Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧孟明zh_TW
dc.contributor.advisorMong-Ming Luen
dc.contributor.author黃聖丰zh_TW
dc.contributor.authorSheng-Fong Huangen
dc.date.accessioned2024-08-16T16:40:10Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citationAkasaka, I., 2010: Interannual variations in seasonal march of rainfall in the Philippines. Int. J. Climatol., 30, 1301-1314.
Cho, Y., and M. Lu, 2021: Taiwan Mei-yu seasonal rainfall pattern and East Asian Summer Monsoon characteristics during the monsoon development stage. Atmospheric Sciences, 49, 79-109.
Cho, Y., M. Lu, C. Sui, A. Solis, and M. Chen, 2022: Decadal changes of the early summer Asian monsoon and the South China Sea tropical cyclones during 2001-2020. Terr. Atmos. Ocean. Sci., 33.
Clark, S., S. A. Sisson, and A. Sharma, 2020: Tools for enhancing the application of self-organizing maps in water resources research and engineering. Adv. Water Resour., 143, 16.
Dai, L., T. F. Cheng, and M. Q. Lu, 2021: Define East Asian Monsoon Annual Cycle via a Self-Organizing Map-Based Approach. Geophys. Res. Lett., 48, 12.
Ding, Y., and J. Chan, 2005: The East Asian summer monsoon: an overview. Meteorol. Atmos. Phys., 89, 117-142.
Huang, W. Y., R. Y. Chen, Z. F. Yang, B. Wang, and W. Q. Ma, 2017: Exploring the combined effects of the Arctic Oscillation and ENSO on the wintertime climate over East Asia using self-organizing maps. J. Geophys. Res.-Atmos., 122, 9107-9129.
Kohonen, T., 1990: THE SELF-ORGANIZING MAP. Proc. IEEE, 78, 1464-1480.
Kohonen, T., 2013: Essentials of the self-organizing map. Neural Netw., 37, 52-65.
Lin, I. I., and Coauthors, 2020: ENSO and tropical cyclones. El Niño southern oscillation in a changing climate, 377-408.
Lu, M., Y. Cho, and C. Sui, 2023: Decadal-scale changes in the seasonal transition patterns of the Asian summer monsoon and the South China Sea tropical cyclone frequency during May. MAUSAM, 74, 273-286.
Nishiyama, K., S. Endo, K. Jinno, C. B. Uvo, J. Olsson, and R. Berndtsson, 2007: Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map. Atmos. Res., 83, 185-200.
Qian, J. H., M. M. Lu, and C. H. Sui, 2022: Evolution of South China Sea and East Asian monsoon from spring to summer by the progression of daily weather types. Int. J. Climatol., 42, 3633-3647.
Wang, B., and Q. Zhang, 2002: Pacific-east Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Nino development. J. Climate, 15, 3252-3265.
Wang, B., and J. C. L. Chan, 2002: How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. J. Climate, 15, 1643-1658.
Wang, B., and H. Murakami, 2020: Dynamic genesis potential index for diagnosing present-day and future global tropical cyclone genesis. Environ. Res. Lett., 15.
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Climate, 13, 1517-1536.
Wang, B., R. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195-1211.
Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean Capacitor Effect on Indo-Western Pacific Climate during the Summer following El Nino. J. Climate, 22, 730-747.
Yoshida, R., and H. Ishikawa, 2013: Environmental Factors Contributing to Tropical Cyclone Genesis over the Western North Pacific. Mon. Wea. Rev., 141, 451-467.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94547-
dc.description.abstract本研究著重於東亞季風區的春夏季節轉換期,以客觀方法對逐日低層風場分群所辨識出的天氣類型為基礎,建構春夏轉換期東亞季風區之天氣曆,並藉此呈現聖嬰現象、西北太平洋颱風活動、台灣及菲律賓區域極端降雨與東亞季風間的關係。
東亞季風區低層風場與降雨特徵於春夏季節轉換期有顯著的轉變,包含西北太平洋副熱帶高壓的移動、南海夏季季風肇始、台灣梅雨與長江梅雨的雨帶形成與持續、季風槽的發展等。此外,東亞季風的年際變異明顯受到聖嬰現象影響,對於低層風場、降雨、乃至於颱風活動都具有一定的影響。本研究應用自組織映射圖分類法(self-organizing map, SOM),將東亞季風區(0°-37.5°N, 90°-140°E) 1979-2023年的四到七月逐日低層風場分為九種天氣類型,發現低層風場與對應的降雨特徵以及偏好發生的時期有明顯的季風樣貌。將天氣類型依照發生時間前後編號排序建構的東亞季風區四到七月的季風天氣曆,呈現出東亞季風春夏季節演變的過程。根據各天氣類型發生頻率和組合,可將四至七月區分為春季晚期(第19至24侯)、轉換期(第25至33侯)與夏季初期(第34至42侯)三個季風發展階段。不同階段分別由不同的天氣類型所主導,顯示出季風發展過程氣候狀態的階段性演變和每日風場的關係。
我們根據不同聖嬰相位組成的春夏季風天氣曆來呈現氣候與天氣的關聯,顯示不同聖嬰相位的氣候背景對於逐日環流類型、極端降雨與颱風活動的影響。在聖嬰相位後一年的春夏轉換期,相比反聖嬰相位,主導的天氣類型凸顯出春季晚期菲律賓反氣旋與初夏西北太平洋颱風活動減少的特徵,同時反映出菲律賓雨季前降雨明顯受聖嬰現象所主導。我們進一步鎖定台灣梅雨季時期(4月26日至7月4日),2011與2009年兩個極端年份顯示季風天氣曆能夠反映出反聖嬰影響下2011年菲律賓的極端多雨以及2009年台灣偏乾的事件。然而,對於非極端少雨年份天氣曆並不能區分台灣梅雨季雨量的偏多或偏少,顯示聖嬰和季風等大尺度環境尚不足以解釋台灣梅雨季的年際變化,但對於雨量極端偏少的年份有值得繼續開發的應用價值。最後,我們運用東亞季風天氣曆討論聖嬰現象、東亞季風與颱風的關係,發現轉換期與夏季初期西北太平洋的颱風活動能夠從天氣類型呈現颱風活躍年與不活躍年的差異,呈現以客觀方法辨識的天氣類型具有的另一個應用面向。
本研究提出了以天氣類型為基礎的東亞季風天氣曆並說明如何藉以顯示整體大環境季風系統在春夏季時期發展演變的過程和年際間變異。建議未來可在此基礎上進一步擴大分析區域與時間範圍,完成全年季風天氣曆的建構,同時也可嘗試應用於次季節至季節尺度(sub-seasonal to seasonal, S2S)模式預報表現的評估以及季節演變過程的即時監測等實務面向。至於區域性極端多雨的天氣類型,則可參考本研究提出的季風發展階段,嘗試縮小分析區域至足以解析地形影響程度進行分類,了解動力場對區域極端氣候的影響。
zh_TW
dc.description.abstractThe aim of this study is to build up an East Asian monsoon (EAM) weather calendar based on the weather types (WTs) identified using daily low-level wind, and to demonstrate that the calendar can reflect different large-scale background climate state, such as ENSO, influence on regional extreme weather, such as the extremely wet and dry cases and tropical cyclones (TCs).
EAM exhibits substantial changes during the months of April-July. Transition from spring to summer regime is accompanied by the movement of western North Pacific (WNP) subtropical high, onset of South China Sea (SCS) summer monsoon, and development of the monsoon trough. The interannual variability of EAM can be modulated by ENSO, which also influences the TC activity over the WNP. Three monsoonal stages are objectively identified in this study using self-organizing map (SOM) method based on the WTs of the April-July daily 850-hPa wind data from 1979 to 2023 over the EAM region (0°-37.5°N, 90°-140°E). After arranging the WTs in chronological order according to their occurrence time, a EAM weather calendar is established. According to the WT occurrence frequency and types, three stages of the EAM during April-July is objectively identified: late spring (pentad 19-24), transition (pentad 25-33), and early summer (pentad 34-42). On this basis we demonstrated that EAM weather calendar can reflect the influence of distinctly different background climate conditions of opposite ENSO phases on daily low-level circulation patterns and the associated precipitation extremes and TC activity. During the post-El Niño spring-to-summer transition season the frequent weather types result in strong late spring anticyclonic circulation over East Asia and less early summer TC genesis in comparison to the post-La Niña transition season. The WTs well reflect the ENSO modulation on the pre-rainy season rainfall (wetter during La Niña) over the Philippines. To understand the ENSO influence on the WTs during the Taiwan Mei-yu season (April 26 – July 4), two extreme years (2011, 2009) are selected for detecting the relationship between WTs and the successive extremely wet/dry events. Results suggest that EAM weather calendar can reflect 2011 extremely wet condition over the Philippines and 2009 extremely dry condition over Taiwan area. However, no clear signals are detected for Taiwan wet Mei-yu years. It implies that the ENSO and monsoon large-scale conditions are not sufficient for explaining the wet conditions in Taiwan. Finally, we use the EAM weather calendar to identify the ENSO-EAM-TC relationship and find that the active and inactive TC signals can be detected in different WTs during the transition and early summer stages. Therefore, it is important to objectively identify monsoonal stages based on data-driven concept.
It is demonstrated that the monsoon weather calendar can manifest the concept of “weather in climate” during spring-to-summer transition of EAM and interannual variability of ENSO modulations. In future studies, the research domain and study period can be extended to build up the calendar for a whole year. The potential of using it for evaluating the sub-seasonal to seasonal forecast model performance and real-time climate monitoring should be studied in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:40:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:40:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
Table of Contents viii
List of Tables x
List of Figures xi
1. Introduction 1
2. Data and Methodology 6
2.1 Dataset 6
2.2 Self-Organizing Map 7
a. SOM Weather Types Clustering 7
b. Determine the Daily WTs from Multiple Cases 11
2.3 ENSO Events Identification 13
3. SOM Weather Types Analysis 14
3.1 Temporal Analysis 14
3.2 Composite Features of Weather Types 15
3.3 Spring-to-Summer Asian Monsoon Calendar 18
4. ENSO Modulation on East Asian Monsoon 22
4.1 ENSO and SOM Weather Types 22
4.2 Pre-rainy Season Rainfall Characteristics of the Philippines 25
4.3 Extremely Wet and Dry Cases during Taiwan Mei-yu Season — The Philippines and Taiwan 27
a. ENSO and Extremely Wet and Dry Case Selection 28
b. Extremely Wet Case: Philippines, 2011 29
c. Extremely Dry Case: Taiwan, 2009 31
5. Tropical Cyclone Activity during April-July over the Western North Pacific 34
5.1 TC Activity and SOM Weather Types 34
5.2 EAM Weather Calendar and ENSO Modulation on TC Activity 38
6. Discussions and Conclusions 41
Appendices 45
Appendix A. Parameter Settings of SOM 45
Appendix B. ENSO Modulation on TCs 48
References 49
Tables 51
Figures 54
-
dc.language.isoen-
dc.subject東亞季風天氣曆zh_TW
dc.subject颱風zh_TW
dc.subject聖嬰現象zh_TW
dc.subjectself-organizing mapzh_TW
dc.subject自組織映射圖zh_TW
dc.subject季節演變zh_TW
dc.subjecttropical cyclonesen
dc.subjectseasonal transitionen
dc.subjectAsian monsoon calendaren
dc.subjectENSOen
dc.subjectself-organizing mapen
dc.title運用自組織映射圖分類法建構之春夏轉換期東亞季風區低層風場天氣曆分析聖嬰現象與台灣及菲律賓區域的颱風和極端降雨特徵zh_TW
dc.titleThe East-Asian Spring to Summer Monsoon Weather Calendar Constructed by Self-Organizing Maps of Atmospheric Low-level Winds and Applied to ENSO and Taiwan-Philippine Tropical Cyclone and Extreme Rainfall Case Analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee隋中興;陳維婷;羅資婷zh_TW
dc.contributor.oralexamcommitteeChung-Hsiung Sui;Wei-Ting Chen;Tzu-Ting Loen
dc.subject.keyword東亞季風天氣曆,季節演變,自組織映射圖,self-organizing map,聖嬰現象,颱風,zh_TW
dc.subject.keywordAsian monsoon calendar,seasonal transition,self-organizing map,ENSO,tropical cyclones,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202403087-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
10.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved