請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94503完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游文岳 | zh_TW |
| dc.contributor.advisor | Wen-Yueh Yu | en |
| dc.contributor.author | 李嘉欣 | zh_TW |
| dc.contributor.author | Chia-Shin Lee | en |
| dc.date.accessioned | 2024-08-16T16:24:30Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | [1]M. Kampa, E. Castanas, Human health effects of air pollution, Environmental Pollution, 151 (2008) 362-367. https://doi.org/10.1016/j.envpol.2007.06.012
[2]W. de Vries, Impacts of nitrogen emissions on ecosystems and human health: A mini review, Current Opinion in Environmental Science & Health, 21 (2021). https://doi.org/10.1016/j.coesh.2021.100249 [3]K. Skalska, J.S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Science of the Total Environment, 408 (2010) 3976-3989. https://doi.org/10.1016/j.scitotenv.2010.06.001 [4]Emissions database for global atmospheric research - air and pollutants. https://doi.org/https://edgar.jrc.ec.europa.eu/air_pollutants [5]R.G. Derwent, Hertel, O., Transformation of air pollutants, Urban Air Pollution — European Aspects. Environmental Pollution, 1 (1998). [6]R. Atkinson, Atmospheric chemistry of VOCs and NOx, Atmospheric Environment, 34 (2000) 2063-2101. https://doi.org/10.1016/S1352-2310(99)00460-4 [7]R.A. Goyer, J. Bachmann, T.W. Clarkson, J. Ferris, Benjamin G. , J. Graham, P. Mushak, D.P. Perl, D.P. Rall, R. Schlesinger, W. Sharpe, J.M. Wood, Potential human health effects of acid rain: Report of a workshop, Environmental Health Perspectives, 60 (1985) 355-368. https://doi.org/https://doi.org/10.1289/ehp.8560355 [8]R.G. Derwent, O. Hertel, Transformation of air pollutants, Urban Air Pollution—European Aspects, Springer1998, pp. 137-159. https://doi.org/10.1007/978-94-015-9080-8_8 [9]F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the nitrogen oxides reduction from flue gas: A review, Science of the Total Environment, 714 (2020) 136712. https://doi.org/10.1016/j.scitotenv.2020.136712 [10]R.K. Nick D. Hutson, Ravi K. Srivastava, Simultaneous removal of SO2, NOx, and Hg from coal flue gas using a NaClO2-enhanced wet scrubber, Industrial & Engineering Chemistry Research, 47 (2008) 5825-5831. https://doi.org/10.1021/ie800339p [11]B.R. Deshwal, S.H. Lee, J.H. Jung, B.H. Shon, H.K. Lee, Study on the removal of NOx from simulated flue gas using acidic NaClO2 solution, Journal of Environmental Sciences, 20 (2008) 33-38. https://doi.org/10.1016/s1001-0742(08)60004-2 [12]H. Chu, T.W. Chien, S.Y. Li, Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions, The Science of the Total Enironment, 275 (2001) 127-135. https://doi.org/10.1016/S0048-9697(00)00860-3 [13]P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, Z. Chen, Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution, Chemical Engineering Journal, 168 (2011) 52-59. https://doi.org/10.1016/j.cej.2010.12.030 [14]A.A. Abdulrasheed, A.A. Jalil, S. Triwahyono, M.A.A. Zaini, Y. Gambo, M. Ibrahim, Surface modification of activated carbon for adsorption of SO2 and NOx: A review of existing and emerging technologies, Renewable and Sustainable Energy Reviews, 94 (2018) 1067-1085. https://doi.org/10.1016/j.rser.2018.07.011 [15]D. Damma, P. Ettireddy, B. Reddy, P. Smirniotis, A review of low temperature NH3-SCR for removal of NOx, Catalysts, 9 (2019). https://doi.org/10.3390/catal9040349 [16]B. Ye, B. Jeong, M.J. Lee, T.H. Kim, S.S. Park, J. Jung, S. Lee, H.D. Kim, Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources, Nano Converg, 9 (2022) 51. https://doi.org/10.1186/s40580-022-00341-7 [17]K. Zhao, X. Sun, C. Wang, X. Song, F. Wang, K. Li, P. Ning, Supported catalysts for simultaneous removal of SO2, NOx, and Hg0 from industrial exhaust gases: A review, Chinese Chemical Letters, 32 (2021) 2963-2974. https://doi.org/10.1016/j.cclet.2021.03.023 [18]L. Han, S. Cai, M. Gao, J.Y. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chemical Reviews, 119 (2019) 10916-10976. https://doi.org/10.1021/acs.chemrev.9b00202 [19]Y. Yang, J. Liu, F. Liu, Z. Wang, J. Ding, H. Huang, Reaction mechanism for NH3-SCR of NOx over CuMn2O4 catalyst, Chemical Engineering Journal, 361 (2019) 578-587. https://doi.org/10.1016/j.cej.2018.12.103 [20]E. Kondratenko, V. Kondratenko, M. Richter, R. Fricke, Influence of O2 and H2 on NO reduction by NH3 over Ag/Al2O3: A transient isotopic approach, Journal of Catalysis, 239 (2006) 23-33. https://doi.org/10.1016/j.jcat.2006.01.008 [21]Z. Hu, R.T. Yang, 110th anniversary: Recent progress and future challenges in selective catalytic reduction of NO by H2 in the presence of O2, Industrial & Engineering Chemistry Research, 58 (2019) 10140-10153. https://doi.org/10.1021/acs.iecr.9b01843 [22]S. Li, F. Wang, D. Ng, B. Shen, Z. Xie, Stability challenges and prospects for the industrial application of non‐noble catalysts for selective catalytic reduction of NOx by CO (CO‐SCR), ChemCatChem, 16 (2024). https://doi.org/10.1002/cctc.202301246 [23]P. Granger, F. Dhainaut, S. Pietrzik, P. Malfoy, A.S. Mamede, L. Leclercq, G. Leclercq, An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions, Topics in Catalysis, 39 (2006) 65-76. https://doi.org/10.1007/s11244-006-0039-0 [24]Y. Nanba, M. Koyama, NO adsorption on 4d and 5d transition-metal (Rh, Pd, Ag, Ir, and Pt) nanoparticles: Density functional theory study and supervised learning, The Journal of Physical Chemistry C, 123 (2019) 28114-28122. https://doi.org/10.1021/acs.jpcc.9b05748 [25]W. Mannstadt, A. Freeman, Dynamical and geometrical aspects of NO chemisorption on transition metals: Rh, Pd, and Pt, Physical Review B, 55 (1997) 13298. https://doi.org/10.1103/PhysRevB.55.13298 [26]H. Falsig, T. Bligaard, C.H. Christensen, J.K. Nørskov, Direct NO decomposition over stepped transition-metal surfaces, Pure and Applied Chemistry, 79 (2007) 1895-1903. https://doi.org/10.1351/pac200779111895 [27]K. Thirunavukkarasu, K. Thirumoorthy, J. Libuda, C.S. Gopinath, Isothermal kinetic study of nitric oxide adsorption and decomposition on Pd (111) surfaces: Molecular beam experiments, The Journal of Physical Chemistry B, 109 (2005) 13283-13290. https://doi.org/10.1021/jp050813f [28]M. Valden, J. Aaltonen, E. Kuusisto, M. Pessa, C. Barnes, Molecular beam studies of CO oxidation and CO-NO reactions on a supported Pd catalyst, Surface science, 307 (1994) 193-198. https://doi.org/10.1016/0039-6028(94)90393-X [29]K. Thirunavukkarasu, K. Thirumoorthy, J. Libuda, C.S. Gopinath, A molecular beam study of the NO+ CO reaction on Pd(111) surfaces, The Journal of Physical Chemistry B, 109 (2005) 13272-13282. https://doi.org/10.1021/jp050478v [30]J. Libuda, H.J. Freund, Molecular beam experiments on model catalysts, Surface Science Reports, 57 (2005) 157-298. https://doi.org/10.1016/j.surfrep.2005.03.002 [31]N. Macleod, R. Cropley, R.M. Lambert, Efficient reduction of NOx by H2 under oxygen-rich conditions over Pd/TiO2 catalysts: An in situ DRIFTS study, Catalysis letters, 86 (2003) 69-75. https://doi.org/10.1023/A:1022611109139 [32]D. Zhang, C. Jin, H. Tian, Y. Xiong, H. Zhang, P. Qiao, J. Fan, Z. Zhang, Z.Y. Li, J. Li, An In situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation, Nanoscale, 9 (2017) 6327-6333. https://doi.org/10.1039/c6nr08763a [33]M. Brun, A. Berthet, J. Bertolini, XPS, AES and Auger parameter of Pd and PdO, Journal of electron spectroscopy and related phenomena, 104 (1999) 55-60. https://doi.org/10.1016/S0368-2048(98)00312-0 [34]J. Watson, Adsorption characteristics of sol-gel Gd–Pd/TiO2 catalysts in reduction of nitric oxide with CH4: DRIFTS and TPD, Journal of Catalysis, 210 (2002) 295-312. https://doi.org/10.1006/jcat.2002.3675 [35]Y. Zhu, J. Wang, C. Wang, J. Wang, G. Shen, M. Shen, Ultra-stable Pd ions at Al T1/T2 sites on a dealuminated Pd/beta passive NOx adsorber, Catalysis Science & Technology, 13 (2023) 3403-3415. https://doi.org/10.1039/d3cy00430a [36]K. Almusaiteer, S.S. Chuang, Dynamic behavior of adsorbed NO and CO under transient conditions on Pd/Al2O3, Journal of Catalysis, 184 (1999) 189-201. https://doi.org/10.1006/jcat.1999.2417 [37]S. Xu, Y. Zhang, C. Hardacre, Z. Liu, Enhanced catalytic activity of Pd supported on TiO2 nanowire for the H2-SCR of NOx in the presence of oxygen, ACS Sustainable Chemistry & Engineering, 11 (2023) 10453-10461. https://doi.org/10.1021/acssuschemeng.3c01864 [38]X. Yuan, X. Wang, X. Liu, H. Ge, G. Yin, C. Dong, F. Huang, Ti3+-promoted high oxygen-reduction activity of Pd nanodots supported by black titania nanobelts, ACS Appl Mater Interfaces, 8 (2016) 27654-27660. https://doi.org/10.1021/acsami.6b07062 [39]W. Zhao, K. Zhang, L. Wu, Q. Wang, D. Shang, Q. Zhong, Ti3+ doped V2O5/TiO2 catalyst for efficient selective catalytic reduction of NOx with NH3, Journal of Colloid and Interface Science, 581 (2021) 76-83. https://doi.org/10.1016/j.jcis.2020.07.131 [40]X. Fang, Y. Liu, W. Cen, Y. Cheng, Birnessite as a highly efficient catalyst for low-temperature NH3-SCR: The vital role of surface oxygen vacancies, Industrial & Engineering Chemistry Research, 59 (2020) 14606-14615. https://doi.org/10.1021/acs.iecr.0c00188 [41]Z. Savva, K.C. Petallidou, C.M. Damaskinos, G.G. Olympiou, V.N. Stathopoulos, A.M. Efstathiou, H2-SCR of NOx on low-SSA CeO2-supported Pd: The effect of Pd particle size, Applied Catalysis A: General, 615 (2021) 118062. https://doi.org/10.1016/j.apcata.2021.118062 [42]R. Sharpe, M. Bowker, The adsorption and decomposition of NO on Pd(110), Surface science, 360 (1996) 21-30. https://doi.org/10.1016/0039-6028(96)00604-8 [43]H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: A TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225 (2004) 267-277. https://doi.org/10.1016/j.jcat.2004.04.006 [44]R. Ramsier, Q. Gao, H.N. Waltenburg, K.-W. Lee, O. Nooij, L. Lefferts, J. Yates Jr, NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study, Surface science, 320 (1994) 209-237. https://doi.org/10.1016/0039-6028(94)90310-7 [45]B. Hammer, The NO+CO reaction catalyzed by flat, stepped, and edged Pd surfaces, Journal of Catalysis, 199 (2001) 171-176. https://doi.org/10.1006/jcat.2000.3147 [46]L. Li, Q. shen, J. Cheng, Z. Hao, Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra, Catalysis Today, 158 (2010) 361-369. https://doi.org/10.1016/j.cattod.2010.04.038 [47]L. Qiu, D. Pang, C. Zhang, J. Meng, R. Zhu, F. Ouyang, In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3, Applied Surface Science, 357 (2015) 189-196. https://doi.org/10.1016/j.apsusc.2015.08.259 [48]R.V. Mikhaylov, A.A. Lisachenko, B.N. Shelimov, V.B. Kazansky, G. Martra, S. Coluccia, FTIR and TPD study of the room temperature interaction of a NO–oxygen mixture and of NO2 with titanium dioxide, The Journal of Physical Chemistry C, 117 (2013) 10345-10352. https://doi.org/10.1021/jp311593s [49]J. Wu, Y. Cheng, In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation, Journal of Catalysis, 237 (2006) 393-404. https://doi.org/10.1016/j.jcat.2005.11.023 [50]Y. Hamid, R. Matarrese, S. Morandi, L. Castoldi, L. Lietti, Pd-doped SSZ-13 for low-T NOx adsorption: An operando FT-IR spectroscopy study, Topics in Catalysis, 66 (2022) 750-760. https://doi.org/10.1007/s11244-022-01737-9 [51]Norman Macleod, Rachael Cropley, R.M. Lambert, Efficient reduction of NOx by H2 under oxygen-rich conditions overPd/TiO2 catalysts: An in situ DRIFTS study, Catalysis Letters, 86 (2003) 69-75. https://doi.org/10.1023/A:1022611109139 [52]R. Zhang, D. Shuai, K.A. Guy, J.R. Shapley, T.J. Strathmann, C.J. Werth, Elucidation of nitrate reduction mechanisms on a Pd‐In bimetallic catalyst using isotope labeled nitrogen species, ChemCatChem, 5 (2012) 313-321. https://doi.org/10.1002/cctc.201200457 [53]A.M. de Oliveira, I. Costilla, C. Gigola, I.M. Baibich, V.T. da Silva, S.B. Castellã Pergher, Characterization of Pd-mordenite catalysts for NO decomposition, Catalysis Letters, 136 (2010) 185-191. https://doi.org/10.1007/s10562-010-0323-2 [54]Z. Say, M. Dogac, E.I. Vovk, Y.E. Kalay, C.H. Kim, W. Li, E. Ozensoy, Palladium doped perovskite-based NO oxidation catalysts: The role of Pd and B-sites for NOx adsorption behavior via in-situ spectroscopy, Applied Catalysis B: Environmental, 154-155 (2014) 51-61. https://doi.org/10.1016/j.apcatb.2014.01.038 [55]Y. Liang, C. Ou, H. Zhang, X. Ding, M. Zhao, J. Wang, Y. Chen, Advanced insight into the size effect of PtPd nanoparticles on NO oxidation by in-situ FTIR spectra, Industrial & Engineering Chemistry Research, 57 (2018) 3887-3897. https://doi.org/10.1021/acs.iecr.7b05316 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94503 | - |
| dc.description.abstract | 選擇性催化還原反應(selective catalytic reduction, SCR)被認為是一個有效降低氮氧化物(NOx)的技術,在以氫氣(H¬2)及為還原劑的反應中,科學家們紛紛提出一氧化氮(NO)的解離為反應之速率決定步驟(rate determining step)。在過去的研究中,大多利用分子束(molecular beam)研究NO於金屬上的吸脫附與解離現象,因此我們希望利用脈衝實驗模擬分子束實驗,以探討NO於觸媒的表面化學。
本研究中我們利用二氧化鈦(TiO2)作為擔體,以沉積沉澱法(deposition-precipitation method)擔載0.5%的鈀(Pd)合成0.5Pd/TiO2觸媒,探討NO在TiO2和0.5Pd/TiO2觸媒表面上的吸脫附及解離現象。由一氧化氮程序升溫表面實驗(NO-TPSR)結果得知,擔載Pd有助於NO解離,且NO於兩種觸媒上會經由不同反應路徑產生N2O。由NO脈衝實驗結果可以得知,在100oC時,NO會以分子型態吸附於0.5Pd/TiO2表面上;在250oC時,NO會吸附於0.5Pd/TiO2表面上並產生解離,但沒有產生其他氣體;在400oC時,NO會吸附於觸媒表面上並產生N2O及N2等氣體,NO解離所產生的氧原子會進入觸媒表層底下,因此由CO脈衝產生的CO2所計算出的氧原子較NO解離所產生的氧原子少;在100oC時,NO會以分子形式吸附於觸媒表面上。透過原位擴散反射式紅外光光譜儀(in-situ DRIFTS)進行NO-TPSR結果得知,室溫下,NO會以nitrate (NO3-)的形式存在於TiO2觸媒表面上,升溫過程中熱穩定性較差的monodentate nitrate會逐漸轉變成熱穩定性較佳的bidentate nitrate,或分解形成NO或NO2並脫附。對於0.5Pd/TiO2觸媒,NO除了以nitrate的形式存在,還會吸附於Pd2+上,在升溫的過程中,在250oC時,NO會氧化且nitrate會還原形成nitrite (NO2-),而nitrite可以進一步反應生成N2O。 | zh_TW |
| dc.description.abstract | Selective catalytic reduction (SCR) has been widely considered as an effective technology to reduce nitrogen oxides (NO and NO2). For H2-SCR, the dissociation of NO on the catalysts is rate-determining step for the formation of N2. In previous studies, molecular beams have been predominantly used to investigate the adsorption, desorption, and dissociation of NO on metals. Therefore, we aim to use pulse experiments to simulate molecular beam experiments in order to explore the surface chemistry of NO on catalysts.
In this study, 0.5Pd/TiO2 was prepared by deposition-precipitation method. Temperature-programmed surface reaction with NO (NO-TPSR) results reveal that Pd facilitates NO dissociation, and N2O is formed through different reaction pathways on TiO2 and 0.5Pd/TiO2. NO pulse reaction experiments show that NO molecularly adsorbs on the surface of 0.5Pd/TiO₂ at 100°C. At 250°C, NO adsorbs on the catalyst surface and dissociates without other products. At 400°C, NO dissociates on the catalyst surface and produces N2O and N2. The oxygen atoms from NO dissociation dissolve into the bulk of catalyst, resulting in fewer oxygen atoms calculated from the CO2 produced by the CO pulse than the oxygen atoms generated by NO dissociation. In-situ DRIFTS study indicates that IR band assigned to nitrate (NO3-) are predominant in the spectra for TiO2 catalyst. During heating, monodentate nitrates with low thermal stability gradually convert to bidentate nitrates which have higher thermal stability, or decompose to NO and NO2. For the 0.5Pd/TiO2 catalyst, NO not only exists as NO3- but also adsorbs on Pd2+. During heating, the nitrates reduce to nitrites (NO2-), which can further react to produce N2O. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:24:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:24:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iv ABSTRACT v 目次 vi 圖次 viii 表次 x Chapter 1 緒論 1 1.1 研究背景 1 1.1.1 氮氧化物的排放及對環境與人體的危害 1 1.1.2 常見去除氮氧化物之技術 3 1.2 一氧化氮吸附及解離之研究 5 1.3 研究目的 7 Chapter 2 實驗方法 8 2.1 實驗藥品 8 2.2 觸媒製備 9 2.3 催化反應及產物分析 10 2.3.1 反應系統架設 10 2.3.2 程序升溫表面反應 12 2.3.3 脈衝式反應 13 2.3.4 產物分析—質譜儀 14 2.4 觸媒鑑定 21 2.4.1 比表面積及孔隙分布測定儀 (ASAP) 21 2.4.2 感應耦合電漿光學發射光譜儀 (ICP-OES) 22 2.4.3 X光繞射儀 (XRD) 24 2.4.4 掃描式電子顯微鏡(SEM) 25 2.4.5 穿透式電子顯微鏡(TEM) 25 2.4.6 X光光電子能譜儀 (XPS) 26 2.4.7 傅立葉轉換紅外線光譜儀(FTIR) 27 Chapter 3 結果與討論 28 3.1 觸媒鑑定 28 3.1.1 物理性質及晶體結構分析 28 3.1.2 表面形貌分析 30 3.1.3 表面化學性質分析 33 3.2 一氧化氮於觸媒表面的吸脫附及解離現象 40 3.3 原位擴散反射式紅外線光譜鑑定(in-situ DRIFT) 53 Chapter 4 結論 57 Chapter 5 未來展望 58 REFERENCE 59 APPENDIX 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鈀 | zh_TW |
| dc.subject | 一氧化氮還原 | zh_TW |
| dc.subject | 擴散反射式紅外光光譜 | zh_TW |
| dc.subject | 脈衝式反應 | zh_TW |
| dc.subject | 程序升溫表面反應 | zh_TW |
| dc.subject | Temperature-programmed surface reaction | en |
| dc.subject | Pulse reaction | en |
| dc.subject | In-situ DRIFTS | en |
| dc.subject | Pd | en |
| dc.subject | Surface chemistry of NO | en |
| dc.title | 一氧化氮在鈀/二氧化鈦觸媒上的表面化學 | zh_TW |
| dc.title | Surface Chemistry of Nitric Oxide on Palladium/Titanium Dioxide Catalyst | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林昇佃;李奕霈;康敦彥 | zh_TW |
| dc.contributor.oralexamcommittee | Shawn D. Lin;Yi-Pei Li;Dun-Yen Kang | en |
| dc.subject.keyword | 一氧化氮還原,鈀,程序升溫表面反應,脈衝式反應,擴散反射式紅外光光譜, | zh_TW |
| dc.subject.keyword | Surface chemistry of NO,Pd,Temperature-programmed surface reaction,Pulse reaction,In-situ DRIFTS, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202403851 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
