請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94505完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王立昇 | zh_TW |
| dc.contributor.advisor | Li-Sheng Wang | en |
| dc.contributor.author | 葉乃綸 | zh_TW |
| dc.contributor.author | Nai-Lun Yeh | en |
| dc.date.accessioned | 2024-08-16T16:25:32Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1]Ackermann, J., Bartlett, A., Kaesbauer, D., Sienel, W., & Steinhauser, R. (1993). Robust Control: Systems with Uncertain Physical Parameters. Springer London.
[2]Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische mathematik, 1(1), pp.269–271. [3]Fiorini, P., & Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles. The international journal of robotics research, 17(7), 760-772. [4]Gordon, W. J., & Riesenfeld, R. F. (1974). B-spline curves and surfaces. In Computer aided geometric design (pp. 95-126). Academic Press. [5]Hart, P., Nilsson, N. & Raphael, B., (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), pp.100–107. [6]Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7), 846-894. [7]Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Automation, 12(4), 566-580. [8]SUN, X., YEOH, W., & KOENIG, S. (2010). Moving target D* lite. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1. p. 67-74. [9]鄭臣凱,“無人載具之避障路徑規劃及智能控制設計”,國立台灣大學應用力學所碩士論文,中華民國一百一十一年七月. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94505 | - |
| dc.description.abstract | 本研究旨在透過阿克曼轉向幾何(Ackermann steering geometry)模型找到能夠成功閃避載具航行路徑上障礙物的臨界轉彎點位置,並將其概念引入現有的避障方法中。傳統的A*演算法雖能生成地圖中的最短路徑,但該路徑僅存在位置資訊,並未考慮載具所受之非完整約束,因此載具追蹤其生成軌跡行駛轉彎時仍存在碰撞風險。本研究的目標為調整A*演算法與速度障區法,透過載具與障礙物的位置、姿態等訊息,找到載具在符合阿克曼轉向模型之非完整約束條件下,恰能成功閃避障礙物的轉彎點位置,並將其運用於動態調整障礙物半徑,使得載具航行生成路徑時,不因轉向限制存在碰撞風險。 | zh_TW |
| dc.description.abstract | This study aims to identify the critical turning positions that enable a vehicle to successfully avoid obstacles in its path by using the Ackermann steering geometry model and to incorporate this concept into existing obstacle avoidance methods. While the traditional A* algorithm can generate the shortest path on a map, this path only includes positional information and does not consider the nonholonomic constraints imposed on the vehicle. Consequently, there remains a risk of collision when the vehicle follows this path through turns. The goal of this study is to adjust the A* algorithm and the Velocity Obstacle (VO) method by using the position and orientation information of both the vehicle and obstacles. This will help in identifying the turning positions that allow the vehicle to avoid obstacles while adhering to the nonholonomic constraints of the Ackermann steering model. Additionally, the approach dynamically adjusts the obstacle radius to ensure that the vehicle-generated path does not pose a collision risk due to steering limitations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:25:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:25:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vii 表次 x 第一章 緒論 1 1.1 前言與研究動機 1 1.2 文獻回顧 2 1.3 研究內容與成果 2 1.4 論文架構 3 第二章 無人載具避障演算法 4 2.1 A*路徑規劃演算法 4 2.1.1 A*路徑規劃演算法介紹 4 2.1.2 A*路徑規劃演算法流程 4 2.2 速度障區 7 第三章 符合阿克曼轉向汽車之臨界轉彎點與避障策略 10 3.1 符合阿克曼轉向汽車之臨界轉彎點 10 3.1.1 阿克曼單車模型 10 3.1.2 透過阿克曼單車模型求得安全轉彎距離 11 3.1.3 阿克曼單車運動學模型 14 3.1.4 載具鄰界轉彎點 16 3.2 符合阿克曼轉向汽車之避障策略 19 3.2.1 靜態避障策略之調整 19 3.2.2 動態避障策略之調整 21 第四章 硬體設備與系統介紹 23 4.1 實驗設備 23 4.1.1 無人載具 23 4.1.2 網路攝影機 26 4.1.3 工作站主機與使用軟體 27 4.2 控制系統 28 4.2.1 模糊控制理論 28 4.2.2 隸屬函數 29 4.2.3 模糊規則庫 31 4.3 系統整合 31 第五章 模擬與實驗結果 32 5.1 模擬結果 32 5.1.1 靜態避障模擬結果 32 5.1.2 動態避障模擬結果 39 5.2 實驗結果 41 5.3 實驗結果討論 49 第六章 結論與未來方向 50 參考文獻 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 臨界轉彎 | zh_TW |
| dc.subject | A*路徑規劃演算法 | zh_TW |
| dc.subject | 速度障區法 | zh_TW |
| dc.subject | 阿克曼轉向幾何 | zh_TW |
| dc.subject | 模糊控制 | zh_TW |
| dc.subject | A* algorithm | en |
| dc.subject | Critical turning position | en |
| dc.subject | Fuzzy control | en |
| dc.subject | Ackermann steering geometry | en |
| dc.subject | Velocity Obstacle | en |
| dc.title | 符合阿克曼轉向模型之汽車避障策略 | zh_TW |
| dc.title | The Obstacle Avoidance Strategy of Automobiles Satisfying Ackermann Steering Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張帆人;王和盛 | zh_TW |
| dc.contributor.oralexamcommittee | Fan-Ren Chang;He-Sheng Wang | en |
| dc.subject.keyword | 臨界轉彎,A*路徑規劃演算法,速度障區法,阿克曼轉向幾何,模糊控制, | zh_TW |
| dc.subject.keyword | Critical turning position,A* algorithm,Velocity Obstacle,Ackermann steering geometry,Fuzzy control, | en |
| dc.relation.page | 51 | - |
| dc.identifier.doi | 10.6342/NTU202404240 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
