochemistry in gaussian; Gaussian Inc 2000. 99. Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., Gaussian-4 theory. The Journal of Chemical Physics 2007, 126, (8), 084108. 100. Hsieh, C.-M.; Sandler, S. I.; Lin, S.-T., Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilibria 2010, 297, (1), 90-97. 101. Klamt, A., Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. The journal of Physical Chemistry 1995, 99, (7), 2224-2235. 102. Klamt, A.; Schüürmann, G., COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 799-805. 103. Tsai, C.-C.; Lin, S.-T., Integration of modern computational chemistry and ASPEN PLUS for chemical process design. Aiche Journal 2020, 66, (10), e16987. 104. Tanaji, T. T.; Santosh, A. K.; Alan, C. R., Successful Applications of Computer Aided Drug Discovery: Moving Drugs from Concept to the Clinic. Current Topics in Medicinal Chemistry 2010, 10, (1), 127-141. 105. Polishchuk, P., CReM: chemically reasonable mutations framework for structure generation. Journal of Cheminformatics 2020, 12, (1), 28. 106. Hoksza, D.; Škoda, P.; Voršilák, M.; Svozil, D., Molpher: a software framework for systematic chemical space exploration. Journal of Cheminformatics 2014, 6, (1), 7. 107. Hoksza, D.; Svozil, D. In Exploration of Chemical Space by Molecular Morphing, 13th IEEE International Conference on BioInformatics and BioEngineering, 24-26 October 2011, 2011; 2011; pp 201-208. 108. van Deursen, R.; Reymond, J.-L., Chemical Space Travel. ChemMedChem 2007, 2, (5), 636-640. 109. Lameijer, E.-W.; Kok, J. N.; Bäck, T.; Ijzerman, A. P., The Molecule Evoluator. An Interactive Evolutionary Algorithm for the Design of Drug-Like Molecules. Journal of Chemical Information and Modeling 2006, 46, (2), 545-552. 110. Jensen, J. H., A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chemical Science 2019, 10, (12), 3567-3572. 111. Brown, N.; Fiscato, M.; Segler, M. H. S.; Vaucher, A. C., GuacaMol: Benchmarking Models for de Novo Molecular Design. Journal of Chemical Information and Modeling 2019, 59, (3), 1096-1108. 112. Leguy, J.; Cauchy, T.; Glavatskikh, M.; Duval, B.; Da Mota, B., EvoMol: a flexible and interpretable evolutionary algorithm for unbiased de novo molecular generation. Journal of Cheminformatics 2020, 12, (1), 55. 113. Kerstjens, A.; De Winter, H., LEADD: Lamarckian evolutionary algorithm for de novo drug design. Journal of Cheminformatics 2022, 14, (1), 3. 114. Green, D. V. S.; Pickett, S.; Luscombe, C.; Senger, S.; Marcus, D.; Meslamani, J.; Brett, D.; Powell, A.; Masson, J., BRADSHAW: a system for automated molecular design. Journal of Computer-Aided Molecular Design 2020, 34, (7), 747-765. 115. Kutchukian, P. S.; Lou, D.; Shakhnovich, E. I., FOG: Fragment Optimized Growth Algorithm for the de Novo Generation of Molecules Occupying Druglike Chemical Space. Journal of Chemical Information and Modeling 2009, 49, (7), 1630-1642. 116. Yuan, Y.; Pei, J.; Lai, L., LigBuilder V3: A Multi-Target de novo Drug Design Approach. Frontiers in Chemistry 2020, 8. 117. Yuan, Y.; Pei, J.; Lai, L., LigBuilder 2: A Practical de Novo Drug Design Approach. Journal of Chemical Information and Modeling 2011, 51, (5), 1083-1091. 118. Firth, N. C.; Atrash, B.; Brown, N.; Blagg, J., MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. Journal of Chemical Information and Modeling 2015, 55, (6), 1169-1180. 119. Huang, Q.; Li, L.-L.; Yang, S.-Y., PhDD: A new pharmacophore-based de novo design method of drug-like molecules combined with assessment of synthetic accessibility. Journal of Molecular Graphics and Modelling 2010, 28, (8), 775-787. 120. Durrant, J. D.; Lindert, S.; McCammon, J. A., AutoGrow 3.0: An improved algorithm for chemically tractable, semi-automated protein inhibitor design. Journal of Molecular Graphics and Modelling 2013, 44, 104-112. 121. Durrant, J. D.; Amaro, R. E.; McCammon, J. A., AutoGrow: A Novel Algorithm for Protein Inhibitor Design. Chemical Biology & Drug Design 2009, 73, (2), 168-178. 122. Lowe, D., Chemical reactions from US patents (1976-Sep2016). In figshare: 2017. 123. Batiste, L.; Unzue, A.; Dolbois, A.; Hassler, F.; Wang, X.; Deerain, N.; Zhu, J.; Spiliotopoulos, D.; Nevado, C.; Caflisch, A., Chemical Space Expansion of Bromodomain Ligands Guided by in Silico Virtual Couplings (AutoCouple). ACS Central Science 2018, 4, (2), 180-188. 124. Dalke, A.; Hert, J.; Kramer, C., mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets. Journal of Chemical Information and Modeling 2018, 58, (5), 902-910. 125. Genheden, S.; Thakkar, A.; Chadimová, V.; Reymond, J.-L.; Engkvist, O.; Bjerrum, E., AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of Cheminformatics 2020, 12, (1), 70. 126. Coley, C. W.; Green, W. H.; Jensen, K. F., Machine Learning in Computer-Aided Synthesis Planning. Accounts of Chemical Research 2018, 51, (5), 1281-1289. 127. Coley, C. W.; Green, W. H.; Jensen, K. F., RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application. Journal of Chemical Information and Modeling 2019, 59, (6), 2529-2537. 128. Hartenfeller, M.; Zettl, H.; Walter, M.; Rupp, M.; Reisen, F.; Proschak, E.; Weggen, S.; Stark, H.; Schneider, G., DOGS: Reaction-Driven de novo Design of Bioactive Compounds. PLoS Computational Biology 2012, 8, (2), e1002380. 129. Merk, D.; Grisoni, F.; Friedrich, L.; Gelzinyte, E.; Schneider, G., Computer-Assisted Discovery of Retinoid X Receptor Modulating Natural Products and Isofunctional Mimetics. Journal of Medicinal Chemistry 2018, 61, (12), 5442-5447. 130. Beccari, A. R.; Cavazzoni, C.; Beato, C.; Costantino, G., LiGen: A High Performance Workflow for Chemistry Driven de Novo Design. Journal of Chemical Information and Modeling 2013, 53, (6), 1518-1527. 131. Vinkers, H. M.; de Jonge, M. R.; Daeyaert, F. F. D.; Heeres, J.; Koymans, L. M. H.; van Lenthe, J. H.; Lewi, P. J.; Timmerman, H.; Van Aken, K.; Janssen, P. A. J., SYNOPSIS: SYNthesize and OPtimize System in Silico. Journal of Medicinal Chemistry 2003, 46, (13), 2765-2773. 132. Zahra, B.; Siti Mariyam Hj, S., A Review of Population-based Meta-Heuristic Algorithm. International Journal of Advances in Soft Computing & Its Applications 2013, 5, (1), 1-35. 133. Clark, D. E.; Westhead, D. R., Evolutionary algorithms in computer-aided molecular design. J. Comput.-Aided Mol. Des. 1996, 10, (4), 337-358. 134. Costa, L.; Oliveira, P., Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems. Computers and Chemical Engineering 2001, 25, 257-266. 135. Devillers, J., Genetic Algorithms in Molecular Modeling. Elsevier Science & Technology Books: 1996. 136. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed.; Addison-Wesley Longman Publishing Co.: 1989. 137. Androulakis, I. P.; Venkatasubramanian, V., A genetic algorithmic framework for process design and optimization. Comput. Chem. Eng. 1991, 15, (4), 217-228. 138. Wright, A. H., Genetic Algorithms for Real Parameter Optimization. Foundations of Genetic Algorithms 1999. 139. Ourique, J. E.; Silva Telles, A., Computer-aided molecular design with simulated annealing and molecular graphs. Computers & Chemical Engineering 1998, 22, S615-S618. 140. Aarts, E. H. L.; Laarhoven, P. J. M. v., Statistical cooling : a general approach to combinatorial optimization problems. Philips Journal of Research 1985, 40, (4), 193-226. 141. Harvey, I., Species Adaptation Genetic Algorithms: A Basis for a Continuing SAGA. Proceedings of the First European Conference on Artificial Life: Toward a Practice of Autonomous Systems 1992. 142. Zhang, J.; Qin, L.; Peng, D.; Zhou, T.; Cheng, H.; Chen, L.; Qi, Z., COSMO-descriptor based computer-aided ionic liquid design for separation processes: Part II: Task-specific design for extraction processes. Chemical Engineering Science 2017, 162, 364-374. 143. Zhang, J.; Peng, D.; Song, Z.; Zhou, T.; Cheng, H.; Chen, L.; Qi, Z., COSMO-descriptor based computer-aided ionic liquid design for separation processes. Part I: Modified group contribution methodology for predicting surface charge density profile of ionic liquids. Chemical Engineering Science 2017, 162, 355-363. 144. Liu, B.; Wen, Y.; Zhang, X., Development of CAMD based on the hybrid gene algorithm and simulated annealing algorithm and the application on solvent selection. The Canadian Journal of Chemical Engineering 2017, 95, (4), 767-774. 145. Diwekar, U. M.; Gebreslassie, B. H., Efficient ant colony optimization (EACO) algorithm for deterministic optimization. International Journal of Swarm Intelligence and Evolutionary Computation 2016, 5, (131). 146. Dorigo, M.; Caro, G. D.; Gambardella, L. M., Ant Algorithms for Discrete Optimization. Artificial Life 1999, 5, (2), 137-172. 147. Gebreslassie, B. H.; Diwekar, U. M., Efficient ant colony optimization for computer aided molecular design: Case study solvent selection problem. Computers & Chemical Engineering 2015, 78, 1-9. 148. Pham, D. T.; Karaboga, D., Intelligent Optimisation Techniques - Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. 1st ed.; Springer, London: 2000. 149. Pham, D. T.; Karaboga, D., Tabu Search. In Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Pham, D. T.; Karaboga, D., Eds. Springer London: London, 2000; pp 149-186. 150. Glover, F.; Taillard, E.; Taillard, E., A user's guide to tabu search. Annals of Operations Research 1993, 41, (1), 1-28. 151. Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.; Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.; Colton, S., A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games 2012, 4, (1), 1-43. 152. M. Dieb, T.; Ju, S.; Yoshizoe, K.; Hou, Z.; Shiomi, J.; Tsuda, K., MDTS: automatic complex materials design using Monte Carlo tree search. Science and Technology of Advanced Materials 2017, 18, (1), 498-503. 153. Ishida, S.; Aasawat, T.; Sumita, M.; Katouda, M.; Yoshizawa, T.; Yoshizoe, K.; Tsuda, K.; Terayama, K., ChemTSv2: Functional molecular design using de novo molecule generator. WIREs Computational Molecular Science 2023, n/a, (n/a), e1680. 154. Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K., ChemTS: an efficient python library for de novo molecular generation. Science and Technology of Advanced Materials 2017, 18, (1), 972-976. 155. You, F. Cornell University Computational Optimization Open Textbook - Optimization Wiki. https://optimization.cbe.cornell.edu/index.php?title=Main_Page (2023/6/1), 156. Ryoo, H. S.; Sahinidis, N. V., A branch-and-reduce approach to global optimization. Journal of Global Optimization 1996, 8, (2), 107-138. 157. Viswanathan, J.; Grossmann, I. E., A Combined Penalty Function and Outer-Approaximation Method for MINLP Optimization. Comput. Chem. Eng. 1990, 14, (7), 769-782. 158. Horst, R., Deterministic methods in constrained global optimization: Some recent advances and new fields of application. Naval Research Logistics (NRL) 1990, 37, (4), 433-471. 159. Gopinath, S.; Jackson, G.; Galindo, A.; Adjiman, C. S., Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design. Aiche Journal 2016, 62, (9), 3484-3504. 160. Viswanathan, J.; Grossmann, I. E., A combined penalty function and outer-approximation method for MINLP optimization. Computers & Chemical Engineering 1990, 14, (7), 769-782. 161. Harper, P. M.; Gani, R.; Kolar, P.; Ishikawa, T., Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilibria 1999, 158-160, 337-347. 162. Hsu, H.-H.; Huang, C.-H.; Lin, S.-T., New Data Structure for Computational Molecular Design with Atomic or Fragment Resolution. Journal of Chemical Information and Modeling 2019, 59, (9), 3703-3713. 163. Huang, C.-H.; Lin, S.-T., MARS Plus: An Improved Molecular Design Tool for Complex Compounds Involving Ionic, Stereo, and Cis–Trans Isomeric Structures. Journal of Chemical Information and Modeling 2023, 63, (24), 7711-7728. 164. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. A.01, Wallingford, CT, 2016. 165. Bredas, J.-L., Mind the gap! Materials Horizons 2014, 1, (1), 17-19. 166. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E., Electronegativity: The density functional viewpoint. The Journal of Chemical Physics 1978, 68, (8), 3801-3807. 167. Chattaraj, P. K.; Giri, S.; Duley, S., Update 2 of: Electrophilicity Index. Chemical Reviews 2011, 111, (2), PR43-PR75. 168. Ertl, P.; Schuffenhauer, A., Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics 2009, 1, (1), 8. 169. Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F., SCScore: Synthetic Complexity Learned from a Reaction Corpus. Journal of Chemical Information and Modeling 2018, 58, (2), 252-261. 170. Ertl, P.; Roggo, S.; Schuffenhauer, A., Natural Product-likeness Score and Its Application for Prioritization of Compound Libraries. Journal of Chemical Information and Modeling 2008, 48, (1), 68-74. 171. Getting Started with the RDKit in Python: List of Available Descriptors. https://www.rdkit.org/docs/GettingStartedInPython.html#list-of-available-descriptors (2024/06/17), 172. Bell, I. H.; Mickoleit, E.; Hsieh, C.-M.; Lin, S.-T.; Vrabec, J.; Breitkopf, C.; Jäger, A., A Benchmark Open-Source Implementation of COSMO-SAC. Journal of Chemical Theory and Computation 2020, 16, (4), 2635-2646. 173. Lin, S.-T.; Hsieh, C.-M.; Lee, M.-T., Solvation and chemical engineering thermodynamics. Journal of the Chinese Institute of Chemical Engineers 2007, 38, (5), 467-476. 174. Ben-Naim, A., Solvation Thermodynamics. first ed. ed.; Plenum Press: New York, 1987. 175. Lin, S.-T.; Sandler, S. I., A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Industrial & Engineering Chemistry Research 2002, 41, (5), 899-913. 176. Hsieh, C.-M.; Lin, S.-T., Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. Aiche Journal 2008, 54, (8), 2174-2181. 177. Hsieh, C. M.; Lin, S. T., Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. AIChE J. 2008, 54, (8), 2174-2181. 178. Hsieh, C.-M.; Lin, S.-T., First-Principles Predictions of Vapor−Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial & Engineering Chemistry Research 2009, 48, (6), 3197-3205. 179. Hsieh, C.-M.; Lin, S.-T.; Vrabec, J., Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior. Fluid Phase Equilibria 2014, 367, 109-116. 180. Lin, S.-T.; Sandler, S. I., Infinite dilution activity coefficients from ab initio solvation calculations. Aiche Journal 1999, 45, (12), 2606-2618. 181. Staverman, A. J., The Entropy of High Polymer Solutions. Recueil des Travaus Chimiques des Pays-Bas 1950, 69, 163-174. 182. Guggenheim, E. A., Mixtures: The theory of the equilibrium properties of some simple classes of mixtures, solutions and alloys. Clarendon Press: Oxford, 1952. 183. Parr, R. G.; Weitao, Y., Density-Functional Theory of Atoms and Molecules. Oxford University Press: 1994. 184. Gelfand, I. M.; Fomin, S. V., Calculus of Variations. Dover Publications: 2012. 185. Mulliken, R. S., Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments. The Journal of Chemical Physics 1935, 3, (9), 573-585. 186. Jenkins, A. D., Interpretation of reactivity in radical polymerization—Radicals, monomers, and transfer agents: Beyond the Q-e scheme. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37, (2), 113-126. 187. Rogers, S. C.; Mackrodt, W. C.; Davis, T. P., Ab initio molecular orbital calculations on the Q-e scheme for predicting reactivity in free-radical copolymerization. Polymer 1994, 35, (6), 1258-1267. 188. Chattaraj, P. K.; Giri, S.; Duley, S., Electrophilicity Equalization Principle. The Journal of Physical Chemistry Letters 2010, 1, (7), 1064-1067. 189. Chattaraj, P. K.; Lee, H.; Parr, R. G., HSAB principle. Journal of the American Chemical Society 1991, 113, (5), 1855-1856. 190. Mattson, C. A.; Messac, A., Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization. Optimization and Engineering 2005, 6, (1), 85-115. 191. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002, 6, (2), 182-197. 192. May, J. W.; Steinbeck, C., Efficient ring perception for the Chemistry Development Kit. Journal of Cheminformatics 2014, 6, (1), 3. 193. Plotkin, M., Mathematical Basis of Ring-Finding Algorithms in CIDS. Journal of Chemical Documentation 1971, 11, (1), 60-63. 194. Lee, C. J.; Kang, Y.-M.; Cho, K.-H.; No, K. T., A robust method for searching the smallest set of smallest rings with a path-included distance matrix. Proceedings of the National Academy of Sciences 2009, 106, (41), 17355-17358. 195. Apodaca, R. L., A Smallest Set of Smallest Rings. In Metamolecular, LLC: 2020; Vol. 2021. 196. Nachbar, R. B., Molecular Evolution: Automated Manipulation of Hierarchical Chemical Topology and Its Application to Average Molecular Structures. Genetic Programming and Evolvable Machines 2000, 1, (1), 57-94. 197. Yeung; Hong, S.; Corey, E. J., A Short Enantioselective Pathway for the Synthesis of the Anti-Influenza Neuramidase Inhibitor Oseltamivir from 1,3-Butadiene and Acrylic Acid. Journal of the American Chemical Society 2006, 128, (19), 6310-6311. 198. Laborda, P.; Wang, S.-Y.; Voglmeir, J., Influenza Neuraminidase Inhibitors: Synthetic Approaches, Derivatives and Biological Activity. In Molecules, 2016; Vol. 21. 199. IPCC, Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press: Cambridgee, UK and New York, NY, USA., 2018. 200. Friedlingstein, P.; O'Sullivan, M.; Jones, M. W.; Andrew, R. M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I. T.; Olsen, A.; Peters, G. P.; Peters, W.; Pongratz, J.; Schwingshackl, C.; Sitch, S.; Canadell, J. G.; Ciais, P.; Jackson, R. B.; Alin, S. R.; Alkama, R.; Arneth, A.; Arora, V. K.; Bates, N. R.; Becker, M.; Bellouin, N.; Bittig, H. C.; Bopp, L.; Chevallier, F.; Chini, L. P.; Cronin, M.; Evans, W.; Falk, S.; Feely, R. A.; Gasser, T.; Gehlen, M.; Gkritzalis, T.; Gloege, L.; Grassi, G.; Gruber, N.; Gürses, Ö.; Harris, I.; Hefner, M.; Houghton, R. A.; Hurtt, G. C.; Iida, Y.; Ilyina, T.; Jain, A. K.; Jersild, A.; Kadono, K.; Kato, E.; Kennedy, D.; Klein Goldewijk, K.; Knauer, J.; Korsbakken, J. I.; Landschützer, P.; Lefèvre, N.; Lindsay, K.; Liu, J.; Liu, Z.; Marland, G.; Mayot, N.; McGrath, M. J.; Metzl, N.; Monacci, N. M.; Munro, D. R.; Nakaoka, S. I.; Niwa, Y.; O'Brien, K.; Ono, T.; Palmer, P. I.; Pan, N.; Pierrot, D.; Pocock, K.; Poulter, B.; Resplandy, L.; Robertson, E.; Rödenbeck, C.; Rodriguez, C.; Rosan, T. M.; Schwinger, J.; Séférian, R.; Shutler, J. D.; Skjelvan, I.; Steinhoff, T.; Sun, Q.; Sutton, A. J.; Sweeney, C.; Takao, S.; Tanhua, T.; Tans, P. P.; Tian, X.; Tian, H.; Tilbrook, B.; Tsujino, H.; Tubiello, F.; van der Werf, G. R.; Walker, A. P.; Wanninkhof, R.; Whitehead, C.; Willstrand Wranne, A.; Wright, R.; Yuan, W.; Yue, C.; Yue, X.; Zaehle, S.; Zeng, J.; Zheng, B., Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, (11), 4811-4900. 201. Liu, Z.; Deng, Z.; Davis, S.; Ciais, P., Monitoring global carbon emissions in 2022. Nature Reviews Earth & Environment 2023, 4, (4), 205-206. 202. IEA CO2 Emissions in 2022; International Energy Agency (IEA): Paris, 2023. 203. IEAGHG Assessment of emerging CO2 capture technologies and their potential to reduce cost; International Energy Agency (IEA): 2014. 204. Sifat, S. N.; Haseli, Y., A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies 2019, 12, (21). 205. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014, 39, 426-443. 206. Aaron, D.; Tsouris, C., Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 2005, 40, (1-3), 321-348. 207. Ramdin, M.; de Loos, T. W.; Vlugt, T. J. H., State-of-the-Art of CO2 Capture with Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51, (24), 8149-8177. 208. Boot-Handford, M. E.; Abanades, J. C.; Anthony, E. J.; Blunt, M. J.; Brandani, S.; Mac Dowell, N.; Fernández, J. R.; Ferrari, M.-C.; Gross, R.; Hallett, J. P.; Haszeldine, R. S.; Heptonstall, P.; Lyngfelt, A.; Makuch, Z.; Mangano, E.; Porter, R. T. J.; Pourkashanian, M.; Rochelle, G. T.; Shah, N.; Yao, J. G.; Fennell, P. S., Carbon capture and storage update. Energy & Environmental Science 2014, 7, (1), 130-189. 209. Yu, C.-H.; Huang, C.-H.; Tan, C.-S., A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air Quality Research 2012, 12, (5), 745-769. 210. Kapetaki, Z.; Brandani, P.; Brandani, S.; Ahn, H., Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant. International Journal of Greenhouse Gas Control 2015, 39, 17-26. 211. Zhang, X.; Song, Z.; Gani, R.; Zhou, T., Comparative Economic Analysis of Physical, Chemical, and Hybrid Absorption Processes for Carbon Capture. Industrial & Engineering Chemistry Research 2020, 59, (5), 2005-2012. 212. Developing a Pipeline Infrastructure for CO2 Capture and Storage: Issues and Challenges; ICF International: 2/1, 2009. 213. Li, T.; Yang, C.; Tantikhajorngosol, P.; Sema, T.; Tontiwachwuthikul, P., Studies on advanced configurations of post-combustion CO2 capture process applied to cement plant flue gases. Carbon Capture Science & Technology 2022, 4, 100064. 214. Laribi, S.; Dubois, L.; De Weireld, G.; Thomas, D., Study of the post-combustion CO2 capture process by absorption-regeneration using amine solvents applied to cement plant flue gases with high CO2 contents. International Journal of Greenhouse Gas Control 2019, 90, 102799. 215. Aouini, I.; Ledoux, A.; Estel, L.; Mary, S., Pilot Plant Studies for CO2 Capture from Waste Incinerator Flue Gas Using MEA Based Solvent. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2014, 69, (6), 1091-1104. 216. Padurean, A.; Cormos, C.-C.; Agachi, P.-S., Pre-combustion carbon dioxide capture by gas–liquid absorption for Integrated Gasification Combined Cycle power plants. International Journal of Greenhouse Gas Control 2012, 7, 1-11. 217. Alptekin, G. O.; Jayaraman, A.; Bonnema, M.; Gribble, D. Integrated Water-Gas-Shift Pre-combustion Carbon Capture Process; United States, 2022-02-04, 2022. 218. Nazir, S. M.; Bolland, O.; Amini, S., Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO2 Capture. In Energies, 2018; Vol. 11. 219. Voldsund, M.; Jordal, K.; Anantharaman, R., Hydrogen production with CO2 capture. International Journal of Hydrogen Energy 2016, 41, (9), 4969-4992. 220. Berstad, D.; Anantharaman, R.; Nekså, P., Low-temperature CCS from an IGCC Power Plant and Comparison with Physical Solvents. Energy Procedia 2013, 37, 2204-2211. 221. Romano, M. C.; Chiesa, P.; Lozza, G., Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes. International Journal of Greenhouse Gas Control 2010, 4, (5), 785-797. 222. Porter, R. T. J.; Fairweather, M.; Pourkashanian, M.; Woolley, R. M., The range and level of impurities in CO2 streams from different carbon capture sources. International Journal of Greenhouse Gas Control 2015, 36, 161-174. 223. Anheden, M.; Burchhardt, U.; Ecke, H.; Faber, R.; Jidinger, O.; Giering, R.; Kass, H.; Lysk, S.; Ramström, E.; Yan, J., Overview of operational experience and results from test activities in Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe. Energy Procedia 2011, 4, 941-950. 224. Zheng, L., Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Elsevier: 2011. 225. Han, K.; Ahn, C. K.; Lee, M. S.; Rhee, C. H.; Kim, J. Y.; Chun, H. D., Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. International Journal of Greenhouse Gas Control 2013, 14, 270-281. 226. Singh, A.; Stéphenne, K., Shell Cansolv CO2 capture technology: Achievement from First Commercial Plant. Energy Procedia 2014, 63, 1678-1685. 227. Chong, F. K.; Foo, D. C. Y.; Eljack, F. T.; Atilhan, M.; Chemmangattuvalappil, N. G., Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy 2015, 17, (5), 1301-1312. 228. Oko, E.; Wang, M.; Joel, A. S., Current status and future development of solvent-based carbon capture. International Journal of Coal Science & Technology 2017, 4, (1), 5-14. 229. Ahn, H.; Luberti, M.; Liu, Z.; Brandani, S., Process configuration studies of the amine capture process for coal-fired power plants. International Journal of Greenhouse Gas Control 2013, 16, 29-40. 230. Brennecke, J. F.; Gurkan, B. E., Ionic Liquids for CO2 Capture and Emission Reduction. The Journal of Physical Chemistry Letters 2010, 1, (24), 3459-3464. 231. Aghaie, M.; Rezaei, N.; Zendehboudi, S., A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews 2018, 96, 502-525. 232. Jiang, W.; Li, X.; Gao, G.; Wu, F.; Luo, C.; Zhang, L., Advances in applications of ionic liquids for phase change CO2 capture. Chemical Engineering Journal 2022, 445, 136767. 233. Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S., Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chemical Reviews 2017, 117, (14), 9625-9673. 234. Sharma, P.; Choi, S.-H.; Park, S.-D.; Baek, I.-H.; Lee, G.-S., Selective chemical separation of carbondioxide by ether functionalized imidazolium cation based ionic liquids. Chemical Engineering Journal 2012, 181-182, 834-841. 235. Cui, G.; Wang, J.; Zhang, S., Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society Reviews 2016, 45, (15), 4307-4339. 236. Liu, Y.; Dai, Z.; Zhang, Z.; Zeng, S.; Li, F.; Zhang, X.; Nie, Y.; Zhang, L.; Zhang, S.; Ji, X., Ionic liquids/deep eutectic solvents for CO2 capture: Reviewing and evaluating. Green Energy & Environment 2021, 6, (3), 314-328. 237. Izgorodina, E. I.; Hodgson, J. L.; Weis, D. C.; Pas, S. J.; MacFarlane, D. R., Physical Absorption Of CO2 in Protic and Aprotic Ionic Liquids: An Interaction Perspective. The Journal of Physical Chemistry B 2015, 119, (35), 11748-11759. 238. Shannon, M. S.; Tedstone, J. M.; Danielsen, S. P. O.; Hindman, M. S.; Irvin, A. C.; Bara, J. E., Free Volume as the Basis of Gas Solubility and Selectivity in Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51, (15), 5565-5576. 239. Rao, S. S.; Gejji, S. P., CO2 Absorption Using Fluorine Functionalized Ionic Liquids: Interplay of Hydrogen and σ-Hole Interactions. The Journal of Physical Chemistry A 2016, 120, (8), 1243-1260. 240. Lin, H.; Freeman, B. D., Materials selection guidelines for membranes that remove CO2 from gas mixtures. Journal of Molecular Structure 2005, 739, (1), 57-74. 241. Davies, J. A.; Griffiths, P. C., A Phenomenological Approach to Separating the Effects of Obstruction and Binding for the Diffusion of Small Molecules in Polymer Solutions. Macromolecules 2003, 36, (3), 950-952. 242. Rogers, R. D.; Seddon, K. R., Ionic Liquids - Solvents of the Future? Science 2003, 302, (5646), 792. 243. Seddon, K. R., Ionic Liquids for Clean Technology. Journal of Chemical Technology & Biotechnology 1997, 68, (4), 351-356. 244. Ghandi, K., A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry 2014, Vol.04No.01, 10. 245. Marsh, K. N.; Boxall, J. A.; Lichtenthaler, R., Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria 2004, 219, (1), 93-98. 246. Zhang, J.; Qiao, Y.; Wang, W.; Misch, R.; Hussain, K.; Agar, D. W., Development of an Energy-efficient CO2 Capture Process Using Thermomorphic Biphasic Solvents. Energy Procedia 2013, 37, 1254-1261. 247. Mota-Martinez, M. T.; Brandl, P.; Hallett, J. P.; Mac Dowell, N., Challenges and opportunities for the utilisation of ionic liquids as solvents for CO2 capture. Molecular Systems Design & Engineering 2018, 3, (3), 560-571. 248. Wang, C.; Luo, X.; Zhu, X.; Cui, G.; Jiang, D.-e.; Deng, D.; Li, H.; Dai, S., The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances 2013, 3, (36), 15518-15527. 249. Farahipour, R.; Mehrkesh, A.; Karunanithi, A. T., A systematic screening methodology towards exploration of ionic liquids for CO2 capture processes. Chemical Engineering Science 2016, 145, 126-132. 250. Wang, J.; Song, Z.; Cheng, H.; Chen, L.; Deng, L.; Qi, Z., Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas. Separation and Purification Technology 2020, 248, 117053. 251. Mukhopadhyay, M., A thermodynamic method based upon the theory of regular solutions for selection of solvents and process conditions for aromatics extraction. Journal of Chemical Technology and Biotechnology 1979, 29, (10), 634-641. 252. Hospital-Benito, D.; Lemus, J.; Moya, C.; Santiago, R.; Palomar, J., Process analysis overview of ionic liquids on CO2 chemical capture. Chemical Engineering Journal 2020, 390, 124509. 253. Shama, V. M.; Swami, A. R.; Aniruddha, R.; Sreedhar, I.; Reddy, B. M., Process and engineering aspects of carbon capture by ionic liquids. Journal of CO2 Utilization 2021, 48, 101507. 254. Anthony, J. L.; Anderson, J. L.; Maginn, E. J.; Brennecke, J. F., Anion Effects on Gas Solubility in Ionic Liquids. The Journal of Physical Chemistry B 2005, 109, (13), 6366-6374. 255. Lee, B.-S.; Lin, S.-T., Screening of ionic liquids for CO2 capture using the COSMO-SAC model. Chemical Engineering Science 2015, 121, 157-168. 256. Dong, Q.; Muzny, C. D.; Kazakov, A.; Diky, V.; Magee, J. W.; Widegren, J. A.; Chirico, R. D.; Marsh, K. N.; Frenkel, M., ILThermo: A Free-Access Web Database for Thermodynamic Properties of Ionic Liquids. Journal of Chemical & Engineering Data 2007, 52, (4), 1151-1159. 257. Kazakov, A.; Magee, J. W.; Chirico, R. D.; Paulechka, E.; Diky, V.; Muzny, C. D.; Kroenlein, K.; Frenkel, M. NIST Standard Reference Database 147: NIST Ionic Liquids Database - (ILThermo), Version 2.0. http://ilthermo.boulder.nist.gov 258. Yokozeki, A.; Shiflett, M. B.; Junk, C. P.; Grieco, L. M.; Foo, T., Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. The Journal of Physical Chemistry B 2008, 112, (51), 16654-16663. 259. Kurnia, K. A.; Harris, F.; Wilfred, C. D.; Abdul Mutalib, M. I.; Murugesan, T., Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100–1600)kPa. The Journal of Chemical Thermodynamics 2009, 41, (10), 1069-1073. 260. Gupta, M.; da Silva, E. F.; Hartono, A.; Svendsen, H. F., Theoretical Study of Differential Enthalpy of Absorption of CO2 with MEA and MDEA as a Function of Temperature. The Journal of Physical Chemistry B 2013, 117, (32), 9457-9468. 261. Weininger, D., SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. Journal of Chemical Information and Computer Sciences 1988, 28, (1), 31-36. 262. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; J. Gao, N. R.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; J. Hasegawa, M. I.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; J. A. Montgomery , J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc: Wallingford CT, 2009. 263. Sundaram, A.; Venkatasubramanian, V., Parametric Sensitivity and Search-Space Characterization Studies of Genetic Algorithms for Computer-Aided Polymer Design. Journal of Chemical Information and Computer Sciences 1998, 38, (6), 1177-1191. 264. Hsu, H. H.; Huang, C. H.; Lin, S. T., Fully Automated Molecular Design with Atomic Resolution for Desired Thermophysical Properties. Industrial & Engineering Chemistry Research 2018, 57, (29), 9683-9692. 265. Alshehri, A. S.; Gani, R.; You, F., Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering 2020, 141, 107005. 266. Blaschke, T.; Olivecrona, M.; Engkvist, O.; Bajorath, J.; Chen, H., Application of Generative Autoencoder in De Novo Molecular Design. Molecular Informatics 2018, 37, (1-2), 1700123. 267. Lim, J.; Ryu, S.; Kim, J. W.; Kim, W. Y., Molecular generative model based on conditional variational autoencoder for de novo molecular design. Journal of Cheminformatics 2018, 10, (1), 31. 268. Sanchez-Lengeling, B.; Aspuru-Guzik, A., Inverse molecular design using machine learning: Generative models for matter engineering. Science 2018, 361, (6400), 360. 269. de Almeida, A. F.; Moreira, R.; Rodrigues, T., Synthetic organic chemistry driven by artificial intelligence. Nature Reviews Chemistry 2019, 3, (10), 589-604. 270. Gupta, A.; Müller, A. T.; Huisman, B. J. H.; Fuchs, J. A.; Schneider, P.; Schneider, G., Generative Recurrent Networks for De Novo Drug Design. Molecular Informatics 2018, 37, (1-2), 1700111. 271. Blaschke, T.; Arús-Pous, J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; Papadopoulos, K.; Patronov, A., REINVENT 2.0: An AI Tool for De Novo Drug Design. Journal of Chemical Information and Modeling 2020, 60, (12), 5918-5922. 272. Grisoni, F.; Moret, M.; Lingwood, R.; Schneider, G., Bidirectional Molecule Generation with Recurrent Neural Networks. Journal of Chemical Information and Modeling 2020, 60, (3), 1175-1183. 273. Kotsias, P.-C.; Arús-Pous, J.; Chen, H.; Engkvist, O.; Tyrchan, C.; Bjerrum, E. J., Direct steering of de novo molecular generation with descriptor conditional recurrent neural networks. Nature Machine Intelligence 2020, 2, (5), 254-265. 274. D’Souza, S.; Kv, P.; Balaji, S., Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery? Expert Opinion on Drug Discovery 2022, 17, (10), 1071-1079. 275. Podda, M.; Bacciu, D.; Micheli, A., A Deep Generative Model for Fragment-Based Molecule Generation. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Silvia, C.; Roberto, C., Eds. PMLR: Proceedings of Machine Learning Research, 2020; Vol. 108, pp 2240--2250. 276. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H., Molecular de-novo design through deep reinforcement learning. Journal of Cheminformatics 2017, 9, (1), 48. 277. Segler, M. H. S.; Kogej, T.; Tyrchan, C.; Waller, M. P., Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks. ACS Central Science 2018, 4, (1), 120-131. 278. Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G., De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Molecular Informatics 2018, 37, (1-2), 1700153. 279. Popova, M.; Isayev, O.; Tropsha, A., Deep reinforcement learning for de novo drug design. Science Advances 2018, 4, (7), eaap7885. 280. Dollar, O.; Joshi, N.; Beck, D. A. C.; Pfaendtner, J., Attention-based generative models for de novo molecular design. Chemical Science 2021, 12, (24), 8362-8372. 281. Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Central Science 2018, 4, (2), 268-276. 282. Kusner, M. J.; Paige, B.; Hernández-Lobato, J. M., Grammar Variational Autoencoder. In Proceedings of the 34th International Conference on Machine Learning, Doina, P.; Yee Whye, T., Eds. PMLR: Proceedings of Machine Learning Research, 2017; Vol. 70, pp 1945--1954. 283. Dai, H.; Tian, Y.; Dai, B.; Skiena, S.; Song, L., Syntax-Directed Variational Autoencoder for Structured Data. In Sixth International Conference on Learning Representations, Vancouver Convention Center, Vancouver CANADA, 2018. 284. Kim, H.; Na, J.; Lee, W. B., Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention. Journal of Chemical Information and Modeling 2021, 61, (12), 5804-5814. 285. Simonovsky, M.; Komodakis, N., GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders. In 6th International Conference on Learning Representations (ICLR), Vancouver Convention Center, Vancouver, BC, Canada, 2018. 286. Liu, Q.; Allamanis, M.; Brockschmidt, M.; Gaunt, A. L., Constrained Graph Variational Autoencoders for Molecule Design. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Palais des Congrès de Montréal, Montréal CANADA, 2018. 287. Jin, W.; Barzilay, R.; Jaakkola, T. In Junction tree variational autoencoder for molecular graph generation, International conference on machine learning, 2018; PMLR: 2018; pp 2323-2332. 288. Samanta, B.; De, A.; Jana, G.; Chattaraj, P. K.; Ganguly, N.; Rodriguez, M. G., NeVAE: A Deep Generative Model for Molecular Graphs. Proceedings of the AAAI Conference on Artificial Intelligence 2019, 33, (01), 1110-1117. 289. Lee, M.; Min, K., MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder. Journal of Chemical Information and Modeling 2022, 62, (12), 2943-2950. 290. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R., Gated Graph Sequence Neural Networks. arXiv e-prints 2015, arXiv:1511.05493. 291. Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Jannik Bjerrum, E., Graph networks for molecular design. Machine Learning: Science and Technology 2021, 2, (2), 025023. 292. Pham, T.-H.; Xie, L.; Zhang, P., FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), Society for Industrial and Applied Mathematics: 2022; pp 720-728. 293. Zhou, Z.; Kearnes, S.; Li, L.; Zare, R. N.; Riley, P., Optimization of Molecules via Deep Reinforcement Learning. Scientific Reports 2019, 9, (1), 10752. 294. Gao, W.; Mercado, R.; Coley, C. W., Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design. arXiv e-prints 2021, arXiv:2110.06389. 295. Bradshaw, J.; Paige, B.; Kusner, M. J.; Segler, M. H. S.; Hernández-Lobato, J. M., Barking up the right tree: an approach to search over molecule synthesis DAGs. arXiv e-prints 2020, arXiv:2012.11522. 296. Wang, M.; Sun, H.; Wang, J.; Pang, J.; Chai, X.; Xu, L.; Li, H.; Cao, D.; Hou, T., Comprehensive assessment of deep generative architectures for de novo drug design. Briefings in Bioinformatics 2022, 23, (1), bbab544. 297. Cai, C.; Wang, S.; Xu, Y.; Zhang, W.; Tang, K.; Ouyang, Q.; Lai, L.; Pei, J., Transfer Learning for Drug Discovery. Journal of Medicinal Chemistry 2020, 63, (16), 8683-8694. 298. Amabilino, S.; Pogány, P.; Pickett, S. D.; Green, D. V. S., Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries. Journal of Chemical Information and Modeling 2020, 60, (12), 5699-5713. 299. He, J.; Nittinger, E.; Tyrchan, C.; Czechtizky, W.; Patronov, A.; Bjerrum, E. J.; Engkvist, O., Transformer-based molecular optimization beyond matched molecular pairs. Journal of Cheminformatics 2022, 14, (1), 18. 300. Huang, Y.; Peng, X.; Ma, J.; Zhang, M., 3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design. arXiv e-prints 2022, arXiv:2205.07309. 301. Langevin, M.; Minoux, H.; Levesque, M.; Bianciotto, M., Scaffold-Constrained Molecular Generation. Journal of Chemical Information and Modeling 2020, 60, (12), 5637-5646. 302. Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M.; Kadurin, A.; Johansson, S.; Chen, H.; Nikolenko, S.; Aspuru-Guzik, A.; Zhavoronkov, A., Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models. Frontiers in Pharmacology 2020, 11. 303. Nigam, A.; Pollice, R.; Tom, G.; Jorner, K.; Thiede, L. A.; Kundaje, A.; Aspuru-Guzik, A., Tartarus: A Benchmarking Platform for Realistic And Practical Inverse Molecular Design. arXiv e-prints 2022, arXiv:2209.12487. 304. Gao, W.; Fu, T.; Sun, J.; Coley, C., Sample efficiency matters: a benchmark for practical molecular optimization. Advances in Neural Information Processing Systems 2022, 35, 21342-21357. 305. Wager, T. T.; Hou, X.; Verhoest, P. R.; Villalobos, A., Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chemical Neuroscience 2016, 7, (6), 767-775. 306. Bajusz, D.; Rácz, A.; Héberger, K., Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? Journal of Cheminformatics 2015, 7, (1), 20. 307. Benhenda, M., Can AI reproduce observed chemical diversity? bioRxiv 2018, 292177. 308. Yan, C.; Yang, J.; Ma, H.; Wang, S.; Huang, J., Molecule Sequence Generation with Rebalanced Variational Autoencoder Loss. Journal of Computational Biology 2022, 30, (1), 82-94. 309. Bresson, X.; Laurent, T., A Two-Step Graph Convolutional Decoder for Molecule Generation. In Thirty-third Conference on Neural Information Processing Systems, Vancouver Convention Center, Vancouver CANADA 2019. 310. Kajino, H., Molecular Hypergraph Grammar with Its Application to Molecular Optimization. In Proceedings of the 36th International Conference on Machine Learning, Kamalika, C.; Ruslan, S., Eds. PMLR: Proceedings of Machine Learning Research, 2019; Vol. 97, pp 3183--3191. 311. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; Polosukhin, I., Attention is all you need. Advances in Neural Information Processing Systems 2017, 30. 312. Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Pre-trained Conditional Transformer for Target-specific De Novo Molecular Generation. arXiv preprint arXiv:2210.08749 2022. 313. Dollar, O.; Joshi, N.; Pfaendtner, J.; Beck, D. A. C., Efficient 3D Molecular Design with an E(3) Invariant Transformer VAE. The Journal of Physical Chemistry A 2023, 127, (37), 7844-7852. 314. Bagal, V.; Aggarwal, R.; Vinod, P. K.; Priyakumar, U. D., MolGPT: Molecular Generation Using a Transformer-Decoder Model. Journal of Chemical Information and Modeling 2022, 62, (9), 2064-2076. 315. Wang, J.; Hsieh, C.-Y.; Wang, M.; Wang, X.; Wu, Z.; Jiang, D.; Liao, B.; Zhang, X.; Yang, B.; He, Q.; Cao, D.; Chen, X.; Hou, T., Multi-constraint molecular generation based on conditional transformer, knowledge distillation and reinforcement learning. Nature Machine Intelligence 2021, 3, (10), 914-922. 316. Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Pre-trained Conditional Transformer for Target-specific De Novo Molecular Generation arXiv e-prints 2022, arXiv:2210.08749. 317. Gao, W.; Fu, T.; Sun, J.; Coley, C. W., Sample Efficiency Matters: A Benchmark for Practical Molecular Optimization. arXiv e-prints 2022, arXiv:2206.12411. 318. Ciepliński, T.; Danel, T.; Podlewska, S.; Jastrzȩbski, S., Generative Models Should at Least Be Able to Design Molecules That Dock Well: A New Benchmark. Journal of Chemical Information and Modeling 2023, 63, (11), 3238-3247. 319. Tripp, A.; Simm, G. N. C.; Hernández-Lobato, J. M., A fresh look at de novo molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021. 320. Wu, Z.; Ramsundar, B.; Feinberg, Evan N.; Gomes, J.; Geniesse, C.; Pappu, A. S.; Leswing, K.; Pande, V., MoleculeNet: a benchmark for molecular machine learning. Chemical Science 2018, 9, (2), 513-530. 321. Xu, P.; Feng, T.; Fu, T.; Laghuvarapu, S.; Sun, J., Molecular De Novo Design through Transformer-based Reinforcement Learning. arXiv e-prints 2023, arXiv:2310.05365. 322. Schultheiss, N.; Newman, A., Pharmaceutical Cocrystals and Their Physicochemical Properties. Crystal Growth & Design 2009, 9, (6), 2950-2967. 323. Luo, F.; Liu, X.; Chen, S.; Song, Y.; Yi, X.; Xue, C.; Sun, L.; Li, J., Comprehensive Evaluation of a Deep Eutectic Solvent Based CO2 Capture Process through Experiment and Simulation. ACS Sustainable Chemistry & Engineering 2021, 9, (30), 10250-10265. 324. Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F.; Sangoro, J. R., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews 2021, 121, (3), 1232-1285. 325. Hung, Y.-C.; Chao, C.-Y.; Dai, C.-A.; Su, W.-F.; Lin, S.-T., Band Gap Engineering via Controlling Donor–Acceptor Compositions in Conjugated Copolymers. The Journal of Physical Chemistry B 2013, 117, (2), 690-696. 326. Makkar, P.; Ghosh, N. N., A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Advances 2021, 11, (45), 27897-27924. 327. Datta, L. P.; Manchineella, S.; Govindaraju, T., Biomolecules-derived biomaterials. Biomaterials 2020, 230, 119633. 328. Venkatasubramanian, V.; Chan, K.; Caruthers, J. M., Computer-aided molecular design using genetic algorithms. Computers & Chemical Engineering 1994, 18, (9), 833-844. 329. Venkatasubramanian, V.; Chan, K.; Caruthers, J. M., Evolutionary design of molecules with desired properties using the genetic algorithm. J. Chem. Inf. Comput. Sci. 1995, 35, (2), 188-195. 330. Venkatasubramanian, V.; Chan, K.; Caruthers, J. M., Genetic Algorithmic Approach for Computer-Aided Molecular Design. In Computer-Aided Molecular Design, Reynolds, C. H.; Holloway, M. K.; Cox, H. K., Eds. American Chemical Society: 1995; pp 396-414. 331. Mannodi-Kanakkithodi, A.; Pilania, G.; Huan, T. D.; Lookman, T.; Ramprasad, R., Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. Sci. Rep. 2016, 6, 20952. 332. Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; Ronneberger, O.; Bodenstein, S.; Zielinski, M.; Bridgland, A.; Potapenko, A.; Cowie, A.; Tunyasuvunakool, K.; Jain, R.; Clancy, E.; Kohli, P.; Jumper, J.; Hassabis, D., Protein complex prediction with AlphaFold-Multimer. bioRxiv 2022, 2021.10.04.463034. 333. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D., Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, (7873), 583-589. 334. Bardow, A.; Steur, K.; Gross, J., Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research 2010, 49, (6), 2834-2840. 335. Chen, Y.; Koumaditi, E.; Gani, R.; Kontogeorgis, G. M.; Woodley, J. M., Computer-aided design of ionic liquids for hybrid process schemes. Computers & Chemical Engineering 2019, 130, 106556. 336. Chai, S.; Liu, Q.; Liang, X.; Guo, Y.; Zhang, S.; Xu, C.; Du, J.; Yuan, Z.; Zhang, L.; Gani, R., A grand product design model for crystallization solvent design. Computers & Chemical Engineering 2020, 135, 106764. 337. Chen, Y.; Gani, R.; Kontogeorgis, G. M.; Woodley, J. M., Integrated ionic liquid and process design involving azeotropic separation processes. Chemical Engineering Science 2019, 203, 402-414. 338. Scheffczyk, J.; Schäfer, P.; Fleitmann, L.; Thien, J.; Redepenning, C.; Leonhard, K.; Marquardt, W.; Bardow, A., COSMO-CAMPD: a framework for integrated design of molecules and processes based on COSMO-RS. Molecular Systems Design & Engineering 2018, 3, (4), 645-657. 339. Gertig, C.; Fleitmann, L.; Schilling, J.; Leonhard, K.; Bardow, A., Rx-COSMO-CAMPD: Enhancing Reactions by Integrated Computer-Aided Design of Solvents and Processes based on Quantum Chemistry. Chemie Ingenieur Technik 2020, 92, (10), 1489-1500. 340. III, R. D. J., NIST Computational Chemistry Comparison and Benchmark Database. In May 2022 ed.; 2022. 341. William E. Acree, J.; Chickos, J. S., NIST Chemistry WebBook, NIST Standard Reference Database Number 69. In Linstrom, P. J.; Mallard, W. G., Eds. National Institute of Standards and Technology: Gaithersburg MD, 20899, 2023. 342. Bohacek, R. S.; McMartin, C.; Guida, W. C., The art and practice of structure-based drug design: A molecular modeling perspective. Medicinal Research Reviews 1996, 16, (1), 3-50. 343. Walters, W. P.; Stahl, M. T.; Murcko, M. A., Virtual screening—an overview. Drug Discovery Today 1998, 3, (4), 160-178. 344. Lemonick, S., Exploring chemical space: can AI take us where no human has gone before? Chemical & Engineering News 2020, 98, (13), 30-35. 345. Dyk, B. v.; Nieuwoudt, I., Design of Solvents for Extractive Distillation. Ind. Eng. Chem. Res. 2000, 39, (5), 1423-1429. 346. Wu, L.-L.; Chang, W.-X.; Guan, G.-F., Extractants Design Based on an Improved Genetic Algorithm. Ind. Eng. Chem. Res. 2007, 46, (4), 1254-1258. 347. Heintz, J.; Belaud, J.-P.; Pandya, N.; Teles Dos Santos, M.; Gerbaud, V., Computer aided product design tool for sustainable product development. Comput. Chem. Eng. 2014, 71, (Supplement C), 362-376. 348. Zhou, T.; Wang, J.; McBride, K.; Sundmacher, K., Optimal design of solvents for extractive reaction processes. AIChE J. 2016, 62, (9), 3238-3249. 349. Zhou, T.; Zhou, Y.; Sundmacher, K., A hybrid stochastic–deterministic optimization approach for integrated solvent and process design. Chemical Engineering Science 2017, 159, 207-216. 350. Karunanithi, A. T.; Mehrkesh, A., Computer-aided design of tailor-made ionic liquids. Aiche Journal 2013, 59, (12), 4627-4640. 351. Glen, R. C.; Payne, A. W. R., A genetic algorithm for the automated generation of molecules within constraints. J. Comput.-Aided Mol. Des. 1995, 9, (2), 181-202. 352. Douguet, D.; Thoreau, E.; Grassy, G., A genetic algorithm for the automated generation of small organic molecules: drug design using an evolutionary algorithm. J Comput Aided Mol Des 2000, 14, (5), 449-66. 353. Kamphausen, S.; Höltge, N.; Wirsching, F.; Morys-Wortmann, C.; Riester, D.; Goetz, R.; Thürk, M.; Schwienhorst, A., Genetic algorithm for the design of molecules with desired properties. J. Comput.-Aided Mol. Des. 2002, 16, (8), 551-567. 354. Douguet, D.; Munier-Lehmann, H.; Labesse, G.; Pochet, S., LEA3D: A Computer-Aided Ligand Design for Structure-Based Drug Design. J. Med. Chem. 2005, 48, (7), 2457-2468. 355. Dey, F.; Caflisch, A., Fragment-based de novo ligand design by multiobjective evolutionary optimization. J Chem Inf Model 2008, 48, (3), 679-90. 356. Scheffczyk, J.; Fleitmann, L.; Schwarz, A.; Lampe, M.; Bardow, A.; Leonhard, K., COSMO-CAMD: A framework for optimization-based computer-aided molecular design using COSMO-RS. Chem. Eng. Sci. 2017, 159, 84-92. 357. Struebing, H.; Obermeier, S.; Siougkrou, E.; Adjiman, C. S.; Galindo, A., A QM-CAMD approach to solvent design for optimal reaction rates. Chem. Eng. Sci. 2017, 159, 69-83. 358. Kirkpatrick, S.; Jr., C. D. G.; Vecchi, M. P., Optimization by Simulated Annealing. Science 1983, 220, (4598), 671-680. 359. Sorkin, G. B., Efficient Simulated Annealing on Fractal Energy Landscapes. Algorithmica 1991, 6, 367-418. 360. Cardoso, M. E.; Salcedo, R. L.; Azevedo, S. F. d.; Barbosa, D., A simulated annealing approach to the solution of minlp problems. Comput. Chem. Eng. 1997, 21, 1349-1364. 361. Dekkers, A.; Aarts, E., Global optimization and simulated annealing. Math. Program. 1991, 50, (1-3), 367-393. 362. Kim, K.-J.; Diwekar, U. M., Efficient Combinatorial Optimization under Uncertainty. 1. Algorithmic Development. Ind. Eng. Chem. Res. 2002, 41, (5), 1276-1284. 363. Faulon, J.-L., Stochastic Generator of Chemical Structure. 2. Using Simulated Annealing To Search the Space of Constitutional Isomers. J. Chem. Inf. Comput. Sci. 1996, 36, (4), 731-740. 364. Marcoulaki, E. C.; Kokossis, A. C., Molecular Design Synthesis Using Stochastic Optimisation as a Tool for Scoping and Screening. Computers and Chemical Engineering 1998, 22, S11-S18. 365. Ourique, J. E.; Silva Telles, A., Computer-aided molecular design with simulated annealing and molecular graphs. Comput. Chem. Eng. 1998, 22, (Supplement 1), S615-S618. 366. Kim, K.-J.; Diwekar, U. M., Efficient Combinatorial Optimization under Uncertainty. 2. Application to Stochastic Solvent Selection. Ind. Eng. Chem. Res. 2002, 41, (5), 1285-1296. 367. Kim, K.-J.; Diwekar, U. M., Hammersley stochastic annealing: efficiency improvement for combinatorial optimization under uncertainty. IIE Trans. 2002, 34, (9), 761-777. 368. Papadopoulos, A. I.; Linke, P., Multiobjective molecular design for integrated process-solvent systems synthesis. AIChE J. 2006, 52, (3), 1057-1070. 369. Liu, B.; Wen, Y.; Zhang, X., Development of CAMD based on the hybrid gene algorithm and simulated annealing algorithm and the application on solvent selection. Can. J. Chem. Eng. 2017, 95, (4), 767-774. 370. Zhang, J.; Qin, L.; Peng, D.; Zhou, T.; Cheng, H.; Chen, L.; Qi, Z., COSMO-descriptor based computer-aided ionic liquid design for separation processes: Part II: Task-specific design for extraction processes. Chem. Eng. Sci. 2017, 162, 364-374. 371. Zhang, J.; Peng, D.; Song, Z.; Zhou, T.; Cheng, H.; Chen, L.; Qi, Z., COSMO-descriptor based computer-aided ionic liquid design for separation processes. Part I: Modified group contribution methodology for predicting surface charge density profile of ionic liquids. Chem. Eng. Sci. 2017, 162, 355-363. 372. Diwekar, U. M.; Gebreslassie, B. H., Efficient ant colony optimization (EACO) algorithm for deterministic optimization. Int. J. Swarm Intel. Evol. Comput. 2016, 5, (131). 373. Gebreslassie, B. H.; Diwekar, U. M., Efficient ant colony optimization for computer aided molecular design: Case study solvent selection problem. Comput. Chem. Eng. 2015, 78, 1-9. 374. Lin, B.; Chavali, S.; Camarda, K.; Miller, D. C., Computer-aided molecular design using Tabu search. Comput. Chem. Eng. 2005, 29, (2), 337-347. 375. McLeese, S. E.; Eslick, J. C.; Hoffmann, N. J.; Scurto, A. M.; Camarda, K. V., Design of ionic liquids via computational molecular design. Comput. Chem. Eng. 2010, 34, (9), 1476-1480. 376. Vaidyanathan, R.; El-Halwagi, M., Computer-Aided Synthesis of Polymers and Blends with Target Properties. Ind. Eng. Chem. Res. 1996, 35, (2), 627-634. 377. Roughton, B. C.; Christian, B.; White, J.; Camarda, K. V.; Gani, R., Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Comput. Chem. Eng. 2012, 42, 248-262. 378. Camarda, K. V.; Maranas, C. D., Optimization in Polymer Design Using Connectivity Indices. Ind. Eng. Chem. Res. 1999, 38, (5), 1884-1892. 379. Gopinath, S.; Jackson, G.; Galindo, A.; Adjiman, C. S., Outer approximation algorithm with physical domain reduction for computer-aided molecular and separation process design. AIChE J. 2016, 62, (9), 3484-3504. 380. Wang, Y.; Achenie, L. E. K., Computer aided solvent design for extractive fermentation. Fluid Phase Equilib. 2002, 201, (1), 1-18. 381. Maranas, C. D., Novel Mathematical Programming Model for Computer Aided Molecular Design. Ind. Eng. Chem. Res. 1996, 35, (10), 3403-3414. 382. Vaidyanathan, R.; El-Halwagi, M., Global Optimization of Nonconvex MINLP’s by Interval Analysis. In Global Optimization in Engineering Design, Grossmann, I. E., Ed. Springer US: Boston, MA, 1996; Vol. 9, pp 175-193. 383. Ryoo, H. S.; Sahinidis, N. V., A branch-and-reduce approach to global optimization. J. Global Optim. 1996, 8, (2), 107-138. 384. Sahinidis, N. V.; Tawarmalani, M.; Yu, M., Design of alternative refrigerants via global optimization. AIChE J. 2003, 49, (7), 1761-1775. 385. Samudra, A. P.; Sahinidis, N. V., Optimization-based framework for computer-aided molecular design. AIChE J. 2013, 59, (10), 3686-3701. 386. Brignole, E. A.; Bottini, S.; Gani, R., A Strategy for The Design and Selection of Solvent for Seperation Processes. Fluid Phase Equilib. 1986, 29, (Supplement C), 125-132. 387. Gani, R.; Nielsen, B.; Fredenslund, A., A group contribution approach to computer-aided molecular design. Aiche Journal 1991, 37, (9), 1318-1332. 388. Pretel, E. J.; López, P. A.; Bottini, S. B.; Brignole, E. A., Computer-aided molecular design of solvents for separation processes. AIChE J. 1994, 40, (8), 1349-1360. 389. Harper, P. M.; Gani, R.; Kolar, P.; Ishikawa, T., Computer-aided molecular design with combined molecular modeling and group contribution. Fluid Phase Equilib. 1999, 158-160, 337-347. 390. Hostrup, M.; Harper, P. M.; Gani, R., Design of environmentally benign processes: integration of solvent design and separation process synthesis. Comput. Chem. Eng. 1999, 23, (10), 1395-1414. 391. Karunanithi, A. T.; Achenie, L. E. K.; Gani, R., A computer-aided molecular design framework for crystallization solvent design. Chem. Eng. Sci. 2006, 61, (4), 1247-1260. 392. Zhang, L.; Cignitti, S.; Gani, R., Generic mathematical programming formulation and solution for computer-aided molecular design. Comput. Chem. Eng. 2015, 78, 79-84. 393. Nocedal, J.; Wright, S. J., Numerical optimization. Springer: 1999. 394. Bazaraa, M. S.; Sherali, H. D.; Shetty, C. M., Nonlinear programming: theory and algorithms. John wiley & sons: 2006. 395. Andrei, N., Modern Numerical Nonlinear Optimization. Springer: 2022; Vol. 195. 396. Cybenko, G., Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems 1989, 2, (4), 303-314. 397. Goodfellow, I.; Bengio, Y.; Courville, A., Deep learning. MIT press: 2016. 398. Scarff, B. Understanding Backpropagation. https://towardsdatascience.com/understanding-backpropagation-abcc509ca9d0 (2023/6/20), 399. Rumelhart, D. E.; Hinton, G. E.; Williams, R. J., Learning representations by back-propagating errors. Nature 1986, 323, (6088), 533-536. 400. Gers, F. A.; Schmidhuber, E., LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks 2001, 12, (6), 1333-1340. 401. Goldberg, Y., A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research 2016, 57, 345-420. 402. Eck, D.; Schmidhuber, J. In Finding temporal structure in music: blues improvisation with LSTM recurrent networks, Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, 6-6 Sept. 2002, 2002; 2002; pp 747-756. 403. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y., Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 2014. 404. Guo, C.; Berkhahn, F., Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737 2016. 405. Culurciello, E. The fall of RNN / LSTM. https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0 (2023/06/20), 406. Razvan, P.; Tomas, M.; Yoshua, B., On the difficulty of training recurrent neural networks. In PMLR: 2013; Vol. 28, pp 1310-1318. 407. Kafunah, J. Vanishing And Exploding Gradient Problems. https://www.jefkine.com/general/2018/05/21/2018-05-21-vanishing-and-exploding-gradient-problems/ (2023/6/20), 408. Arbel, N. How LSTM networks solve the problem of vanishing gradients: A simple, straightforward mathematical explanation. https://medium.datadriveninvestor.com/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients-a6784971a577 (2023/6/20), 409. Ribeiro, A. H.; Tiels, K.; Aguirre, L. A.; Schön, T., Beyond exploding and vanishing gradients: analysing RNN training using attractors and smoothness. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, Silvia, C.; Roberto, C., Eds. PMLR: Proceedings of Machine Learning Research, 2020; Vol. 108, pp 2370--2380. 410. Williams, R. J.; Zipser, D., A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation 1989, 1, (2), 270-280. 411. Spinner, T.; Körner, J.; Görtler, J.; Deussen, O. In Towards an interpretable latent space: an intuitive comparison of autoencoders with variational autoencoders, IEEE VIS 2018, 2018; 2018. 412. Sadegh, M.; Bing, O. D.; Christian, P.-E.; Linus, G., Penalized Variational Autoencoder for Molecular Design. 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94554 | - |
| dc.description.abstract | 本文分為三部分。第一部分闡述電腦輔助分子設計(computer-aided molecular design, CAMD)之概念框架,以及其能如何幫助特用化學品的早期研發。傳統上,特用化學品的研發主要依賴研究人員對問題的經驗,依其化學直覺(chemical intuition)反覆地進行試誤性(trial-and-error)實驗合成與鑑定。由於新課題常與研究員過去經驗有一定差距,在早期研發階段研究方向不明確時,常因冗餘的試驗而造成人力、物力、財力的浪費。電腦輔助分子設計即是想透過電算的方式作為輔助,以改善研發效率。此技術能讓研究者預先得知一小批候選化學物,再鎖定此範圍進行合成與鑑定。在本研究中,我們建立了原子級精細度的電腦輔助分子設計程序。使用者只須給定物化性規格,即可透過最佳化演算法與迭代來設計符合條件的分子。分子設計程序由三要件組成:MARS+分子資料結構(molecular data structure, MDS)、性質預測模型方法、在化學空間(chemical space)搜尋新分子之演算法。
在分子資料結構部分,我們以數學上的圖(graph)來表示一個分子結構。我們預定義了常見原子與一些基團,並指明它們可用的價鍵種類與數目,作為基本元素庫(base element library)。一給定的分子結構轉換成MARS+資料結構時,其組成原子會被解析為我們預定義的基本元素,並透過八個只包含零與正整數的陣列與兩個字串陣列來描述它們之間的鍵結狀況。其中,元素編號陣列(element indices array)與母元素編號陣列(parent indices array)決定分子內各元素間相對連接關係,鍵級陣列(bond order array)描述上述連接關係之鍵級。元素型別陣列(element type array)記錄各組成原子的種類。元素的異構性(isomerism)則由手性標記陣列(chirality flag array)與兩個順反標記陣列(cis-trans flag array)標示。環號標記陣列(cyclic flag array)與成環鍵結陣列(cyclic bond order array)紀錄分子中之環狀結構。 在性質預測方面,我們基於量化計算軟體,可以算得物質的光電性質,例如HOMO-LUMO能隙、絕熱游離能(adiabatic ionization potential)、絕熱電子親和力(adiabatic electron affinity),垂直游離能(vertical ionization potential)、垂直電子親和力(adiabatic electron affinity)、化學硬度(chemical hardness)、親電性指標(electrophilicity index)。此外,也可進行COSMO溶合計算,得到分子於溶劑中產生之屏蔽電荷(screening charge),並輸入至COSMO-SAC模型計算活性係數(activity coefficient),應用於相平衡計算。 在搜尋新分子之演算法方面,我們以基因演算法(genetic algorithm, GA)為基底,來對存於MARS+資料結構中的分子結構做修飾,以產生新分子。其模式主要分為添加(addition)、減去(subtraction)、插入(insertion)、元素改變(element change)、鍵級改變(bond change)、成環(cyclization)、開環(decyclization)、手性反轉(chirality inversion)、順反異構性反轉(cis-trans inversion)、片段交換(crossover)、接合(combination)、成分交換(component switch)。產生的新分子會先進行物化性之計算,並依照適應度函數(fitness function),賦予接近物化性規格要求者較高的適應度(fitness)。最後,以天擇演算法(selection algorithm)決定新分子何者可留存至下一迭代。本研究建立的天擇演算法包含輪轉法(roulette wheel, RW)、模擬退火(simulated annealing, SA)、適應度蒙地卡羅(fitness Monte Carlo, FMC)、非支配排序演算法(non-dominated sorting, NS)。反覆進行「基因演算法-性質預測-天擇演算法」迭代,即可逐步設計出接近物化性規格要求之分子。 本作第二部分以設計新型離子液體作為二氧化碳吸附劑作為範例,展示我們自建的分子設計能因應任務特異性(task-specific)進行設計。在此部份我們使用COSMO-SAC模型預測二氧化碳於離子液體的物理吸附溶解度。為了驗證模型的準確度,我們蒐集了96種離子液體共4537筆實驗數據,並比對其與COSMO-SAC模型預測結果的一致性,結果顯示其精確度足夠作為定性或半定量之用。設計出的3500種離子液體,有80 %其碳捕捉的表現與已被文獻報告者相當,而有少數比已知離子液體好許多。分子設計的結果顯示若要將二氧化碳溶解度提高,則離子液體的陰離子基團需要限縮至氟、氯、溴、碘,或者氫氧根離子。 本作第三部分使用GuacaMol與MolOpt兩套基準套件(benchmark suite)平臺來比較MARS+與其他生成式模型用於有機分子設計任務時的表現差異。GuacaMol平臺主要評估效度(effectiveness),亦即足夠長的迭代數下,生成式模型能否達成目標。而MolOpt平臺主要評估效率(efficiency),亦即制定非常有限的化學物產生數額度,觀察在額度內所產生的化學物之優選性(optimality)。在GuacaMol平臺的比較結果顯示MARS+的表現位列第二,僅次於GRAPH_GA模型。在多數任務中,MARS+和GRAPH_GA表現相匹敵,但在搜尋結構異構物(constitutional isomers)方面明顯比GRAPH_GA表現不好。MARS+的片段交換(crossover)操作子經過泛化(generalization)後,可顯著提昇結構異構物的搜尋能力,但同時也會大幅犧牲其在一些單目標任務(single-objective tasks)的表現。在MolOpt平臺的比較結果顯示MARS+的表現位列第三,僅次於第一的REINVENT模型與第二的GRAPH_GA模型。在多數任務中,MARS+和GRAPH_GA表現相匹敵,但在搜尋希樂葆(Celecoxib)藥物分子方面明顯比GRAPH_GA表現不好。主因可能在於GRAPH_GA有環片段交換(ring crossover)操作子來確保操作前後環的數量未減少。 在展望與未來工作方面主要有四點。第一點是運用CAMD於其他化學系統的設計。一些化學系統的設計任務是現行的MARS+可以做到,或者僅須經由小幅度修改程式即可做到。例如:藥物共晶(pharmaceutical cocrystals)、雙鹽類離子液體(double-salt ionic liquids, DSILs)、深共熔溶劑(deep eutectic solvents, DESs)、光電材料、生物巨分子、高分子聚合物等。第二點是進一步多樣化分子的操作機制在,例如在MARS+增加環片段交換(ring crossover)操作子。第三點是將分子設計與化工程序設計整合,形成整體的設計方法。第四點是定性比較MARS+內的各種選擇演算法(selection algorithm),以幫助我們進一步釐清這些演算法的行為。 | zh_TW |
| dc.description.abstract | This work is divided into three parts. The first part elucidates the conceptual framework of Computer-Aided Molecular Design (CAMD) and its potential to facilitate the early-stage development of specialty chemicals. Traditionally, the development of specialty chemicals has primarily relied on researchers' experience, involving iterative synthesis and characterization. Given the frequent discrepancies between new challenges and researchers' past experiences, the early development phase often suffers from directionless experimentation, leading to a waste of manpower, materials, and financial resources. CAMD aims to enhance research efficiency by leveraging computational methods to pre-identify a small pool of candidate chemicals for targeted synthesis and characterization. In this study, we have established an atomically detailed CAMD procedure. Users can input the desired physicochemical properties, and the system employs optimization algorithms and iterative processes to design molecules that meet these criteria. The molecular design process comprises three key components: the MARS+ molecular data structure (MDS), property prediction models, and algorithms for searching new molecules in chemical space.
In the molecular data structure component, we represent a molecular structure as a mathematical graph. We predefine common atoms and certain functional groups, specifying their available valence bonds and numbers as a base element library. When a given molecular structure is converted into the MARS+ data structure, its constituent atoms are parsed into our predefined basic elements. Their bonding status is described using eight arrays, containing only zeros and positive integers, along with two string arrays. For property prediction, we use quantum calculation software to compute the optoelectronic properties of substances, such as the HOMO-LUMO gap, adiabatic ionization potential, adiabatic electron affinity, vertical ionization potential, vertical electron affinity, chemical hardness, and electrophilicity index. Additionally, COSMO solvation calculations are conducted to obtain the screening charge of molecules in solvents, which is then input into the COSMO-SAC model to calculate activity coefficients, applicable in phase equilibrium calculations. The algorithm for searching new molecules is based on the Genetic Algorithm (GA), which modifies molecular structures stored in the MARS+ data structure to generate new molecules. Newly generated molecules undergo physicochemical property calculations and are evaluated for fitness based on a fitness function, with those closely matching the desired specifications receiving higher fitness scores. Finally, a selection algorithm determines which new molecules advance to the next iteration. Our selection algorithms include Roulette Wheel (RW), Simulated Annealing (SA), Fitness Monte Carlo (FMC), and Non-dominated Sorting (NS). Repeated iterations of the "Genetic Algorithm - Property Prediction - Selection Algorithm" cycle progressively yield molecules that closely meet the specified physicochemical criteria. The second part of this work demonstrates the application of our molecular design framework to develop novel ionic liquids as CO2 adsorbents. In this section, we use the COSMO-SAC model to predict the physical absorption solubility of CO2 in ionic liquids. To validate the model's accuracy, we collected 4537 experimental data points for 96 ionic liquids and compared them with the COSMO-SAC model predictions. The results show sufficient accuracy for qualitative or semi-quantitative purposes. Among the 3500 designed ionic liquids, 80% exhibited CO2 capture performance comparable to those reported in the literature, with a few significantly outperforming known ionic liquids. The design results suggest that enhancing CO2 solubility requires constraining the anionic groups of the ionic liquids to fluoride, chloride, bromide, iodide, or hydroxide ions. In the third part of this study, we utilized the GuacaMol and MolOpt benchmark suites to assess the performance of MARS+ compared to other generative models in goal-directed tasks. GuacaMol evaluates effectiveness, measuring how well property targets are achieved over a sufficient number of iterations. MolOpt evaluates efficiency, assessing the optimality of generated species within a limited number of iterations. In GuacaMol, MARS+ ranked 2nd, closely behind the GRAPH_GA model. In MolOpt, MARS+ ranked 3rd, following the REINVENT model (1st) and GRAPH_GA (2nd). Generalizing the crossover operator in MARS+ significantly enhances its capability to search for constitutional isomers, albeit at the cost of performance in single-objective tasks. The ring crossover operator in GRAPH_GA appears to be a significant factor contributing to performance differences between MARS+ and GRAPH_GA. There are four potential avenues for future research. First, extending CAMD applications to other chemical systems where current MARS+ capabilities suffice or require minor program modifications, such as pharmaceutical cocrystals, double-salt ionic liquids (DSILs), deep eutectic solvents (DESs), optoelectronic materials, biomolecules, and polymers. Second, further diversifying molecular operational mechanisms, including integrating a ring crossover operator into MARS+. Third, integrating molecular design with chemical process design to make the design tasks more realistic. Fourth, conducting qualitative comparisons of various selection algorithms within MARS+ to gain deeper insights into their behaviors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:42:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:42:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract vii Table of Contents x List of Figures xv List of Supplementary Figures xxi List of Tables xxiii List of Supplementary Tables xxiv Chapter 1. Introduction 1 1.1. Chemical Products and Innovations 1 1.2. Molecular Databases and Chemical Space 4 1.3. Computer-Aided Molecular Design (CAMD) 5 1.3.1. Bidirectional Relation: Molecular Structure and Properties 6 1.3.2. Mathematical Formulation of a CAMD Problem 8 1.4. The Purposes of This Work and an Outline 10 Chapter 2. Generic Theory 15 2.1. Mixed-Integer Non-Linear Programming (MINLP) 15 2.2. Mathematical Methods for Solving MINLP Problems 17 2.2.1. Continuously Differentiable Problem with Integer Variables 18 2.2.2. Nondifferentiable Problem with Complicated Discrete Variables 21 2.3. Components of Computer-Aided Molecular Design (CAMD) 24 2.3.1. Molecular Data Structure: Chemical Representations 25 2.3.2. Forward Algorithm: Property Predictions Methods 26 2.3.3. Reverse Algorithm, Part (I): Generative Algorithms 31 2.3.4. Reverse Algorithm, Part (II): Selection Algorithms 34 Chapter 3. Constructing a Program for Conventional CAMD 37 3.1. Chemical Representation: MARS+ Package 37 3.1.1. The Library of Base Elements 41 3.1.2. Molecular Data Structure (MDS) 43 3.2. Forward Algorithm: Property Prediction Models 50 3.2.1. COSMO-SAC Activity Coefficient Model 52 3.2.2. Electronic Properties from Quantum Simulations 61 3.2.3. Synthetic Accessibility Score (SAscore) 66 3.2.4. Synthetic Complexity Score (SCscore) 68 3.3. Reverse Algorithm (I): MARS+ Package 71 3.3.1. Structure Manipulations – uni-molecular operations 71 3.3.2. Structure Manipulations – bi-molecular operations 75 3.3.3. Structure Manipulations – bi-supermolecular operations 77 3.3.4. Transformation of SMILES into MDS (smi2mds) 79 3.3.5. Transformation of MDS into SMILES (mds2smi()) 80 3.4. Reverse Algorithm (II): Selection Algorithms 81 3.4.1. Fitness Function 81 3.4.2. Selection Algorithms 83 Chapter 4. Intrinsic Performance of MARS+ based CAMD 89 4.1. Exhaustive Structure Operations on Every Possible Point 89 4.1.1. Insertion 90 4.1.2. Cyclization 92 4.1.3. Decyclization 94 4.1.4. Cis-trans inversion 94 4.1.5. Chirality inversion 95 4.1.6. Crossover 96 4.1.7. Combination 97 4.1.8. Component Swap 98 4.2. Chemical Space Exploration via Iterative Enumeration 99 4.3. Can MARS+ Produce Well-known Chemicals? 103 Chapter 5. Design of Novel ILs for CO2 Capture 106 5.1. A Review of Theoretical and Application Insights 106 5.2. Thermodynamic Modeling 110 5.3. Validation of COSMO-SAC Predictions 115 5.4. IL Screening Using Experimentally Validated Ions 121 5.5. Computational Details of IL Design Using CAMD 131 5.6. CAMD Results 135 Chapter 6. Rule-based vs. AI-based CAMD 147 6.1. AI-based Generative Models for CAMD 147 6.2. Benchmarks for Comparing Rule-based and AI-based CAMD 151 6.3. GuacaMol: Effectiveness of MARS+ and Other Baseline Models 154 6.4. MolOpt: Efficiency of MARS+ and Other Baseline Models 161 Chapter 7. Conclusions 168 Chapter 8. Prospects and Future Work 170 8.1. Applications to Other Chemical Mixture Systems 170 8.2. Enriching the Mechanisms for Molecular Manipulations 171 8.3. Integrated Computational Molecular-Process Design 173 8.4. Qualitative Comparisons for Implemented Selection Algorithms 174 Appendix A. Supplementary Tables to the Main Texts 175 Appendix B. Supplementary Figures to the Main Texts 195 Appendix C. Optimality in Non-linear Programming 208 C.1. Optimality Conditions in Unconstrained Optimizations393 208 C.1.1. First-order Necessary Conditions 208 C.1.2. Second-order Necessary Conditions 208 C.1.3. Second-order Sufficient Conditions 208 C.1.4. A Short Proof 209 C.2. Optimality Conditions in Constrained Optimizations37, 394 209 C.2.1. First-order Necessary Condition (Karush-Kuhn-Tucker, KKT) 210 C.2.2. First-order Sufficient Condition (Karush-Kuhn-Tucker, KKT) 213 C.2.3. Second-order Necessary Condition 214 C.2.4. Second-order Sufficient Condition 214 C.3. Tangent Cone and Feasible Directions393 215 C.4. Gordan’s Theorem394 217 C.5. Lagrangian Duality Problem394 217 C.6. Nonlinear Duality Theorem394 218 Appendix D. Solving Non-linear Programming Problems68 219 D.1. Sequential Quadratic Programming (SQP) Method 219 Appendix E. Generalized Benders Decomposition37, 69, 70 223 E.1. Problem Projection 223 E.2. Dual Problems of the Projected Problems 224 E.3. Formulation of GBD Form 224 E.4. GBD Algorithm 226 Appendix F. Theories of Some AI-based Generative Models 228 F.1. Neuron and Neural Network (NN) 228 F.2. RNN-based Chemical Semantic Model 230 F.3. VAE-based Latent Variable Model 238 F.4. Transformer Architecture with Self-Attention Mechanism 244 References 247 | - |
| dc.language.iso | en | - |
| dc.subject | 電腦輔助分子設計 | zh_TW |
| dc.subject | 分子表示法 | zh_TW |
| dc.subject | 化學物篩選 | zh_TW |
| dc.subject | 溶劑 | zh_TW |
| dc.subject | 離子液體 | zh_TW |
| dc.subject | 碳捕捉 | zh_TW |
| dc.subject | 分子生成式模型比較 | zh_TW |
| dc.subject | molecular representation | en |
| dc.subject | comparisons among molecular generative models | en |
| dc.subject | carbon capture | en |
| dc.subject | ionic liquid | en |
| dc.subject | solvent | en |
| dc.subject | chemical screening | en |
| dc.subject | Computer-aided molecular design | en |
| dc.title | 開發適用於多成分及複雜化學結構之電腦輔助分子設計方法 | zh_TW |
| dc.title | Development of Computer-Aided Molecular Design Methods for Multicomponent and Complex Chemical Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 游琇伃;李奕霈;吳台偉;洪英傑;劉德謙 | zh_TW |
| dc.contributor.oralexamcommittee | Hsiu-Yu Yu;Yi-Pei Li;David Tai-Wei Wu;Ying-Chieh Hung;Te-Chien Liu | en |
| dc.subject.keyword | 電腦輔助分子設計,分子表示法,化學物篩選,溶劑,離子液體,碳捕捉,分子生成式模型比較, | zh_TW |
| dc.subject.keyword | Computer-aided molecular design,molecular representation,chemical screening,solvent,ionic liquid,carbon capture,comparisons among molecular generative models, | en |
| dc.relation.page | 283 | - |
| dc.identifier.doi | 10.6342/NTU202403528 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 11.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
