請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃育熙 | zh_TW |
| dc.contributor.advisor | Yu-Hsi Huang | en |
| dc.contributor.author | 潘正諺 | zh_TW |
| dc.contributor.author | Cheng-Yen Pan | en |
| dc.date.accessioned | 2024-08-16T16:18:06Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] Dally, J. W. and Rilley, W. F., "Experimental Stress Analysis, McGraw-Hill Companies, NY, " 1978
[2] Coker, E. F. and Filon, L. N. G., "Treatise on photoelasticity, University Press, Cambridge, U.K," 1931 [3] Paipeitis, S. A. and Holister, G. S., "Photoelasticity in engineering practice, Elsevier Applied Science Publishers, London," 1935 [4] Oppel, G., "Polarisationoptische untersuchang rammerlicher spanmings und deliunggzustande,” Forsh. Geb. Ingenieurw, 7, 240-248" 1936 [5] 楊婷雅,黃育熙,「利用光彈法研究光學薄膜之應力光學係數量測」,碩士論文,機械工程學研究所,臺灣科技大學,2017。 [6] P. Bao, Lei Zhang, Xiaolin Wu, "Canny edge detection enhancement by scale multiplication, IEEE, " 2005 [7] N. Kanopoulos, N. Vasanthavada; R.L.Baker , ''Design of an image edge detection filter using the Sobel operator, IEEE, '' 1988 [8] Weibin Rong, Zhanjing Li, Wei Zhang, Lining Sun, ''An improved Canny edge detection algorithm, IEEE,'' 2014 [9] William McIlhagga, ''The Canny Edge Detector Revisite,IEEE,'' 2011 [10] Wenshuo Gao, Xiaoguang Zhang, Lei Yang; Huizhong Liu, ''An improved Sobel edge detection,IEEE,'' 2010 [11] Zhang Jin-Yu, Chen Yan, Huang Xian-Xiang, ''Edge detection of images based on improved Sobel operator and genetic algorithms, IEEE,'' 2009 [12] Dongju Liu, Jian Yu, ''Otsu Method and K-means, IEEE,'' 2009 [13] Jun Zhang, Jinglu Hu, ''Image Segmentation Based on 2D Otsu Method with Histogram Analysis, IEEE,'' 2008 [14] Ningbo Zhu, Gang Wang, Gaobo Yang, Weiming Dai, ''A Fast 2D Otsu Thresholding Algorithm Based on Improved Histogram, IEEE,'' 2009 [15] S.V.M. Vishwanathan, M. Narasimha Murty, ''SSVM: a simple SVM algorithm, IEEE,'' 2002 [16] Leo Breiman ''Random Forests, University of California, Berkeley, " 2001 [17] Rahul Chauhan, Kamal Kumar Ghanshala, R.C Joshi, ''Convolutional Neural Network (CNN) for Image Detection and Recognition,IEEE,'' 2018 [18] Mengmeng Zhang, Wei Li, ''Diverse Region-Based CNN for Hyperspectral Image Classification, IEEE,'' 2018 [19] Smit Mehta, Chirag Paunwala, Bhaumik Vaidya, ''CNN based Traffic Sign Classification using Adam Optimizer, IEEE,'' 2020 [20] Zijun Zhang, ''Improved Adam Optimizer for Deep Neural Networks, IEEE,'' 2019 [21] LD Quach, AN Quynh, KN Quoc, NN Thai, ''Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance, Sciencedirect, '' 2022 [22] Demi Ai, Fang Mo, Yihang Han, Junjie Wen, ''Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance, Sciencedirect, '' 2022 [23] C.Briñez-de León,MateoRico-García, and Alejandro Restrepo-Martínez, ''PhotoelastNet: a deep convolutional neural network for evaluating the stress field by using a single color photoelasticity image,OSA,'' 2022 [24] Zhihao Liu, Jingzhu Wu, Longsheng Fu, Yaqoob Majeed, Yali Feng, Rui Li, Yongjie Cui, ''Improved Kiwifruit Detection Using Pre-Trained VGG16 With RGB and NIR Information Fusion, IEEE,'' 2019 [25] Ali Abd Almisreb, Nursuriati Jamil, N. Md Din, ''Utilizing AlexNet Deep Transfer Learning for Ear Recognition, IEEE,'' 2018 [26] Grega Vrbančič, Vili Podgorelec, ''Transfer Learning With Adaptive Fine-Tuning, IEEE,'' 2020 [27] Nima Tajbakhsh, Jae Y. Shin; Suryakanth R. Gurudu, R. Todd Hurst, Christopher B. Kendall, Michael B. Gotway, ''Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? , IEEE'' 2016 [28] 洪光民, 黃國興, 林文輝, 「ㄧ維傅利葉分析應用在光弾影像上的相位擷取, 二十六屆中國機械工程師學會年會」,2009 [29] Toll, S., Tang, S., and Hovanesian, J., "Computerized photoelastic fringe multiplication," Experimental Techniques, 14(4), 21-23," 1990 [30] Alaa. M. Elsayad, H. A. Elsalamony, ''Diagnosis of Breast Cancer using Decision Tree Models and SVM, International Journal of Computer Applications, '' 2017 [31] Hussam Qassim, Abhishek Verma, David Feinzimer, ''Compressed residual-VGG16 CNN model for big data places image recognition, IEEE, '' 2018 [32] Priyadarshiny Dhar, Saibal Dutta, Vivekananda Mukherjee, ''Cross-wavelet assisted convolution neural network (AlexNet) approach for phonocardiogram signals classification, ScienceDirect, '' 2020 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94483 | - |
| dc.description.abstract | 為了反算光彈圓盤的受力,本研究將藉由光彈圓盤受力後所產生的應力條紋進行影像分析,研究中將使用機器學習(支援向量機、隨機森林樹)以及利用深度學習建立卷積神經網路模型,對於光彈圓盤進行應力條紋光彈力學(Photoelasticity)的應力特性分析。
本研究利用影像處理與機器學習將光彈影像進行濾波,將光彈影像之亮暗場影像進行影像分類與受力反算,實驗結果發現,我們能夠藉由實驗中所拍攝的亮暗場光彈圖片反算出受力間距為1kg的光彈影像;為了提升受力間距的細緻度,我們進一步將亮場圖片和暗場圖片做影像處理,希望獲取更多的條紋特徵,實驗結果顯示,相較先前只能反算出受力間距為1kg的光彈影像,做傅立葉轉換後的影像處理所獲得的條紋倍增光彈影像,在實驗上能更夠有效且細緻的反算出受力間距為0.5kg的影像,因此後續研究都將以條紋倍增的光彈影像進行最精確的受力分析。 研究最後將訓練好的模型,對訓練資料以外的未知光彈影像進行受力反算,並搭配本研究中所提出的三種修正方法提升準確率,研究結果表明,模型針對不同的資料集的預測結果使用判別法修正後,所得到新資料集和原始資料集相比,能夠提升20%的準確率。 | zh_TW |
| dc.description.abstract | In order to determine the force on the photoelastic disk, this study will employ image analysis on the stress fringes generated by the photoelastic disk. In the research, machine learning (support vector machines, random forest) and deep learning will be used. We will establish a convolutional neural network model to analyze the stress characteristics of the photoelastic disk.
This study uses image processing and machine learning to filter photoelastic images, classify and determine the types and force of bright and dark field images of photoelastic images. According to the experimental results, we can determine the photoelastic image with a force spacing of 1kg from the bright and dark field photoelastic images in the experiment. In order to improve the detail of the force spacing, we using image processing of bright field pictures and dark field pictures further, in order to obtain more stripe features. The experimental results show that compared with the previous photoelastic image, which could only be determined with a force spacing of 1kg, the stripe multiplied photoelastic image obtained by subtracting the bright field image and the dark field image can be more effective and detailed determine the photoelastic images with the force spacing of 0.5kg. Therefore, in subsequent study, we will use the photoelastic image with stripe multiplication to accurate analysis of the force on images. At the end of the study, the trained model will be used to determine the force on unknown photoelastic images , and combined with the three correction methods which are proposed in this study to improve the accuracy. After correcting the prediction results data set by the correction method, the results show that after empolying the correction methods , the prediction data is more linear fit to the true data set .When we compare the new data to the original data, we can find that the accuracy is increased by 20%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:18:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:18:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 Ⅰ
中文摘要 Ⅱ Abstract Ⅲ 目次 Ⅴ 圖次 表次 Ⅺ 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 2 1.3章節介紹 4 第二章 光學系統 5 2.1光彈圓盤試片 5 2.2光彈實驗架設 6 2.3圓偏光系統 11 第三章 光彈影像資料庫 13 3.1光彈圓盤影像拍攝實驗步驟 13 3.2資料集 13 3.3資料擴增 15 3.4光彈圓盤拍攝Ⅰ 16 3.5光彈圓盤拍攝Ⅱ 19 3.6影像處理 27 3.6.1 Canny邊緣偵測 28 3.6.2 Sobel邊緣偵測 30 3.6.3大津演算法 31 3.6.4傅立葉轉換 33 第四章 機器學習與深度學習 36 4.1 機器學習與深度學習 36 4.2機器學習實驗 37 4.2.1支援向量機 38 4.2.2隨機森林樹 42 4.3深度學習實驗 45 4.3.1深度學習原理 45 4.4卷積神經網路 50 4.4.1混淆矩陣 54 4.5傅立葉轉換-光彈條紋倍增 61 第五章 結論與未來展望 81 參考文獻 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光彈圓盤 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | Machine Learning | en |
| dc.subject | Photoelastic Disk | en |
| dc.subject | Convolutional Neural Network | en |
| dc.subject | Deep Learning | en |
| dc.subject | Image Processing | en |
| dc.title | 使用機器學習與影像處理反算光彈圓盤受力 | zh_TW |
| dc.title | Utlizing Machine Learning and Image Processing to Determine the Force on the Photoelastic Disk | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖展誼;吳亦莊 | zh_TW |
| dc.contributor.oralexamcommittee | Liao Chan-Yi;Wu Yi-Zhuang | en |
| dc.subject.keyword | 光彈圓盤,影像處理,機器學習,深度學習,卷積神經網路, | zh_TW |
| dc.subject.keyword | Photoelastic Disk,Image Processing,Machine Learning,Deep Learning,Convolutional Neural Network, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202403781 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 重點科技研究學院 | - |
| dc.contributor.author-dept | 奈米工程與科學學位學程 | - |
| 顯示於系所單位: | 奈米工程與科學學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
