Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94530
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑zh_TW
dc.contributor.advisorJen-Chieh Shiaoen
dc.contributor.author古佳正zh_TW
dc.contributor.authorChia-Cheng Kuen
dc.date.accessioned2024-08-16T16:34:05Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citationAshida, H., Suzuki, N., Tanabe, T., Suzuki, N., & Aonuma, Y. (2014). Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environmental Biology of Fishes, 98(4), 1173-1183. https://doi.org/10.1007/s10641-014-0350-8
Barneche, D. R., Robertson, D. R., White, C. R., & Marshall, D. J. (2018). Fish reproductive-energy output increases disproportionately with body size. Science, 360(6389), 642-645. https://doi.org/10.1126/science.aao6868
Boustany, A. M., Matteson, R., Castleton, M., Farwell, C., & Block, B. A. (2010). Movements of pacific bluefin tuna (Thunnus orientalis) in the Eastern North Pacific revealed with archival tags. Progress in Oceanography, 86(1-2), 94-104. https://doi.org/10.1016/j.pocean.2010.04.015
Brodersen, J., Nilsson, P. A., Hansson, L. A., Skov, C., & Bronmark, C. (2008). Condition-dependent individual decision-making determines cyprinid partial migration. Ecology, 89(5), 1195-1200. https://doi.org/10.1890/07-1318.1
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine ecology progress series, 188, 263-297.
Campana, S. E. (2005). Otolith Elemental Composition as a Natural Marker of Fish Stocks. In Stock Identification Methods (pp. 227-245). Elsevier. https://doi.org/10.1016/b978-012154351-8/50013-7
Chapman, B. B., Skov, C., Hulthen, K., Brodersen, J., Nilsson, P. A., Hansson, L. A., & Bronmark, C. (2012). Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol, 81(2), 479-499. https://doi.org/10.1111/j.1095-8649.2012.03349.x
Chen, K.-S., Crone, P., & Hsu, C.-C. (2006). Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fisheries Science, 72(5), 985-994. https://doi.org/10.1111/j.1444-2906.2006.01247.x
Chung, M. T., Jørgensen, K. E. M., Trueman, C. N., Knutsen, H., Jorde, P. E., & Grønkjær, P. (2020). First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. Oikos, 130(2), 287-299. https://doi.org/10.1111/oik.07647
Chung, M. T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E., & Gronkjaer, P. (2019). Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun Biol, 2, 24. https://doi.org/10.1038/s42003-018-0266-5
Eide, M., Olsen, A., Ninnemann, U. S., & Johannessen, T. (2017). A global ocean climatology of preindustrial and modern ocean δ13C. Global Biogeochemical Cycles, 31(3), 515-534. https://doi.org/10.1002/2016gb005473
Fromentin, J.-M., & Lopuszanski, D. (2014). Migration, residency, and homing of bluefin tuna in the western Mediterranean Sea. ICES Journal of Marine Science, 71(3), 510-518. https://doi.org/10.1093/icesjms/fst157
Fujioka, K., Fukuda, H., Furukawa, S., Tei, Y., Okamoto, S., & Ohshimo, S. (2018a). Habitat use and movement patterns of small (age‐0) juvenile Pacific bluefin tuna (Thunnus orientalis) relative to the Kuroshio. Fisheries Oceanography, 27(3), 185-198. https://doi.org/10.1111/fog.12244
Fujioka, K., Fukuda, H., Tei, Y., Okamoto, S., Kiyofuji, H., Furukawa, S., Takagi, J., Estess, E., Farwell, C. J., Fuller, D. W., Suzuki, N., Ohshimo, S., & Kitagawa, T. (2018b). Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Progress in Oceanography, 162, 52-65. https://doi.org/10.1016/j.pocean.2018.02.010
Fujioka, K., Sasagawa, K., Kuwahara, T., Estess, E. E., Takahara, Y., Komeyama, K., Kitagawa, T., Farwell, C. J., Furukawa, S., Kinoshita, J., Fukuda, H., Kato, M., Aoki, A., Abe, O., Ohshimo, S., & Suzuki, N. (2021). Habitat use of adult Pacific bluefin tuna Thunnus orientalis during the spawning season in the Sea of Japan: evidence for a trade-off between thermal preference and reproductive activity. Marine ecology progress series, 668, 1-20. https://doi.org/10.3354/meps13746
Ge, T., Luo, C., Ren, P., Zhang, H., Fan, D., Chen, H., Chen, Z., Zhang, J., & Wang, X. (2022). Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.998437
Gillanders, B. M., Izzo, C., Doubleday, Z. A., & Ye, Q. (2015). Partial migration: growth varies between resident and migratory fish. Biol Lett, 11(3). https://doi.org/10.1098/rsbl.2014.0850
Hane, Y., Ushikubo, T., Yokoyama, Y., Miyairi, Y., & Kimura, S. (2022). Natal origin of Pacific bluefin tuna Thunnus orientalis determined by SIMS oxygen isotope analysis of otoliths. PLoS One, 17(8), e0272850. https://doi.org/10.1371/journal.pone.0272850
Høie, H., Otterlei, E., & Folkvord, A. (2004). Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES Journal of Marine Science, 61(2), 243-251.
ISC. (2022). Stock Assessment of Pacific Bluefin Tuna (Thunnus Orientalis) in the Pacific Ocean in 2022. 22nd Meeting of the International Scientific Committee for Tunaand Tuna-Like Species in the North Pacific OceanKona, Hawai’i, U.S.A.https://isc.fra.go.jp/pdf/ISC22/ISC22_ANNEX13_Stock_Assessment_for_Pacific_Bluefin_Tuna.pdf.
Ishihara, T., Watai, M., Ohshimo, S., & Abe, O. (2019). Differences in larval growth of Pacific bluefin tuna (Thunnus orientalis) between two spawning areas, and an evaluation of the growth-dependent mortality hypothesis. Environmental Biology of Fishes, 102(4), 581-594. https://doi.org/10.1007/s10641-019-00855-w
Itoh, T. (2009). Contributions of different spawning seasons to the stock of Pacific bluefin tuna Thunnus orientalis estimated from otolith daily increments and catch-at-length data of age-0 fish. Nippon Suisan Gakkaishi, 75(3), 412-418. https://doi.org/10.2331/suisan.75.412
Kalish, J. M. (1991). 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine ecology progress series, 75, 191-203. https://doi.org/10.3354/meps075191
Kawazu, M., Tawa, A., Ishihara, T., Uematsu, Y., & Sakai, S. (2020). Discrimination of eastward trans-Pacific migration of the Pacific bluefin tuna Thunnus orientalis through otolith δ13C and δ18O analyses. Marine Biology, 167(8). https://doi.org/10.1007/s00227-020-03723-9
Kimura, S., Kato, Y., Kitagawa, T., & Yamaoka, N. (2010). Impacts of environmental variability and global warming scenario on Pacific bluefin tuna (Thunnus orientalis) spawning grounds and recruitment habitat. Progress in Oceanography, 86(1-2), 39-44. https://doi.org/10.1016/j.pocean.2010.04.018
Kitagawa, T., Ishimura, T., Uozato, R., Shirai, K., Amano, Y., Shinoda, A., Otake, T., Tsunogai, U., & Kimura, S. (2013). Otolith δ18O of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Marine ecology progress series, 481, 199-209. https://doi.org/10.3354/meps10202
Kroopnick, P. M. (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep Sea Research Part A. Oceanographic Research Papers, 32(1), 57-84. https://doi.org/10.1016/0198-0149(85)90017-2
Madigan, D. J., Baumann, Z., Carlisle, A. B., Hoen, D. K., Popp, B. N., Dewar, H., Snodgrass, O. E., Block, B. A., & Fisher, N. S. (2014). Reconstructing transoceanic migration patterns of Pacific bluefin tuna using a chemical tracer toolbox. Ecology, 95(6), 1674-1683. https://doi.org/10.1890/13-1467.1
Madigan, D. J., Baumann, Z., & Fisher, N. S. (2012a). Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc Natl Acad Sci U S A, 109(24), 9483-9486. https://doi.org/10.1073/pnas.1204859109
Madigan, D. J., Boustany, A., & Collette, B. B. (2017). East not least for Pacific bluefin tuna. Science, 357(6349), 356-357. https://doi.org/10.1126/science.aan3710
Madigan, D. J., Litvin, S. Y., Popp, B. N., Carlisle, A. B., Farwell, C. J., & Block, B. A. (2012b). Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis). PLoS One, 7(11), e49220. https://doi.org/10.1371/journal.pone.0049220
Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B., & Trueman, C. N. (2017). Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere, 8(5). https://doi.org/10.1002/ecs2.1763
Medina, A., Abascal, F. J., Aragón, L., Mourente, G., Aranda, G., Galaz, T., Belmonte, A., de la Serna, J. M., & García, S. (2007). Influence of sampling gear in assessment of reproductive parameters for bluefin tuna in the western Mediterranean. Marine ecology progress series, 337, 221-230. https://doi.org/10.3354/meps337221
Moyer, R. P., Bauer, J. E., & Grottoli, A. G. (2012). Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico. Biogeochemistry, 112(1-3), 589-612. https://doi.org/10.1007/s10533-012-9751-y
Nakatsuka, S. (2019). Stock Structure of Pacific Bluefin Tuna (Thunnus orientalis) for Management Purposes—A Review of Available Information. Reviews in Fisheries Science & Aquaculture, 28(2), 170-181. https://doi.org/10.1080/23308249.2019.1686455
Nomura, S., Kobayashi, T., Agawa, Y., Margulies, D., Scholey, V., Sawada, Y., & Yagishita, N. (2014). Genetic population structure of the Pacific bluefin tuna Thunnus orientalis and the yellowfin tuna Thunnus albacares in the North Pacific Ocean. Fisheries Science, 80(6), 1193-1204. https://doi.org/10.1007/s12562-014-0789-8
Ohshimo, S., Sato, T., Okochi, Y., Tanaka, S., Ishihara, T., Ashida, H., & Suzuki, N. (2018). Evidence of spawning among Pacific bluefin tuna, Thunnus orientalis, in the Kuroshio and Kuroshio–Oyashio transition area. Aquatic Living Resources, 31. https://doi.org/10.1051/alr/2018022
Ohshimo, S., Tawa, A., Ota, T., Nishimoto, S., Ishihara, T., Watai, M., Satoh, K., Tanabe, T., & Abe, O. (2017). Horizontal distribution and habitat of Pacific bluefin tuna, Thunnus orientalis, larvae in the waters around Japan. Bulletin of Marine Science, 93(3), 769-787. https://doi.org/10.5343/bms.2016.1094
Okochi, Y., Abe, O., Tanaka, S., Ishihara, Y., & Shimizu, A. (2016). Reproductive biology of female Pacific bluefin tuna, Thunnus orientalis, in the Sea of Japan. Fisheries Research, 174, 30-39. https://doi.org/10.1016/j.fishres.2015.08.020
Olsson, I. C., Greenberg, L. A., Bergman, E., & Wysujack, K. (2006). Environmentally induced migration: the importance of food. Ecol Lett, 9(6), 645-651. https://doi.org/10.1111/j.1461-0248.2006.00909.x
Portner, E. J., Snodgrass, O., & Dewar, H. (2022). Pacific bluefin tuna, Thunnus orientalis, exhibits a flexible feeding ecology in the Southern California Bight. PLoS One, 17(8), e0272048. https://doi.org/10.1371/journal.pone.0272048
Rooker, J. R., Fraile, I., Liu, H., Abid, N., Dance, M. A., Itoh, T., Kimoto, A., Tsukahara, Y., Rodriguez-Marin, E., & Arrizabalaga, H. (2019). Wide-Ranging Temporal Variation in Transoceanic Movement and Population Mixing of Bluefin Tuna in the North Atlantic Ocean. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00398
Rooker, J. R., Secor, D. H., De Metrio, G., Schloesser, R., Block, B. A., & Neilson, J. D. (2008). Natal homing and connectivity in Atlantic bluefin tuna populations. Science, 322(5902), 742-744. https://doi.org/10.1126/science.1161473
Rooker, J. R., Wells, R. J. D., Block, B. A., Liu, H., Baumann, H., Chiang, W. C., Sluis, M. Z., Miller, N. R., Mohan, J. A., Ohshimo, S., Tanaka, Y., Dance, M. A., Dewar, H., Snodgrass, O. E., & Shiao, J. C. (2021). Natal origin and age-specific egress of Pacific bluefin tuna from coastal nurseries revealed with geochemical markers. Sci Rep, 11(1), 14216. https://doi.org/10.1038/s41598-021-93298-2
Schaefer, K. M. (2001). Reproductive biology of tunas. Fish physiology, 19, 225-270.
Shiao, J.-C., Hsu, J., Cheng, C.-C., Tsai, W.-Y., Lu, H.-B., Tanaka, Y., & Wang, P.-L. (2021). Contribution rates of different spawning and feeding grounds to adult Pacific bluefin tuna (Thunnus orientalis) in the northwestern Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 169. https://doi.org/10.1016/j.dsr.2020.103453
Shiao, J.-C., Lu, H.-B., Hsu, J., Wang, H.-Y., Chang, S.-K., Huang, M.-Y., Ishihara, T., & Juanes, F. (2017). Changes in size, age, and sex ratio composition of Pacific bluefin tuna (Thunnus orientalis) on the northwestern Pacific Ocean spawning grounds. ICES Journal of Marine Science, 74(1), 204-214. https://doi.org/10.1093/icesjms/fsw142
Shiao, J. C., Wang, S. W., Yokawa, K., Ichinokawa, M., Takeuchi, Y., Chen, Y. G., & Shen, C. C. (2010). Natal origin of Pacific bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition. Marine ecology progress series, 420, 207-219. https://doi.org/10.3354/meps08867
Shimose, T., Aonuma, Y., Tanabe, T., Suzuki, N., & Kanaiwa, M. (2017). Solar and lunar influences on the spawning activity of Pacific bluefin tuna (Thunnus orientalis) in the south‐western North Pacific spawning ground. Fisheries Oceanography, 27(1), 76-84. https://doi.org/10.1111/fog.12235
Solomon, C. T., Weber, P. K., Cech, J., Joseph J, Ingram, B. L., Conrad, M. E., Machavaram, M. V., Pogodina, A. R., & Franklin, R. L. (2006). Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences, 63(1), 79-89.
Tanaka, Y., Satoh, K., Iwahashi, M., & Yamada, H. (2006). Growth-dependent recruitment of Pacific bluefin tuna Thunnus orientalis in the northwestern Pacific Ocean. Marine ecology progress series, 319, 225-235. https://doi.org/10.3354/meps319225
Tanaka, Y., Tawa, A., Ishihara, T., Sawai, E., Nakae, M., Masujima, M., & Kodama, T. (2019). Occurrence of Pacific bluefin tuna Thunnus orientalis larvae off the Pacific coast of Tohoku area, northeastern Japan: Possibility of the discovery of the third spawning ground. Fisheries Oceanography, 29(1), 46-51. https://doi.org/10.1111/fog.12445
Tawa, A., Ishihara, T., Uematsu, Y., Ono, T., & Ohshimo, S. (2017). Evidence of westward transoceanic migration of Pacific bluefin tuna in the Sea of Japan based on stable isotope analysis. Marine Biology, 164(4). https://doi.org/10.1007/s00227-017-3127-8
Trueman, C. N., Artetxe-Arrate, I., Kerr, L. A., Meijers, A. J. S., Rooker, J. R., Sivankutty, R., Arrizabalaga, H., Belmonte, A., Deguara, S., Goni, N., Rodriguez-Marin, E., Dettman, D. L., Santos, M. N., Karakulak, F. S., Tinti, F., Tsukahara, Y., & Fraile, I. (2023). Thermal sensitivity of field metabolic rate predicts differential futures for bluefin tuna juveniles across the Atlantic Ocean. Nat Commun, 14(1), 7379. https://doi.org/10.1038/s41467-023-41930-2
Wang, S. W. (2008). Study of tuna life history by otolith stable carbon and oxygen isotope composition. Master thesis. Institute of Oceanography, National Taiwan University. (in Chinese) https://hdl.handle.net/11296/sv28a3
Watai, M., Hiraoka, Y., Ishihara, T., Yamasaki, I., Ota, T., Ohshimo, S., & Strüssmann, C. A. (2018). Comparative analysis of the early growth history of Pacific bluefin tuna Thunnus orientalis from different spawning grounds. Marine ecology progress series, 607, 207-220. https://doi.org/10.3354/meps12807
Wells, R. J. D., Mohan, J. A., Dewar, H., Rooker, J. R., Tanaka, Y., Snodgrass, O. E., Kohin, S., Miller, N. R., & Ohshimo, S. (2020). Natal origin of Pacific bluefin tuna from the California Current Large Marine Ecosystem. Biol Lett, 16(2), 20190878. https://doi.org/10.1098/rsbl.2019.0878
Ying, Y., Chen, Y., Lin, L., Gao, T., & Quinn, T. (2011). Risks of ignoring fish population spatial structure in fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 68(12), 2101-2120. https://doi.org/10.1139/f2011-116
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94530-
dc.description.abstract太平洋黑鮪是高度洄游性魚種,廣泛分布於東西側太平洋。作為重要經濟漁獲對象,了解其洄游史可以幫助國際漁業一致性的管理策略,以利於族群資源評估。其單一系群的漁業管理,包含不同出生地來源及洄游模式的個體所組成。太平洋黑鮪有兩個主要產卵場海域,分別位在西北太平洋以及日本海,成長至亞成體時期,部分個體採取跨洋洄游至東太平洋攝食場的洄游模式,並稱為洄游型;而其餘依舊居住在西太平洋的個體,則為定居型。因具有複雜的洄游分布與模式,不同成長階段的個體在洄游路徑中受到各國漁業捕撈,但對於太平洋黑鮪的產卵場來源以及跨洋洄游的比例還尚未完全了解。因此,本研究分析了各地捕獲太平洋黑鮪的耳石碳氧穩定性同位素,以評估各海域的出生地來源以及跨洋洄游的比例。穩定性氧同位素結果顯示整體族群以西北太平洋出生地來源為多數(78%),僅有少數為出生日本海的個體(22%),並且東太平洋族群有更高比例是由西北太平洋出生(97%)。此外,碳同位素結果顯示多數個體具有跨洋洄游之行為(90%),突顯東太平洋攝食場對於族群的重要性。本篇研究強調了臺灣東側附近的西北太平洋產卵場是族群數量的重要入添來源,更是東太平洋族群主要的來源。在評估其族群動態及漁撈量時,應考量太平洋黑鮪的不同出生地來源及洄游模式組成,可作為未來參考依據。zh_TW
dc.description.abstractPacific bluefin tuna (Thunnus orientalis, PBF) is a highly migratory species traveling long distances across the Pacific Ocean. As an economically important species, understanding its migratory ecology helps us make fishery management consistently. PBF is managed as a single stock although it has two known spawning grounds in the Western North Pacific Ocean (WNP), and the Sea of Japan (SoJ). During the juvenile stage, PBFs show different migratory patterns. Some PBFs undergo eastward transoceanic migration to the California Current Large Marine Ecosystem (CCLME) called as migrants; others remain in the Western Pacific Ocean as residents. Investigating these migratory behaviors is crucial because PBF is fished by several countries throughout their life stages. However, knowledge about PBF’s movement between spawning grounds and their transoceanic migrations remains limited. To evaluate migratory patterns and natal origins, this study analyzed otolith δ13C and δ18O stable isotope ratios of 157 PBFs caught across various geographic areas. The δ18Ooto analysis indicated that the majority of the whole population originated in the WNP spawning grounds (78%) than in the SoJ (22%). Furthermore, the eastern population had a higher proportion of individuals from the WNP origin (97%). Besides, the δ13C analysis revealed transoceanic migration as the predominance (90%) within the western population. The migratory pattern to the CCLME highlights the importance of these eastern feeding grounds. These findings highlight the significance of the WNP spawning grounds in maintaining the entire population and also contributing to the eastern population. Future evaluations of their population dynamics can consider the population mixing of PBFs from different natal origins and their migratory patterns.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:34:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:34:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
Content vi
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
1.1 Pacific bluefin tuna: ecological and fisheries significance 1
1.2 Life history and population dynamics 2
1.3 Otolith stable carbon and oxygen isotopes analysis in Pacific bluefin tuna research 5
1.4 Research purpose 6
Chapter 2 Materials and methods 8
2.1 Fish otolith collections 8
2.2 Preparation of otoliths and stable isotope analysis 9
2.3 Data analysis and statistics 11
2.3.1 Natal origin 12
2.3.2 Migratory pattern 12
2.3.3 Statistics 13
Chapter 3 Results 15
3.1 Otolith δ13C and δ18O results 15
3.2 Natal origins among catch areas 17
3.3 Migratory patterns in the Western Pacific Ocean 17
3.4 Life stage comparison 18
Chapter 4 Discussion 20
4.1 Population connectivity of Pacific bluefin tuna in the North Pacific Ocean 20
4.2 Importance of the Western North Pacific spawning grounds in stock recruitment 21
4.3 Juvenile Pacific bluefin tuna migration to Eastern Pacific Ocean feeding grounds 24
4.4 Implication and future works 27
Reference 30
Appendix 79
-
dc.language.isoen-
dc.subject太平洋黑鮪zh_TW
dc.subject出生地來源zh_TW
dc.subject洄游zh_TW
dc.subject穩定性同位素zh_TW
dc.subject耳石zh_TW
dc.subjectOtolithen
dc.subjectMigrationen
dc.subjectPacific bluefin tunaen
dc.subjectNatal originen
dc.subjectStable isotope analysisen
dc.title耳石穩定性同位素探討太平洋黑鮪之洄游史zh_TW
dc.titleMigratory ecology of Pacific bluefin tuna (Thunnus orientalis) revealed by otolith stable isotope analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾明宗;謝玉德;王佳惠zh_TW
dc.contributor.oralexamcommitteeMing-Tsung Chung;Yu-Te Hsieh;Chia-Hui Wangen
dc.subject.keyword太平洋黑鮪,耳石,穩定性同位素,洄游,出生地來源,zh_TW
dc.subject.keywordPacific bluefin tuna,Otolith,Stable isotope analysis,Migration,Natal origin,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202404024-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2025-08-01-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved