Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor中井太郎zh_TW
dc.contributor.advisorTaro Nakaien
dc.contributor.author陳韋伶zh_TW
dc.contributor.authorWei-Ling Chenen
dc.date.accessioned2024-08-16T16:22:30Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation羅明慧, (2016). 溪頭柳杉林的蒸發散特性之研究. 國立臺灣大學生物資源暨農學院實驗林研究報告;30卷4期,303–312.
Arisandi, R., Marsoem, S. N., Sutapa, J. P. G., & Lukmandaru, G. (2023). The Methods for Measuring the Area of Heartwood and Sapwood. Reviews in Agricultural Science, 11, 76-92.
Barbeta, A., Ogaya, R., & Peñuelas, J. (2012). Comparative study of diurnal and nocturnal sap flow of Quercus ilex and Phillyrea latifolia in a Mediterranean holm oak forest in Prades (Catalonia, NE Spain). Trees, 26, 1651-1659.
Berdanier, A. B., Miniat, C. F., & Clark, J. S. (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous, and ring-porous temperate trees. Tree physiology, 36(8), 932-941.
Beslity, J., Shaw, S. B., Drake, J. E., Fridley, J., Stella, J. C., Stark, J., & Singh, K. (2022). A low cost, low power sap flux device for distributed and intensive monitoring of tree transpiration. HardwareX, 12, e00351.
Burgess, S. S., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree physiology, 21(9), 589-598.
Cabibel, B., Do, F., & Horoyan, J. (1991). Mesures thermiques des flux de sève dans les troncs et les racines et fonctionnement hydrique des arbres. I. Analyse théorique des erreurs sur la mesure des flux et validation des mesures en présence de gradients thermiques extérieurs. Agronomie, 11(8), 669-678.
Chattaway, M. M. (1952). The sapwood-heartwood transition. Australian Forestry, 16(1), 25-34.
Cheng, C. H., Hung, C. Y., Chen, C. P., & Pei, C. W. (2013). Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Botanical Studies, 54, 1-9.
Chiu, C. W. (2016). Sap flow based stand transpiration estimates in conifer plantation and secondary broadleaved forest. Department of Forest and Forest Products Sciences, Kyushu University Doctoral Thesis, 1-98.
Clearwater, M. J., Meinzer, F. C., Andrade, J. L., Goldstein, G., & Holbrook, N. M. (1999). Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree physiology, 19(10), 681-687.
Delzon, S., Sartore, M., Granier, A., & Loustau, D. (2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree physiology, 24(11), 1285-1293.
Eberhardt, U., Springgay, E., Gutierrez, V., Casallas-Ramirez, S. and Cohen, R. (2019). Advancing the forest and water nexus – A capacity development facilitation guide. Rome, FAO.
Fiora, A., & Cescatti, A. (2006). Diurnal and seasonal variability in radial distribution of sap flux density: implications for estimating stand transpiration. Tree physiology, 26(9), 1217-1225.
Flo, V., Martinez-Vilalta, J., Steppe, K., Schuldt, B., & Poyatos, R. (2019). A synthesis of bias and uncertainty in sap flow methods. Agricultural and Forest Meteorology, 271, 362-374.
Ford, C. R., McGuire, M. A., Mitchell, R. J., & Teskey, R. O. (2004). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree physiology, 24(3), 241-249.
Ford, C. R., Hubbard, R. M., Kloeppel, B. D., & Vose, J. M. (2007). A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology, 145(3-4), 176-185.
Fuchs, S., Leuschner, C., Link, R., Coners, H., & Schuldt, B. (2017). Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agricultural and Forest Meteorology, 244, 151-161.
Gebauer, T., Horna, V., & Leuschner, C. (2008). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. Tree physiology, 28(12), 1821-1830.
Gebhardt, T., Hesse, B. D., Hikino, K., Kolovrat, K., Hafner, B. D., Grams, T. E., & Häberle, K. H. (2023). Repeated summer drought changes the radial xylem sap flow profile in mature Norway spruce but not in European beech. Agricultural and Forest Meteorology, 329, 109285.
Gerchow, M., Marshall, J. D., Kühnhammer, K., Dubbert, M., & Beyer, M. (2022). Thermal imaging of increment cores: a new method to estimate sapwood depth in trees. Trees, 1-11.
Goldstein, G., Andrade, J. L., Meinzer, F. C., Holbrook, N. M., Cavelier, J., Jackson, P., & Celis, A. (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21(4), 397-406.
Granier, A. (1985). Une nouvelle méthode pour la mesure des flux de sève brute dans le tronc des arbres. Annals of Forest Science, 42, 193-200. http://dx.doi.org/10.1051/forest:19850204
Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology, 3(4), 309-320.
Green, S., Clothier, B., & Jardine, B. (2003). Theory and practical application of heat pulse to measure sap flow. Agronomy Journal, 95(6), 1371-1379.
Gutierrez Lopez, J., Licata, J., Pypker, T., & Asbjornsen, H. (2019). Effects of heater wattage on sap flux density estimates using an improved tree-cut experiment. Tree Physiology, 39(4), 679-693.
Iida, S. I., Takeuchi, S., Shinozaki, K., & Araki, M. (2022). Calibration of sap flow techniques using the root-ball weighing method in Japanese cedar trees. Trees, 36(6), 1747-1759.
James, S. A., Clearwater, M. J., Meinzer, F. C., & Goldstein, G. (2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree physiology, 22(4), 277-283.
Komatsu, H., Kume, T., & Shinohara, Y. (2017). Optimal sap flux sensor allocation for stand transpiration estimates: a non-dimensional analysis. Annals of forest science, 74(2), 1-9.
Kume, T., Otsuki, K., Du, S., Yamanaka, N., Wang, Y. L., & Liu, G. B. (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand‐scale transpiration estimates. Hydrological Processes, 26(8), 1161-1168.
Laplace, S., Komatsu, H., Tseng, H., & Kume, T. (2017). Difference between the transpiration rates of Moso bamboo (Phyllostachys pubescens) and Japanese cedar (Cryptomeria japonica) forests in a subtropical climate in Taiwan. Ecological research, 32, 835-843.
Lehnebach, R., Beyer, R., Letort, V., & Heuret, P. (2018). The pipe model theory half a century on: a review. Annals of botany, 121(5), 773-795.
Link, R. M., Fuchs, S., Aguilar, D. A., Leuschner, C., Ugalde, M. C., Otarola, J. C. V., & Schuldt, B. (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913.
Lu, P., Müller, W. J., & Chacko, E. K. (2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20(10), 683-692.
Lu, P., Urban, L., & Zhao, P. (2004). Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: theory and practice. ACTA BOTANICA SINICA-ENGLISH EDITION-, 46(6), 631-646.
Lundblad, M., Lagergren, F., & Lindroth, A. (2001). Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Annals of Forest Science, 58(6), 625-638.
Meinzer, F. C., Goldstein, G., & Andrade, J. L. (2001). Regulation of water flux through tropical forest canopy trees: do universal rules apply?. Tree physiology, 21(1), 19-26.
Moore, G. W., Adkison, C., Aparecido, L. M., Basant, S., Cooper, C. E., Cross, A. J., ... & Wright, C. (2019). Thermal dissipation sensors enter a new age: Navigating frontiers in transpiration and hydrologic function. In XI International Workshop on Sap Flow 1300 (pp. 37-46).
Nadezhdina, N., Cermák, J., & Ceulemans, R. (2002). Radial pattern of sap flow in woody stems related to positioning of sensors and scaling errors in dominant and understorey species. Tree Physiology, 22, 907-918.
Pasqualotto, G., Carraro, V., Menardi, R., & Anfodillo, T. (2019). Calibration of Granier-Type (TDP) sap flow probes by a high precision electronic potometer. Sensors, 19(10), 2419.
Peters, R. L., Fonti, P., Frank, D. C., Poyatos, R., Pappas, C., Kahmen, A., ... & Steppe, K. (2018). Quantification of uncertainties in conifer sap flow measured with the thermal dissipation method. New Phytologist, 219(4), 1283-1299.
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of xylem sap flow in non‐, diffuse‐and ring‐porous tree species.
Renninger, H. J., & Schäfer, K. V. (2012). Comparison of tissue heat balance-and thermal dissipation-derived sap flow measurements in ring-porous oaks and a pine. Frontiers in plant science, 3, 103.
Santos, I. M., Vellame, L. M., Araújo, J. F., & Marinho, L. B. (2020). CALIBRATION OF THE THERMAL DISSIPATION PROBE FOR ATEMOYA:(Annona squamosa x A. cherimola). Engenharia Agrícola, 40(4), 545-554.
Sato, T., Oda, T., Igarashi, Y., Suzuki, M., & Uchiyama, Y. (2012). Circumferential sap flow variation in the trunks of Japanese cedar and cypress trees growing on a steep slope. Hydrological Research Letters, 6, 104-108.
Shinohara, Y., Tsuruta, K., Ogura, A., Noto, F., Komatsu, H., Otsuki, K., & Maruyama, T. (2013). Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest. Tree physiology, 33(5), 550-558.
Shinohara, Y., Komatsu, H., & Otsuki, K. (2015). Sapwood and intermediate wood thickness variation in Japanese cedar: impacts on sapwood area estimates. Hydrological Research Letters, 9(2), 35-40.
Smith, D. M., & Allen, S. J. (1996). Measurement of sap flow in plant stems. Journal of Experimental Botany, 47(12), 1833-1844.
Steppe, K., De Pauw, D. J., Doody, T. M., & Teskey, R. O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. Agricultural and Forest Meteorology, 150(7-8), 1046-1056.
Su, M.P. (2017). Long-term stand transpiration estimates in a Japanese cedar forest, central Taiwan: Calibration of thermal dissipation sap flow measurements and its application to field data. School of Forestry and Resource Conservation College of Bioresources and Agriculture, National Taiwan University Master Thesis, 1-89.
Tateishi, M., Kumagai, T. O., Suyama, Y., & Hiura, T. (2010). Differences in transpiration characteristics of Japanese beech trees, Fagus crenata, in Japan. Tree Physiology, 30(6), 748-760.
Tong, Y., Liu, J., Han, X., Zhang, T., Dong, Y., Wu, M., ... & Zhou, Y. (2023). Radial and seasonal variation of sap flow and its response to meteorological factors in sandy Pinus sylvestris var. mongolica plantations in the Three North Shelterbelt of China. Agricultural and Forest Meteorology, 328, 109239.
Tseng, H. (2011). Transpiration estimates and spatial and temporal variability of sap flow in a Japanese cedar plantation in Sitou, central Taiwan. School of Forestry and Resource Conservation College of Bioresources and Agriculture, National Taiwan University Master Thesis, 1-74.
Vandegehuchte, M. W., & Steppe, K. (2013). Corrigendum to: Sap-flux density measurement methods: working principles and applicability. Functional Plant Biology, 40(10), 1088-1088.
Wiedemann, A., Marañón-Jiménez, S., Rebmann, C., Herbst, M., & Cuntz, M. (2016). An empirical study of the wound effect on sap flux density measured with thermal dissipation probes. Tree Physiology, 36(12), 1471-1484.
Won, K. R., Jung, S. Y., Yoo, B. O., Hong, N. E., & Byeon, H. S. (2017). Study on red and black heartwood properties of Cryptomeria japonica in the southern region of Korea. Journal of the Korean Wood Science and Technology, 45(6), 753-761.
Wullschleger, S. D., Childs, K. W., King, A. W., & Hanson, P. J. (2011). A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes. Tree Physiology, 31(6), 669-679.
Xie, J., & Wan, X. (2018). The accuracy of the thermal dissipation technique for estimating sap flow is affected by the radial distribution of conduit diameter and density. Acta Physiologiae Plantarum, 40(5), 1-10.
Yu, J. C., Chiang, P. N., Lai, Y. J., Tsai, M. J., & Wang, Y. N. (2021). High rainfall inhibited soil respiration in an Asian monsoon forest in Taiwan. Forests, 12(2), 239.
Zhang, J. G., He, Q. Y., Shi, W. Y., Otsuki, K., Yamanaka, N., & Du, S. (2015). Radial variations in xylem sap flow and their effect on whole‐tree water use estimates. Hydrological Processes, 29(24), 4993-5002.
Zhang, Z., Zhao, P., Zhao, X., Zhou, J., Zhao, P., Zeng, X., ... & Ouyang, L. (2018). The tree height‐related spatial variances of tree sap flux density and its scale‐up to stand transpiration in a subtropical evergreen broadleaf forest. Ecohydrology, 11(7), e1979.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94497-
dc.description.abstract本研究使用著名的Granier熱消散法為基礎,透過考慮樹液通量密度的徑相變異來評估樹液流。本研究樣區位於臺灣南投縣的臺大溪頭實驗林,該樣區為樹齡一致的單一樹種(Cryptomeria japonica)。先前在溪頭進行的樹液流研究已經探討樹液流之方向變異與徑向變異,然而使用Granier探針在不同位置、不同深度檢查徑向變化,無法去除方向變異的變因。因此,本研究採用單點量測之熱消散探針藉此排除方向變異,討論樹液通量密度隨徑向變化對樹液流估算的影響。
結果顯示,不同深度的每日平均樹液通量密度及日變化均顯示有效運送水分的邊材長度達6公分以上,與目視判斷邊材長度3公分有顯著差異。從形成層以下0到6公分有明顯觀測到樹液通量密度,而6到12公分之樹液通量密度則不明顯,其原因可能為量測的極值所限。沿著深度觀察到明顯的晝夜變化峰值延遲,隨著深度的增加而增加。其徑向剖面圖呈現一個伽瑪分布 (Gamma distribution),在1.5公分左右達到峰值,然後隨著深度增加而減少。與Granier樹液流的估算方法比較,考慮0到12公分的徑向變化的樹液流提高為1.67倍;使用伽瑪方程計算結果較傳統估算法,乾季及濕季的樹液流分別提高為1.59倍及1.83倍。
本研究總結,考慮樹液通量密度的徑向分佈延伸到比目視辨識的邊材深度更深,能解釋被常規方法低估的日本柳杉林分蒸散量。此外,使用移動式探針所求得的徑向剖面與伽瑪數值方程的結果吻合,提供未來估算林分蒸散量更有效率的利用方式。
zh_TW
dc.description.abstractThis study evaluated whole-tree sap flow by considering the radial variation in sap flux density, using the well-known Granier thermal dissipation (TD) method as the basis. The sampling site for this study was the Xitou Experimental Forest of National Taiwan University (NTU) in Nantou County, Taiwan, which had a single species of Cryptomeria japonica of uniform age. Previous sap flow studies at Xitou had examined circumferential and radial variation. However, the radial variation was examined with the Granier sensors at different positions for different depths, which did not remove the circumferential effect. For this reason, this study adopted single-point measurements to detect the change in sap flux density with the radial direction by 4-cm sensors and mobile sensors, excluding the circumferential effect.
The daily mean and diurnal pattern measurements of the sap flux density at multiple depths demonstrated that the sample tree effectively transported water even at depths of up to 6 cm or more, significantly differing from the visual determination of sapwood length of 3 cm. The sap flux density varied significantly from 0 to 6 cm beneath the cambium. In contrast, the radial variation in sap flux density from 6 to 12 cm was insignificant, probably due to the detection limit of the sensors. An apparent peak delay of diurnal variations was observed along the depths, which increased as the depth increased. The radial profile exhibited a Gamma distribution, which peaked at around 1.5 cm and then decreased as the radius increased. Considering the measured radial variation in sap flux density from 0 to 12 cm in a 1-cm step, the whole-tree sap flow in the wet season increased 1.67 times more than Granier's TD calculation. In contrast, the correction using the gamma-type function results showed an increase in the whole-tree sap flow by 1.59 times greater in the dry season and 1.83 times greater in the wet season than the conventional Granier's calculation.
This study concluded that the radial distribution of sap flux density extending deeper than the visually identified sapwood depth could explain the potential reason for underestimating the transpiration of Japanese cedar by the conventional method. The use of the mobile sensor also corresponded with the results of the equation of gamma function, providing a more efficient use of estimating stand transpiration in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:22:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:22:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次Table of contents vi
圖次Figures list viii
表次Table list xii
1. Introduction 1
1.1 Background 1
1.2 Literature review 2
1.3 Motivation 12
1.4 The goal of this study 13
1.5 Significance 15
2. Method 16
2.1. Site and plot 16
2.2. Sample trees 18
2.3. Granier sensor 18
2.4. 4-cm sensor 21
2.5. 1-cm sensor 23
2.6. Data processing 25
2.6.1. TD method formula 25
2.6.2. Development of radial profile 26
2.6.3. Predictive function for radial variation 27
2.7. Field experiment 28
2.7.1. Dye injection experiment 29
2.7.2. Sensor installation 31
3. Results 32
3.1. Dye injection experiment 32
3.2. 4-cm sensors 33
3.3. The consistency of 1-cm sensors 35
3.4. Diurnal pattern 37
3.5. Radial profiles 47
3.6. Seasonal variation 52
3.7. Whole-tree sap flow calculation 58
3.7.1. Sap flow calculation with radial profile 58
3.7.2. Sap flow calculation with Gamma-type function 60
4. Discussion 64
4.1. 4-cm sensors and dye injection method 64
4.2. The diurnal pattern 67
4.3. The radial profile 68
4.4. Seasonal variation 70
4.5. Stem temperature gradient 71
4.6. Effect of current adjustment 73
5. Conclusion 75
References 77
Appendix. 83
-
dc.language.isoen-
dc.subject蒸散量zh_TW
dc.subject熱消散法zh_TW
dc.subject樹液通量密度zh_TW
dc.subject徑向剖面zh_TW
dc.subjectthermal dissipation methoden
dc.subjectsap flux densityen
dc.subjecttranspirationen
dc.subjectradial profileen
dc.title日本柳杉之樹液流徑向變異性:以臺灣溪頭為例zh_TW
dc.titleCharacteristics of the radial variability in sap flow in Japanese cedar trees in Xitou, Taiwanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張世杰;羅敏輝;賴彥任zh_TW
dc.contributor.oralexamcommitteeShih-Chieh Chang;Min-Hui Lo;Yen-Jen Laien
dc.subject.keyword蒸散量,熱消散法,樹液通量密度,徑向剖面,zh_TW
dc.subject.keywordtranspiration,thermal dissipation method,sap flux density,radial profile,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202403780-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved