Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94501
標題: 以數據驅動貝葉斯網絡建立鐵道行車風險評估框架
Development of Train Operation Risk Assessment Framework Based on a Data-Driven Bayesian Network
作者: 陳柏邑
Po-I Chen
指導教授: 賴勇成
Yung-Cheng Lai
關鍵字: 鐵路運輸,行車風險,風險評估,事故分析,風險因子,司機員行為,路段評估,
Rail Transportation,Train operation risk,Risk assessment,Accident analysis,Risk factors,Driving behavior,Section Assessment,
出版年 : 2024
學位: 碩士
摘要: 在普悠瑪事故和太魯閣事故接連發生之後,鐵路行車安全的風險管理成為大眾關注的焦點。面對鐵道行車的不確定性,本研究提出了一個結合人因分析與分類系統和貝葉斯網路的六階段步驟,建構鐵道行車風險評估框架,全面檢視風險並提前辨識潛在風險因子。首先,透過事故分析識別和定義潛在風險事件,並進行因果分析,確定導致風險事件的原因。接著,基於過往行車數據構建貝葉斯網路,量化各風險因子之間的關係和影響,並利用貝葉斯推斷計算風險事件的發生機率,進行事故後果分析,評估每個風險事件的潛在影響。在案例分析中,以實際的路線和行車資訊進行路段分析,結果顯示瑞芳到雙溪的風險相對較高,這表明除了人為失誤外,平交道和施工區域造成的風險也必須重視。此結果也說明了本研究提出的框架,能根據每班列車的行車資訊,提前預測路段風險,若能在行車前通知司機員各路段風險差異,使其提前準備,達到事前預防的效果,更可提升鐵道行車的整體安全性
Following the consecutive occurrences of the Puyuma and Taroko accidents, public attention has been drawn to the importance of risk management in train operations. To address operational uncertainties, this research proposes a six-phase approach that integrates the Human Factors Analysis and Classification System with Bayesian networks to develop a risk assessment framework. Initially, potential risk events are identified through accident data, followed by causal analysis. A Bayesian network, constructed from historical data, quantifies relationships and impacts of various risk factors. Bayesian inference calculates the probabilities of risk events and assesses their potential impacts. A case study applying this framework to real routes reveals higher risks between Ruifang and Shuangxi, emphasizing the risk in level crossings and construction areas. The results also demonstrate that the framework proposed in this research can predict section risks in advance based on the train's operational information and all the latest details about the route it travels through. By informing drivers of the varying risks of different sections before their journeys, they can be better prepared, achieving proactive prevention. This approach can possibly enhances the overall safety of train operations.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94501
DOI: 10.6342/NTU202404075
全文授權: 同意授權(全球公開)
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.44 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved