請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94490
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張書瑋 | zh_TW |
dc.contributor.advisor | Shu-Wei Chang | en |
dc.contributor.author | 簡子皓 | zh_TW |
dc.contributor.author | Tzu-Hao Chien | en |
dc.date.accessioned | 2024-08-16T16:20:17Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-13 | - |
dc.identifier.citation | [1] M. Winkler et al., "Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma," Investigative ophthalmology & visual science, vol. 54, no. 12, pp. 7293-7301, 2013.
[2] R. Minns and F. Steven, "The collagen fibril organization in human articular cartilage," Journal of anatomy, vol. 123, no. Pt 2, p. 437, 1977. [3] B. Brodsky, G. Thiagarajan, B. Madhan, and K. Kar, "Triple‐helical peptides: An approach to collagen conformation, stability, and self‐association," Biopolymers: Original Research on Biomolecules, vol. 89, no. 5, pp. 345-353, 2008. [4] M. H. Li, P. Fan, B. Brodsky, and J. Baum, "Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly) 10 and a designed collagen triple-helical peptide," Biochemistry, vol. 32, no. 29, pp. 7377-7387, 1993. [5] V. Punitha et al., "Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen," The Journal of Physical Chemistry B, vol. 113, no. 26, pp. 8983-8992, 2009. [6] S. S. Raman, R. Vijayaraj, R. Parthasarathi, V. Subramanian, and T. Ramasami, "A molecular dynamics analysis of ion pairs formed by lysine in collagen: Implication for collagen function and stability," Journal of Molecular Structure: THEOCHEM, vol. 851, no. 1-3, pp. 299-312, 2008. [7] P. Bornstein and H. Sage, "Structurally distinct collagen types," Annual review of biochemistry, vol. 49, no. 1, pp. 957-1003, 1980. [8] M. K. Gordon and R. A. Hahn, "Collagens," Cell and tissue research, vol. 339, no. 1, pp. 247-257, 2010. [9] Y. Liu, D. Luo, and T. Wang, "Hierarchical structures of bone and bioinspired bone tissue engineering," Small, vol. 12, no. 34, pp. 4611-4632, 2016. [10] H. Wang, "A review of the effects of collagen treatment in clinical studies," Polymers, vol. 13, no. 22, p. 3868, 2021. [11] J. Bella, B. Brodsky, and H. M. Berman, "Hydration structure of a collagen peptide," Structure, vol. 3, no. 9, pp. 893-906, 1995. [12] M. D. Shoulders and R. T. Raines, "Collagen structure and stability," Annual review of biochemistry, vol. 78, no. 1, pp. 929-958, 2009. [13] M. Jovanovic, G. Guterman-Ram, and J. C. Marini, "Osteogenesis imperfecta: mechanisms and signaling pathways connecting classical and rare OI types," Endocrine reviews, vol. 43, no. 1, pp. 61-90, 2022. [14] J. C. Marini and W. A. Cabral, "Osteogenesis imperfecta," Genetics of bone biology and skeletal disease, pp. 397-420, 2018. [15] M. S. Kocher and F. Shapiro, "Osteogenesis imperfecta," JAAOS-Journal of the American Academy of Orthopaedic Surgeons, vol. 6, no. 4, pp. 225-236, 1998. [16] Mcmulled. "Brittle Bone Disease." Exploring Biology https://biology.openlcc.net/diseases/wiki/brittle-bone-disease/ (accessed July 1st, 2024). [17] A. Gautieri, S. Uzel, S. Vesentini, A. Redaelli, and M. J. Buehler, "Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils," Biophysical journal, vol. 97, no. 3, pp. 857-865, 2009. [18] D. L. Bodian, B. Madhan, B. Brodsky, and T. E. Klein, "Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations," Biochemistry, vol. 47, no. 19, pp. 5424-5432, 2008. [19] J. Xiao, Z. Yang, X. Sun, R. Addabbo, and J. Baum, "Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease Osteogenesis Imperfecta resulting from Gly mutations," Journal of structural biology, vol. 192, no. 1, pp. 127-137, 2015. [20] J. Jumper et al., "Highly accurate protein structure prediction with AlphaFold," nature, vol. 596, no. 7873, pp. 583-589, 2021. [21] M. Baek et al., "Accurate prediction of protein structures and interactions using a three-track neural network," Science, vol. 373, no. 6557, pp. 871-876, 2021. [22] V. Gligorijević et al., "Structure-based protein function prediction using graph convolutional networks," Nature communications, vol. 12, no. 1, p. 3168, 2021. [23] N. Swenson, A. S. Krishnapriyan, A. Buluc, D. Morozov, and K. Yelick, "PersGNN: applying topological data analysis and geometric deep learning to structure-based protein function prediction," arXiv preprint arXiv:2010.16027, 2020. [24] Y. Chiang, W.-H. Hui, and S.-W. Chang, "Encoding protein dynamic information in graph representation for functional residue identification," Cell Reports Physical Science, vol. 3, no. 7, 2022. [25] C.-H. Yu, E. Khare, O. P. Narayan, R. Parker, D. L. Kaplan, and M. J. Buehler, "ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences," Journal of the mechanical behavior of biomedical materials, vol. 125, p. 104921, 2022. [26] N. Brandes, D. Ofer, Y. Peleg, N. Rappoport, and M. Linial, "ProteinBERT: a universal deep-learning model of protein sequence and function," Bioinformatics, vol. 38, no. 8, pp. 2102-2110, 2022. [27] G. Sutmann, "Classical molecular dynamics," vol. 10, ed: John von Neumann Institute for Computing, Jülich, 2002, pp. 211-254. [28] B. R. Brooks et al., "CHARMM: the biomolecular simulation program," Journal of computational chemistry, vol. 30, no. 10, pp. 1545-1614, 2009. [29] J. P. Orgel, T. C. Irving, A. Miller, and T. J. Wess, "Microfibrillar structure of type I collagen in situ," Proceedings of the National Academy of Sciences, vol. 103, no. 24, pp. 9001-9005, 2006. [30] W. Humphrey, A. Dalke, and K. Schulten, "VMD: visual molecular dynamics," Journal of molecular graphics, vol. 14, no. 1, pp. 33-38, 1996. [31] A. P. Thompson et al., "LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales," Computer Physics Communications, vol. 271, p. 108171, 2022. [32] J. C. Phillips et al., "Scalable molecular dynamics with NAMD," Journal of computational chemistry, vol. 26, no. 16, pp. 1781-1802, 2005. [33] W.-H. Hui, Y.-L. Chen, and S.-W. Chang, "Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity," International Journal of Biological Macromolecules, vol. 254, p. 127603, 2024. [34] J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020. [35] E. Eyal, L.-W. Yang, and I. Bahar, "Anisotropic network model: systematic evaluation and a new web interface," Bioinformatics, vol. 22, no. 21, pp. 2619-2627, 2006. [36] A. Alfayate, C. Rodriguez Caceres, H. Gomes Dos Santos, and U. Bastolla, "Predicted dynamical couplings of protein residues characterize catalysis, transport and allostery," Bioinformatics, vol. 35, no. 23, pp. 4971-4978, 2019. [37] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, "Graph attention networks," arXiv preprint arXiv:1710.10903, 2017. [38] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618-626. [39] J. C. Marini et al., "Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans," Human mutation, vol. 28, no. 3, pp. 209-221, 2007. [40] V. N. Maiorov and G. M. Crippen, "Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins," Journal of molecular biology, vol. 235, no. 2, pp. 625-634, 1994. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94490 | - |
dc.description.abstract | 膠原蛋白是人體中的重要蛋白質,其為骨頭形成時的重要材料。膠原蛋白的主要結構由三股螺旋組成,這一結構賦予了膠原蛋白獨特的強度和彈性,對骨骼的健康和穩定至關重要。然而,當膠原蛋白序列發生突變時,不僅會影響突變點位附近的分子間作用力,還會對整體纖維結構和生物功能產生廣泛影響,進而引發多種健康問題。 成骨不全症(Osteogenesis Imperfecta,OI),俗稱玻璃娃娃病,是一種由於膠原蛋白合成缺陷或序列突變引起的遺傳性骨骼疾病,這種疾病的特點是骨骼脆弱易碎,常常導致反覆的骨折。本研究主要分成兩個部分,一是進行分子動力模擬得到突變結構並進行分析,二為利用機器學習方法預測成骨不全症致死風險。
本研究藉由分子動力模擬得到各突變膠原蛋白結構,並觀察突變膠原蛋白局部結構的單位長與半徑的分佈變化,分析其和成骨不全症致死性的相關性。並且將各類型殘基突變進行分群,分別為高風險、中風險與低風險突變,分析各風險突變之半徑與單位長分布差異。 本研究利用模態分析方法與接觸圖萃取突變膠原蛋白之結構與動力學資訊,並配合proteinBERT蛋白質語言模型作為殘基之節點特徵來建構突變資料,最後得到4種圖資料分別為接觸圖(Contact graph)、共向性圖(Co-directionality graph)、協調性圖(Coordination contact graph)以及變形圖(Deformation graph),並配合圖神經網路模型預測成骨不全症的致死風險,最終目標為訓練出一個對於致死性預測更為準確之模型。最後對模型進行grad-CAM分析,觀察並分析模型在進行成骨不全症致死風險預測時所關注的資料特徵,藉此可以反向檢視膠原蛋白中各殘基對於預測之重要性。這些資料顯示出膠原蛋白結構與動力學資訊對於成骨不全症致死之間的相關性,並提供了可能導致致死突變的關鍵膠原蛋白區域,對於未來預測與診斷成骨不全症提供了重要的參考與指引。 | zh_TW |
dc.description.abstract | Collagen is an essential protein in the human body, serving as a crucial component in bone formation. The primary structure of collagen is composed of a triple helix, which imparts unique strength and elasticity to the protein, vital for bone health and stability. However, mutations in the collagen sequence can affect intermolecular forces near the mutation site and the overall fiber structure and biological function, leading to various health problems. Osteogenesis Imperfecta (OI), commonly known as brittle bone disease, is a genetic bone disorder caused by defects or mutations in collagen synthesis. This disease is characterized by fragile bones that are prone to frequent fractures. This study utilizes molecular dynamics simulations to obtain the structures of mutated collagen proteins and observe changes in the local structure's unit heights and radius distributions. We analyze the correlation between these structural changes and the lethality of OI. Additionally, we classify different types of residue mutations into high-risk, moderate-risk, and low-risk categories, and analyze the distribution differences in radius and unit heights for each risk category. Using normal mode analysis and contact maps, we extract structural and dynamic information of the mutated collagen proteins. These features, combined with the proteinBERT protein language model for residue node features, are used to construct mutation datasets. We generate four types of graph data: Contact graph, Co-directionality graph, Coordination graph, and Deformation graph. These graphs are used in conjunction with a graph neural network (GNN) model to predict the lethality risk of OI. The ultimate goal is to train a model that can more accurately predict lethality. Finally, we conduct grad-CAM analysis on the model to observe and analyze the features the model focuses on when predicting OI lethality risk, allowing us to assess the importance of each residue in collagen. These findings demonstrate the correlation between collagen structure and dynamic information and OI lethality, identifying critical collagen regions that may lead to lethal mutations. This provides valuable references and guidance for future predictions and diagnoses of OI. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:20:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:20:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv 目次 vi 圖次 ix 表次 xvi Chapter 1 緒論 1 1.1 文獻回顧 1 1.1.1 膠原蛋白背景介紹 1 1.1.2 膠原蛋白水橋與氫鍵 3 1.1.3 突變對膠原蛋白之影響 5 1.1.4 機器學習應用於蛋白質領域 8 1.2 論文目標 10 Chapter 2 理論與方法 13 2.1 模擬方法 13 2.1.1 分子動力模擬 13 2.1.2 CHARMM 力場 14 2.2 膠原蛋白模型介紹 15 2.2.1 膠原蛋白模型建立與模擬設定 15 2.2.2 膠原蛋白結構分析 16 2.3 蛋白質模態分析與動力學耦合圖 17 2.3.1 圖論(graph theory) 17 2.3.2 ProteinBERT 蛋白質語言模型 18 2.3.3 異向性網路模型(Anisotropic Network Model) 20 2.3.4 膠原蛋白結構資訊與動力學耦合 21 2.4 機器學習 23 2.4.1 圖注意力模型(Graph attention networks) 23 2.4.2 梯度權重類別活性化映射(Gradient-weighted Class Activation Mapping, Grad-CAM) 25 Chapter 3 膠原蛋白模擬與分析 28 3.1 成骨不全症資料集與分析 28 3.2 模擬與方均根偏差(Root mean square deviation)分析 32 3.3 膠原蛋白單位長(Unit height)與半徑(Radius)分析 33 Chapter 4 機器學習預測成骨不全致死風險 48 4.1 資料前處理與邊分析 48 4.1.1 資料前處理 48 4.1.2 邊分析 49 4.2 成骨不全症之致死風險與分析 62 4.2.1 資料集分割 62 4.2.2 模型架構 64 4.2.3 模型表現 65 4.3 Grad-CAM分析 81 Chapter 5 結論與未來展望 86 5.1 結論 86 5.2 未來展望 89 參考文獻 90 附錄 93 | - |
dc.language.iso | zh_TW | - |
dc.title | 以分子動力模擬與機器學習方法分析並預測成骨不全症致死風險 | zh_TW |
dc.title | Analyzing and predicting the lethality of osteogenesis imperfecta by combining molecular dynamics simulations with machine learning methods | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 周佳靚;胡念仁;洪子倫 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Ching Chou;Nien-Jen Hu;Tzyy-Leng Horng | en |
dc.subject.keyword | 膠原蛋白,分子動力模擬,模態分析,proteinBERT蛋白質語言模型,圖神經網路,單位長,半徑,grad-CAM分析, | zh_TW |
dc.subject.keyword | collagen,molecular dynamics simulations,normal mode analysis,proteinBERT,graph neural network,unit height,radius,grad-CAM, | en |
dc.relation.page | 190 | - |
dc.identifier.doi | 10.6342/NTU202404247 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 26.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。