請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94518完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李昆達 | zh_TW |
| dc.contributor.advisor | Kung-Ta Lee | en |
| dc.contributor.author | 張少筠 | zh_TW |
| dc.contributor.author | Shao-Yun Chang | en |
| dc.date.accessioned | 2024-08-16T16:30:09Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | Ah Hyun Bae, G. K., Geun Hee Seol, Seon Bong Lee, Jeong Min Lee, Wonseok Chang, Sun Seek Min. (2020). Delta- and mu-opioid pathways are involved in the analgesic effect of Ocimum basilicum L in mice. Journal of Ethnopharmacology, 250.
Ahmad Reza Aminian, R. M. a. M. H. B. (2022). TheEffect of OcimumbasilicumL.and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Frontiers in Pharmacology, 12. Anurag Mehrotra, R. S., Mallikarjuna Rao Chamallamudi, Vijay Pal Singh, Jayesh Mudgal. (2011). Ameliorative effect of caffeic acid against inflammatory pain in rodents. European Journal of Pharmacology, 666, 80-86. B.R. Hearn, S. J. S., D.C. Myles. (2007). Microtubule Targeting Agents. Chemistry, Molecular Sciences and Chemical Engineering, 7, 81-110. Chang-Seok Kong, C.-H. J., Jae-Sun Choi, Kil-Jung Kim and Joo-Won Jeong. (2013). Antiangiogenic Effects of P -Coumaric Acid in Human Endothelial Cells. PHYTOTHERAPY RESEARCH, 27. Christoph Wawrosch, S. B. Z. (2021). Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Microbiology and Biotechnology 105, 6649-6668. Dixon, J. B. a. R. A. (2020). Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends in Plant Science, 25(1), 66-79. Eszter Trócsányia, Z. G., Éva Zámboriné-Némethb. (2020). New insights into rosmarinic acid biosynthesis based on molecular studies. Current Plant Biology, 23(100162). Eva Pinho, G. S. M. H. (2015). Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. Journal of Microencapsulation, 32, 804-810. Guillaume Schoch, S. G., Marc Morant, Alain Hehn, Denise Meyer, Pascaline Ullmann, and Danie` le Werck-Reichhart. (2001). CYP98A3 from Arabidopsis thaliana Isa3ⴕ-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway. BIOLOGICAL CHEMISTRY, 276(39), 36566-36574. Iram Siddique, M. A. I. M. A. (2010). In Vitro Adventitious Shoot Regeneration via Indirect Organogenesis from Petiole Explants of Cassia angustifolia Vahl.—a Potential Medicinal Plant. Applied Biochemistry and Biotechnology, 162, 2067-2074. J.A. Kyndt, T. E. M., M.A. Cusanovich, J.J. Van Beeumena. (2002). Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 512(1-3), 240-244. J.A. Kyndta, T. E. M., M.A. Cusanovichb, J.J. Van Beeumena; . (2002). Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 512, 240-244. Jaime Barros, L. E.-T., Luhua Song, Xiaolan Rao, Juan Carlos Serrani-Yarce, Maite Docampo Palacios, Nancy Engle, Feroza K. Choudhury, Timothy J. Tschaplinski, Barney J. Venables, Ron Mittler & Richard A. Dixon. (2019). 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications, 10. Jean-Luc Verdeil, L. A., Nicolas Niemenak and Timothy John Tranbarger. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science, 12(6). Joan Miquel Bernab´e-Orts, A. Q.-R., Marta Vazquez-Vilar, Javier Manche˜no-Bonillo, Victor Moles-Casas, Sara Selma, Silvia Gianoglio, Antonio Granell and Diego Orzaez. (2020). A memory switch for plant synthetic biology based on the phage ϕC31 integration system. Nucleic Acids Research, 48(6), 3379-3394. Jonas De Saeger, J. P., Hoo Sun Chung, Jean-Pierre Hernalsteens, Mieke Van Lijsebettens, Dirk Inz´e, Marc Van Montagu and Stephen Depuydt (2021). Agrobacterium strains and strain improvement: Present and outlook. Biotechnology Advances, 53. Kehan Pei, J. O., Junqing Huang and Shiyi Ou. (2016). p-Coumaric acid and its conjugates: dietarysources, pharmacokinetic propertiesand biological activities. Journal of the Science of Food and Agriculture, 96(9). Kevin T Watts, P. C. L., Claudia Schmidt-Dannert. (2004). Exploring Recombinant Flavonoid Biosynthesis in Metabolically Engineered Escherichia coli. ChemBioChem, 5(4), 397-554. Kevin T. Watts, B. N. M., Pyung Cheon Lee, Andrew J. Manning, Claudia Schmidt-Dannert. (2006). Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chemistry & Biology, 13(12), 1317-1326. Lei Qin, C. L., Dongbin Li, Jiayan Wang, Li Yang, Aili Qu, and Qingfei Wu. (2022). Physiological, Metabolic and Transcriptional Responses of Basil (Ocimum basilicumLinn. var. pilosum (Willd.) Benth.) toHeat Stress. Agronomy, 12. Momoko Ikeuchi, Y. O., Akira Iwase, Keiko Sugimoto. (2016). Plant regeneration: cellular origins and molecular mechanisms. The Company of Biologists, 143(9). Morteza Yousefzadi, M. S., Mehrdad Behmanesh, Elisabeth Moyano, Mercedis Bonfill, Rosa M. Cusido, Javier Palazon. (2010). Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Engineering in Life Sciences, 10, 281-292. Nester, E. W. (2014). Agrobacterium: nature’s genetic engineer. Frontiers in Plant Science, 5. Noemi Gutierrez-Valdes, S. T. H., Camille Lemasson, Marina Guillet, Kirsi-Marja Oksman-Caldentey, Anneli Ritala and Florian Cardon. (2020). Hairy Root Cultures—A Versatile Tool With Multiple Applications. Frontiers in Plant Science, 11. Paula Scanavez Ferreira, F. D. V., Bruno Fonseca-Santos, Marlus Chorilli. (2018). A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices. Analytical Chemistry, 49, 21-31. Qingquan Liu, L. L. a. L. Z. (2018). Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences, 19(2). Ramaraj Sathasivam, M. C., Ramalingam Radhakrishnan, Haejin Kwon, Jiwon Yoon, So Hwi Yang, Jae Kwang Kim, Yong Suk Chung and Sang Un Park. (2022). Effects of various Agrobacterium rhizogenes strains on hairy root induction and analyses of primary and secondary metabolites in Ocimum basilicum. Frontiers in Plant Science, 13. Ruben Vanholme, V. S., Bartel Vanholme, Lisa Sundin, Jørgen Holst Christensen, Geert Goeminne, Claire Halpin, Antje Rohde, Kris Morreel, Wout Boerjan. (2012). A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24(9), 3506-3529. Ruth Ladenstein, U. P., Andrew D J Pearson, Penelope Brock, Roberto Luksch, Victoria Castel, Isaac Yaniv, Vassilios Papadakis, Geneviève Laureys, Josef Malis, Walentyna Balwierz, Ellen Ruud, Per Kogner, Henrik Schroeder, Ana Forjaz de Lacerda, Maja Beck-Popovic, Pavel Bician, Miklós Garami, Toby Trahair, Adela Canete, Peter F Ambros, Keith Holmes, Mark Gaze, Günter Schreier, Alberto Garaventa, Gilles Vassal, Jean Michon, Dominique Valteau-Couanet, for the SIOP Europe Neuroblastoma Group. (2017). Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. The Lancet Oncology, 18, 500-514. S. Ramachandra Rao, G. A. R. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101-153. Sandeep Kumar Verma, G. S., Ashok Kumar Das & Ekrem Gurel (2016). In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulfate. In Vitro Cellular & Developmental Biology, 52, 20-27. Sara Motyka, K. J., Halina Ekiert, Javad Sharifi-Rad, Daniela Calina, Basem Al-Omari, Agnieszka Szopa, William C. Cho. (2023). Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomedicine & Pharmacotherapy, 158. Shinya Hagihara, R. Y., Kenichiro Itami, Keiko U Torii. (2019). Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Current Opinion in Plant Biology, 47, 32-37. Simon, W. B. P. a. J. E. (1998). Anthocyanin Inheritance and Instability in Purple Basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 46, 1734-1738. Siyu Shen, Y. T., Yunfeng Luo,a Luqi Huang and Wei Gao. (2022). Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Natural Product Reports, 39. Wei Ying, G. W., Wenyuan Xu, Wona Ding, Luqing Zheng,Yi He, Daoliang Yan, Fuqiang Cui, Haixia Liu, Huwei Yuan, Jianqin Huang, Bingsong Zheng and Xiaofei Wang. (2023). Agrobacterium rhizogenes: paving the road to research and breeding for woody plants. Frontiers in Plant Science, 14. Wout Boerjan, J. R., Marie Baucher. (2003). LIGNIN BIOSYNTHESIS. Annual Review of Plant Biology, 54, 519-546. Yan, Y. L. a. Y. (2012). Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories 11. Yasutaka Nishiyama, C.-S. Y., Fumio Matsuda, Tadamasa Sasaki, Kazuki Saito and Yuzuru Tozawa. (2010). Expression of bacterial tyrosine ammonia-lyase creates a novel p-coumaric acid pathway in the biosynthesis of phenylpropanoids in Arabidopsis. Planta, 232, 209-218. Young Ha Kim, T. K., Hee Jung Yang, Wanyeon Kim, HyeSook Youn, Ji Young Lee, BuHyun Youn. (2011). Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein. Protein Expression and Purification, 79, 149-155. Zhanyou Xu, D. Z., Jun Hu, Xin Zhou, Xia Ye, Kristen L Reichel, Nathan R Stewart, Ryan D Syrenne, Xiaohan Yang, Peng Gao, Weibing Shi, Crissa Doeppke, Robert W Sykes, Jason N Burris, Joseph J Bozell, Max Zong-Ming Cheng, Douglas G Hayes, Nicole Labbe, Mark Davis, C Neal Stewart Jr & Joshua S Yuan. (2009). Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinformatics, 10. Zhixiong Xue, M. M., Keith Cantera, F Sima Sariaslani, Lixuan Huang. (2007). Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. Industrial Microbiology and Biotechnology, 34(9), 599-604. Zinnia Shah, U. F. G., Iffat Jamshed, Aamir Mushtaq, Hamid Mukhtar, Muhammad Zia-UI-Haq, Sebastian Ionut Toma, Rosana Manea, Marius Moga, and Bianca Popovici4. (2021). Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules, 11(4). 李孟庭. (2021). 羅勒毛狀根中迷迭香酸合成酶之 RNAi 基因沉默之研究. 國立臺灣大學生命科學院生化科技學系 碩士論文, 1-59. 蔣尚伶. (2022). 八角蓮的松脂醇-落葉松樹脂醇還原酶於菸草葉片與羅勒毛狀根表現之研究. 國立臺灣大學生命科學院生化科技學系 碩士論文, 1-73. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94518 | - |
| dc.description.abstract | 鬼臼素是從鬼臼屬植物中分離出的芳基四氫化木脂素 (aryltetralin-type lignan),其生合成路徑是從苯丙胺酸 (phenylalanine) 開始,經過多個酵素反應後可合成松柏醇 (coniferyl alcohol),依序再經過多種酵素合成鬼臼素。鬼臼素在植物中含量不高,且複雜的化學結構使它不容易以化學方法合成。已知松柏醇為鬼臼素生合成路徑之重要中間產物,過去實驗室建構RASi質體做為RAS基因下調突變株,獲得迷迭香酸路徑上代謝物改變的結果。本研究希望在此基礎上透過代謝工程技術大量表現外源性基因酪胺酸解氨酶 (tyrosine ammonia-lyase, TAL) 使累積的迷迭香酸前驅物酪胺酸 (tyrosine) 生合成香豆酸 (coumaric acid),隨後透過轉入外源性4-香豆酸酯3-羥化酶 (4-coumarate 3-hydroxylase, C3H),使香豆酸轉變為咖啡酸 (caffeic acid),期望能透過木質素生合成途徑使咖啡酸轉為松柏醇,並於羅勒中建立完整之鬼臼素代謝路徑。經由HPLC分析羅勒毛狀根中次級代謝物含量得知,當只轉形TAL基因 (TAL) 與同時轉形TAL及C3H兩個基因 (TCR) 之毛狀根與野生型毛狀根 (WT) 相比,香豆酸的含量分別提升了9.28%與30.38%;與只轉形pRASi之毛狀根 (RASi) 相比則分別增加17.19%與39.82%。而在只轉形C3H基因 (C3H) 和TCR,與WT相比其咖啡酸的含量則分別提升了83.63%與113.23.62%;與RASi比較也提升了89.74%與121.68%。此外,在羅勒毛狀根再生 (regeneration) 試驗中,嘗試以添加不同濃度比例生長激素 (auxin) 與細胞分裂素 (cytokinin) 之培養基,透過先將毛狀根組織誘導成癒傷組織,發現較適合添加之濃度比例,未來希望從癒傷組織直接進行出芽生長 (shooting) 後再生為完整植株,以用於後續的毛狀根誘導。 | zh_TW |
| dc.description.abstract | Podophyllotoxin is an aryltetralin-type lignan isolated from plants of the genus Podophyllum. Its biosynthetic pathway begins with phenylalanine, which is converted into coniferyl alcohol through several enzymatic reactions, followed by further enzymatic transformations to produce podophyllotoxin. Podophyllotoxin is present in low concentrations in plants, and its complex chemical structure renders chemical synthesis challenging. Coniferyl alcohol is known to be a crucial intermediate in the biosynthetic pathway of podophyllotoxin. Previous laboratory research has attempted to block the rosmarinic acid metabolic pathway using RNAi technology (RASi). Building on this, our study aims to employ metabolic engineering to overexpress the exogenous gene tyrosine ammonia-lyase (TAL) to convert the accumulated tyrosine, a precursor of rosmarinic acid, into p-coumaric acid. Subsequently, by introducing the exogenous gene 4-coumarate 3-hydroxylase (C3H), p-coumaric acid is converted into caffeic acid. The ultimate goal is to utilize the lignin biosynthesis pathway to convert caffeic acid into coniferyl alcohol, thereby establishing a complete biosynthetic pathway for podophyllotoxin in basil. HPLC analysis of secondary metabolite content in basil hairy roots revealed that the content of p-coumaric acid increased by 9.28% and 30.38% in hairy roots transformed with TAL alone (TAL) and with both TAL and C3H genes (TCR), respectively, compared to wild-type hairy roots (WT). Compared to hairy roots transformed with RASi alone (RASi), the increases were 17.19% and 39.82%, respectively. Similarly, the content of caffeic acid increased by 83.63% and 113.23% in hairy roots transformed with C3H alone (C3H) and TCR, respectively, compared to WT, and by 89.74% and 121.68% compared to RASi. Additionally, in the basil hairy root regeneration experiment, we attempted to induce callus formation from hairy root tissues using media supplemented with various concentrations of auxin and cytokinin. The optimal concentration ratio was determined, and the potential to regenerate complete plants from callus tissue was demonstrated, which could be utilized for subsequent hairy root induction experiments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:30:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:30:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 ………………………………………………………………………..i 摘要 ……………………………………………………………………….ii Abstract iii Abbreviation v 第一章 前言 - 1 - 1.1 根毛農桿菌 (Agrobacterium rhizogenes) - 1 - 1.2 毛狀根 (Hairy roots) - 2 - 1.3 鬼臼素 (Podophyllotoxin) - 2 - 1.4 木質素 (Lignin) - 5 - 1.5 羅勒 (Ocimum basilicum) - 5 - 1.6 酪氨酸氨裂合酶 (Tyrosine Ammonia-Lyases, TAL) - 6 - 1.7 對香豆酸3-羥化酶 (p-coumarate 3-hydroxylase, C3H) - 7 - 1.8 植物再生 (Plant regeneration) - 8 - 1.9 目的 - 8 - 第二章 材料與方法 11 2.1 植物材料之準備 11 2.1.1無菌羅勒植株之建立 11 2.1.2羅勒毛狀根之誘導 11 2.1.3毛狀根確認 12 2.2 DNA與RNA 12 2.2.1製備阿拉伯芥之RNA 12 2.2.2製備光合細菌Rhodobacter sphaeroides之DNA 13 2.2.3製備阿拉伯芥DNA 13 2.2.4反轉錄PCR (Reverse transcription-PCR, RT-PCR) 13 2.2.5 聚合酶鏈反應產物DNA片段純化 14 2.2.6 DNA與RNA定量 14 2.2.7農桿菌 (LBA4404 & ATCC15834) 勝任細胞之製備 14 2.3 TAL與C3H表現質體之建構 15 2.3.1 TAL基因之選殖與建構 15 2.3.2 C3H基因之選殖與建構 15 2.3.3大腸桿菌 (Escherichia coli, E. coli) 以DNA黏合酶 (ligase) 黏合之質體轉形 16 2.3.4農桿菌轉形 16 2.4 蛋白質表現與分析 17 2.4.1菸草瞬時基因表現試驗 (transient expression) 17 2.4.2蛋白質粗萃取 17 2.5 代謝物萃取與分析 17 2.5.1香豆酸 (Coumaric acid) 與咖啡酸 (Caffeic acid) 之萃取 17 2.5.2高效能液相層析儀 (High Performance Liquid Chromatography, HPLC) 18 2.6 羅勒植株之再生 18 第三章 結果 19 3.1 TAL與C3H質體之建構 19 3.2 菸草瞬時基因表現試驗 20 3.3 蛋白質表現與分析 20 3.4 代謝物香豆酸與咖啡酸之分析 21 3.5 羅勒植株再生試驗 22 第四章 討論 23 4.1 在植物中轉入TAL基因對植物代謝路徑之影響 23 4.2 蛋白質表現 23 4.3 載體建構 24 4.4 植物再生 24 4.5 未來應用 24 第五章 結論 26 Reference 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 羅勒 | zh_TW |
| dc.subject | 毛狀根 | zh_TW |
| dc.subject | 酪胺酸解氨酶 | zh_TW |
| dc.subject | 代謝工程 | zh_TW |
| dc.subject | 4-香豆酸酯3-羥化酶 | zh_TW |
| dc.subject | Ocimum basilicum | en |
| dc.subject | 4-coumarate 3-hydroxylase (C3H) | en |
| dc.subject | tyrosine ammonia-lyase (TAL) | en |
| dc.subject | metabolic engineering | en |
| dc.subject | hairy roots | en |
| dc.title | 羅勒毛狀根之苯丙烷路徑代謝工程改造之研究 | zh_TW |
| dc.title | Metabolic Engineering of thePhenylpropanoid pathway in Ocimum basilicum Hairy Roots | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊健志;劉啟德;賴爾珉 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chih Yang;Chi-Te Liu;Erh-Min Lai | en |
| dc.subject.keyword | 羅勒,代謝工程,酪胺酸解氨酶,4-香豆酸酯3-羥化酶,毛狀根, | zh_TW |
| dc.subject.keyword | Ocimum basilicum,metabolic engineering,tyrosine ammonia-lyase (TAL),4-coumarate 3-hydroxylase (C3H),hairy roots, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202402571 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2029-05-26 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 8.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
