Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江皓森zh_TW
dc.contributor.advisorHao-Sen Chiangen
dc.contributor.author王柔敏zh_TW
dc.contributor.authorJou-Min Wangen
dc.date.accessioned2024-08-16T16:17:48Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationAhluwalia, B., Moraes, L., Magnusson, M. K., & Öhman, L. (2018). Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scandinavian Journal of Gastroenterology, 53(4), 379–389. https://doi.org/10.1080/00365521.2018.1447597
Ahmadi Rastegar, D., & Dzamko, N. (2020). Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 14, 193. https://doi.org/10.3389/fnins.2020.00193
Ananthakrishnan, A. N., Bernstein, C. N., Iliopoulos, D., Macpherson, A., Neurath, M. F., Ali, R. A. R., Vavricka, S. R., & Fiocchi, C. (2018). Environmental triggers in IBD: A review of progress and evidence. Nature Reviews Gastroenterology & Hepatology, 15(1), 39–49. https://doi.org/10.1038/nrgastro.2017.136
Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., Bitton, A., Dassopoulos, T., Datta, L. W., Green, T., Griffiths, A. M., Kistner, E. O., Murtha, M. T., Regueiro, M. D., Rotter, J. I., … Daly, M. J. (2008). Genome-wide association defines more than thirty distinct susceptibility loci for Crohn’s disease. Nature Genetics, 40(8), 955–962. https://doi.org/10.1038/NG.175
Baumgart, D. C., & Carding, S. R. (2007). Inflammatory bowel disease: Cause and immunobiology. The Lancet, 369(9573), 1627–1640. https://doi.org/10.1016/S0140-6736(07)60750-8
Bhakta, S. B., Lundgren, S. M., Sesti, B. N., Flores, B. A., Akdogan, E., Collins, S. R., & Mercer, F. (2024). Neutrophil-like cells derived from the HL-60 cell-line as a genetically-tractable model for neutrophil degranulation. PLOS ONE, 19(2), e0297758. https://doi.org/10.1371/journal.pone.0297758
Birnie, G. D. (1988). The HL60 cell line: A model system for studying human myeloid cell differentiation. The British Journal of Cancer. Supplement, 9, 41–45.
Blanter, M., Gouwy, M., & Struyf, S. (2021). Studying Neutrophil Function in vitro: Cell Models and Environmental Factors. Journal of Inflammation Research, 14, 141–162. https://doi.org/10.2147/JIR.S284941
Boecker, C. A. (2023). The Role of LRRK2 in Intracellular Organelle Dynamics. Journal of Molecular Biology, 435(12), 167998. https://doi.org/10.1016/j.jmb.2023.167998
Breitman, T. R., Selonick, S. E., & Collins, S. J. (1980). Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proceedings of the National Academy of Sciences, 77(5), 2936–2940. https://doi.org/10.1073/pnas.77.5.2936
Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil Extracellular Traps Kill Bacteria. Science, 303(5663), 1532–1535. https://doi.org/10.1126/science.1092385
Collins, S. J. (1987). The HL-60 Promyelocytic Leukemia Cell Line: Proliferation, Differentiation, and Cellular Oncogene Expression. Blood, 70(5), 1233–1244. https://doi.org/10.1182/blood.V70.5.1233.1233
Collins, S. J., Ruscetti, F. W., Gallagher, R. E., & Gallo, R. C. (1978). Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proceedings of the National Academy of Sciences, 75(5), 2458–2462. https://doi.org/10.1073/pnas.75.5.2458
Danne, C., Skerniskyte, J., Marteyn, B., & Sokol, H. (2024). Neutrophils: From IBD to the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 21(3), 184–197. https://doi.org/10.1038/s41575-023-00871-3
de Souza, H. S. P., & Fiocchi, C. (2016). Immunopathogenesis of IBD: Current state of the art. Nature Reviews Gastroenterology & Hepatology, 13(1), 13–27. https://doi.org/10.1038/nrgastro.2015.186
Derkinderen, P., & Neunlist, M. (2018). Crohn’s and Parkinson disease: Is LRRK2 lurking around the corner? Nature Reviews Gastroenterology & Hepatology, 15(6), 330–331. https://doi.org/10.1038/s41575-018-0006-9
Drury, B., Hardisty, G., Gray, R. D., & Ho, G. (2021). Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cellular and Molecular Gastroenterology and Hepatology, 12(1), 321–333. https://doi.org/10.1016/j.jcmgh.2021.03.002
Eguchi, T., Kuwahara, T., Sakurai, M., Komori, T., Fujimoto, T., Ito, G., Yoshimura, S., Harada, A., Fukuda, M., Koike, M., & Iwatsubo, T. (2018). LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. Proceedings of the National Academy of Sciences, 115(39), E9115–E9124. https://doi.org/10.1073/pnas.1812196115
Eichelberger K. R., & Goldman W. E. (2020). Manipulating neutrophil degranulation as a bacterial virulence strategy. PLOS Pathogens, 16(12), e1009054. https://doi.org/10.1371/journal.ppat.1009054
Funayama, M., Hasegawa, K., Kowa, H., Saito, M., Tsuji, S., & Obata, F. (2002). A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2–q13.1. Annals of Neurology, 51(3), 296–301. https://doi.org/10.1002/ana.10113
Gee, D. J., Wright, L. K., Zimmermann, J., Cole, K., Soule, K., & Ubowski, M. (2012). Dimethylsulfoxide exposure modulates HL-60 cell rolling interactions. Bioscience Reports, 32(Pt 4), 375–382. https://doi.org/10.1042/BSR20110109
Gierlikowska, B., Gierlikowski, W., & Demkow, U. (2020). Alantolactone Enhances the Phagocytic Properties of Human Macrophages and Modulates Their Proinflammatory Functions. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.01339
Gierlikowska, B., Stachura, A., Gierlikowski, W., & Demkow, U. (2021). Phagocytosis, Degranulation and Extracellular Traps Release by Neutrophils—The Current Knowledge, Pharmacological Modulation and Future Prospects. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.666732
Gómez-Gil, P., Ramírez-Cortés, M., González-Bernal, J., Pedrero, Á. G., Prieto-Castro, C. I., Valencia, D., Lobato, R., & Alonso, J. E. (2008). A Feature Extraction Method Based on Morphological Operators for Automatic Classification of Leukocytes. 2008 Seventh Mexican International Conference on Artificial Intelligence, 227–232. https://doi.org/10.1109/MICAI.2008.41
Gottlieb, Y., Elhasid, R., Berger-Achituv, S., Brazowski, E., Yerushalmy-Feler, A., & Cohen, S. (2018). Neutrophil extracellular traps in pediatric inflammatory bowel disease. Pathology International, 68(9), 517–523. https://doi.org/10.1111/pin.12715
Grozdanov, V., Bliederhaeuser, C., Ruf, W. P., Roth, V., Fundel-Clemens, K., Zondler, L., Brenner, D., Martin-Villalba, A., Hengerer, B., Kassubek, J., Ludolph, A. C., Weishaupt, J. H., & Danzer, K. M. (2014). Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathologica, 128(5), 651–663. https://doi.org/10.1007/s00401-014-1345-4
Guo, Y., Gao, F., Wang, Q., Wang, K., Pan, S., Pan, Z., Xu, S., Li, L., & Zhao, D. (2021). Differentiation of HL-60 cells in serum-free hematopoietic cell media enhances the production of neutrophil extracellular traps. Experimental and Therapeutic Medicine, 21(4), 353. https://doi.org/10.3892/etm.2021.9784
Hamam, H. J., & Palaniyar, N. (2019). Post-Translational Modifications in NETosis and NETs-Mediated Diseases. Biomolecules, 9(8), Article 8. https://doi.org/10.3390/biom9080369
Herbst, S., & Gutierrez, M. G. (2019). LRRK2 in Infection: Friend or Foe? ACS Infectious Diseases, 5(6), 809–815. https://doi.org/10.1021/acsinfecdis.9b00051
Homma, Y., Hiragi, S., & Fukuda, M. (2021). Rab family of small GTPases: An updated view on their regulation and functions. The FEBS Journal, 288(1), 36–55. https://doi.org/10.1111/febs.15453
Hsieh, C.-H., Shaltouki, A., Gonzalez, A. E., Bettencourt da Cruz, A., Burbulla, L. F., St. Lawrence, E., Schüle, B., Krainc, D., Palmer, T. D., & Wang, X. (2016). Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson’s Disease. Cell Stem Cell, 19(6), 709–724. https://doi.org/10.1016/j.stem.2016.08.002
Hui, K. Y., Fernandez-Hernandez, H., Hu, J., Schaffner, A., Pankratz, N., Hsu, N.-Y., Chuang, L.-S., Carmi, S., Villaverde, N., Li, X., Rivas, M., Levine, A. P., Bao, X., Labrias, P. R., Haritunians, T., Ruane, D., Gettler, K., Chen, E., Li, D., … Peter, I. (2018). Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Science Translational Medicine, 10(423), eaai7795. https://doi.org/10.1126/scitranslmed.aai7795
Jaumouillé, V., & Waterman, C. M. (2020). Physical Constraints and Forces Involved in Phagocytosis. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01097
Kang, L., Fang, X., Song, Y.-H., He, Z.-X., Wang, Z.-J., Wang, S.-L., Li, Z.-S., & Bai, Y. (2022). Neutrophil–Epithelial Crosstalk During Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology, 14(6), 1257–1267. https://doi.org/10.1016/j.jcmgh.2022.09.002
Kaplan, G. G., & Ng, S. C. (2017). Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 152(2), 313-321.e2. https://doi.org/10.1053/j.gastro.2016.10.020
Kars, M. E., Wu, Y., Stenson, P. D., Cooper, D. N., Burisch, J., Peter, I., & Itan, Y. (2024). The landscape of rare genetic variation associated with inflammatory bowel disease and Parkinson’s disease comorbidity. Genome Medicine, 16(1), 66. https://doi.org/10.1186/s13073-024-01335-2
Knopf, J., Sjöwall, J., Frodlund, M., Hinkula, J., Herrmann, M., & Sjöwall, C. (2022). NET Formation in Systemic Lupus Erythematosus: Changes during the COVID-19 Pandemic. Cells, 11(17), 2619. https://doi.org/10.3390/cells11172619
Koga, T., Morotomi-Yano, K., Sakugawa, T., Saitoh, H., & Yano, K. (2019). Nanosecond pulsed electric fields induce extracellular release of chromosomal DNA and histone citrullination in neutrophil-differentiated HL-60 cells. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-44817-9
Kolaczkowska, E., & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175. https://doi.org/10.1038/nri3399
Kumar, M., Garand, M., & Al Khodor, S. (2019). Integrating omics for a better understanding of Inflammatory Bowel Disease: A step towards personalized medicine. Journal of Translational Medicine, 17(1), 419. https://doi.org/10.1186/s12967-019-02174-1
Kuo, C.-J., Yu, K.-H., See, L.-C., Chiu, C.-T., Su, M.-Y., Hsu, C.-M., Kuo, C.-F., Chiou, M.-J., Liu, J.-R., & Wang, H.-W. (2015). The Trend of Inflammatory Bowel Diseases in Taiwan: A Population-Based Study. Digestive Diseases and Sciences, 60(8), 2454–2462. https://doi.org/10.1007/s10620-015-3630-z
Kuwahara, T., Funakawa, K., Komori, T., Sakurai, M., Yoshii, G., Eguchi, T., Fukuda, M., & Iwatsubo, T. (2020). Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiology of Disease, 145, 105081. https://doi.org/10.1016/j.nbd.2020.105081
Lacy, P. (2006). Mechanisms of Degranulation in Neutrophils. Allergy, Asthma, and Clinical Immunology : Official Journal of the Canadian Society of Allergy and Clinical Immunology, 2(3), 98–108. https://doi.org/10.1186/1710-1492-2-3-98
Lee, W. L., Harrison, R. E., & Grinstein, S. (2003). Phagocytosis by neutrophils. Microbes and Infection, 5(14), 1299–1306. https://doi.org/10.1016/j.micinf.2003.09.014
Li, T., Wang, C., Liu, Y., Li, B., Zhang, W., Wang, L., Yu, M., Zhao, X., Du, J., Zhang, J., Dong, Z., Jiang, T., Xie, R., Ma, R., Fang, S., Zhou, J., & Shi, J. (2020). Neutrophil Extracellular Traps Induce Intestinal Damage and Thrombotic Tendency in Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 14(2), 240–253. https://doi.org/10.1093/ecco-jcc/jjz132
Lobbestael, E., Civiero, L., De Wit, T., Taymans, J.-M., Greggio, E., & Baekelandt, V. (2016). Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Scientific Reports, 6(1), 33897. https://doi.org/10.1038/srep33897
Manda-Handzlik, A., Bystrzycka, W., Wachowska, M., Sieczkowska, S., Stelmaszczyk-Emmel, A., Demkow, U., & Ciepiela, O. (2018). The influence of agents differentiating HL-60 cells toward granulocyte-like cells on their ability to release neutrophil extracellular traps. Immunology & Cell Biology, 96(4), 413–425. https://doi.org/10.1111/imcb.12015
Meagher, L. C., & Cotter, T. G. (1988). The degranulation response in differentiated HL-60 cells. Clinical and Experimental Immunology, 74(3), 483–488.
Metzemaekers, M., Gouwy, M., & Proost, P. (2020). Neutrophil chemoattractant receptors in health and disease: Double-edged swords. Cellular & Molecular Immunology, 17(5), 433–450. https://doi.org/10.1038/s41423-020-0412-0
Mortiboys, H., Johansen, K. K., Aasly, J. O., & Bandmann, O. (2010). Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology, 75(22), 2017–2020. https://doi.org/10.1212/WNL.0b013e3181ff9685
Naegelen, I., Beaume, N., Plançon, S., Schenten, V., Tschirhart, E. J., & Bréchard, S. (2015). Regulation of Neutrophil Degranulation and Cytokine Secretion: A Novel Model Approach Based on Linear Fitting. Journal of Immunology Research, 2015(1), 817038. https://doi.org/10.1155/2015/817038
Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology, 18(2), Article 2. https://doi.org/10.1038/nri.2017.105
Petri, B., & Sanz, M.-J. (2018). Neutrophil chemotaxis. Cell and Tissue Research, 371(3), 425–436. https://doi.org/10.1007/s00441-017-2776-8
Phillipson, M., & Kubes, P. (2019). The Healing Power of Neutrophils. Trends in Immunology, 40(7), 635–647. https://doi.org/10.1016/j.it.2019.05.001
Rada, B. (2019). Neutrophil Extracellular Traps. Methods in Molecular Biology (Clifton, N.J.), 1982, 517–528. https://doi.org/10.1007/978-1-4939-9424-3_31
Ravindran, M., Khan, M. A., & Palaniyar, N. (2019). Neutrophil Extracellular Trap Formation: Physiology, Pathology, and Pharmacology. Biomolecules, 9(8), Article 8. https://doi.org/10.3390/biom9080365
Remijsen, Q., Kuijpers, T. W., Wirawan, E., Lippens, S., Vandenabeele, P., & Vanden Berghe, T. (2011). Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death & Differentiation, 18(4), 581–588. https://doi.org/10.1038/cdd.2011.1
Rosazza, T., Warner, J., & Sollberger, G. (2021). NET formation – mechanisms and how they relate to other cell death pathways. The FEBS Journal, 288(11), 3334–3350. https://doi.org/10.1111/febs.15589
Sadik, C. D., Kim, N. D., & Luster, A. D. (2011). Neutrophils cascading their way to inflammation. Trends in Immunology, 32(10), 452–460. https://doi.org/10.1016/j.it.2011.06.008
Schwab, A. J., Sison, S. L., Meade, M. R., Broniowska, K. A., Corbett, J. A., & Ebert, A. D. (2017). Decreased Sirtuin Deacetylase Activity in LRRK2 G2019S iPSC-Derived Dopaminergic Neurons. Stem Cell Reports, 9(6), 1839–1852. https://doi.org/10.1016/j.stemcr.2017.10.010
Seyedian, S. S., Nokhostin, F., & Malamir, M. D. (2019). A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of Medicine and Life, 12(2), 113–122. https://doi.org/10.25122/jml-2018-0075
Shutinoski, B., Hakimi, M., Harmsen, I. E., Lunn, M., Rocha, J., Lengacher, N., Zhou, Y. Y., Khan, J., Nguyen, A., Hake-Volling, Q., El-Kodsi, D., Li, J., Alikashani, A., Beauchamp, C., Majithia, J., Coombs, K., Shimshek, D., Marcogliese, P. C., Park, D. S., … Schlossmacher, M. G. (2019). Lrrk2 alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 11(511), eaas9292. https://doi.org/10.1126/scitranslmed.aas9292
Sollberger, G., Choidas, A., Burn, G. L., Habenberger, P., Di Lucrezia, R., Kordes, S., Menninger, S., Eickhoff, J., Nussbaumer, P., Klebl, B., Krüger, R., Herzig, A., & Zychlinsky, A. (2018). Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science Immunology, 3(26), eaar6689. https://doi.org/10.1126/sciimmunol.aar6689
Steger, M., Diez, F., Dhekne, H. S., Lis, P., Nirujogi, R. S., Karayel, O., Tonelli, F., Martinez, T. N., Lorentzen, E., Pfeffer, S. R., Alessi, D. R., & Mann, M. (2017). Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesis. eLife, 6, e31012. https://doi.org/10.7554/eLife.31012
Steinberg, B. E., & Grinstein, S. (2007). Unconventional Roles of the NADPH Oxidase: Signaling, Ion Homeostasis, and Cell Death. Science’s STKE, 2007(379), pe11–pe11. https://doi.org/10.1126/stke.3792007pe11
Strober, W., Fuss, I., & Mannon, P. (2007). The fundamental basis of inflammatory bowel disease. The Journal of Clinical Investigation, 117(3), 514–521. https://doi.org/10.1172/JCI30587
Tang, L., Lu, C., Zheng, G., & Burgering, B. M. (2020). Emerging insights on the role of gasdermins in infection and inflammatory diseases. Clinical & Translational Immunology, 9(10), e1186. https://doi.org/10.1002/cti2.1186
Tecchio, C., & Cassatella, M. A. (2016). Neutrophil-derived chemokines on the road to immunity. Seminars in Immunology, 28(2), 119–128. https://doi.org/10.1016/j.smim.2016.04.003
Torres, J., Mehandru, S., Colombel, J.-F., & Peyrin-Biroulet, L. (2017). Crohn’s disease. The Lancet, 389(10080), 1741–1755. https://doi.org/10.1016/S0140-6736(16)31711-1
Ungaro, R., Mehandru, S., Allen, P. B., Peyrin-Biroulet, L., & Colombel, J.-F. (2017). Ulcerative colitis. The Lancet, 389(10080), 1756–1770. https://doi.org/10.1016/S0140-6736(16)32126-2
Urban, C. F., Ermert, D., Schmid, M., Abu-Abed, U., Goosmann, C., Nacken, W., Brinkmann, V., Jungblut, P. R., & Zychlinsky, A. (2009). Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. PLOS Pathogens, 5(10), e1000639. https://doi.org/10.1371/journal.ppat.1000639
Uribe-Querol, E., & Rosales, C. (2020). Phagocytosis: Our Current Understanding of a Universal Biological Process. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01066
Vissers, M. F. J. M., Troyer, M. D., Thijssen, E., Pereira, D. R., Heuberger, | Jules A. A. C., Groeneveld, G. J., & Huntwork-Rodriguez, S. (2023). A leucine-rich repeat kinase 2 (LRRK2) pathway biomarker characterization study in patients with Parkinson’s disease with and without LRRK2 mutations and healthy controls. Clinical and Translational Science, 16(8), 1408–1420. https://doi.org/10.1111/cts.13541
Vorobjeva, N. V., & Chernyak, B. V. (2020). NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Moscow), 85(10), 1178–1190. https://doi.org/10.1134/S0006297920100065
Wallings, R. L., & Tansey, M. G. (2019). LRRK2 regulation of immune-pathways and inflammatory disease. Biochemical Society Transactions, 47(6), 1581–1595. https://doi.org/10.1042/BST20180463
Wang, X., Negrou, E., Maloney, M. T., Bondar, V. V., Andrews, S. V., Montalban, M., Llapashtica, C., Maciuca, R., Nguyen, H., Solanoy, H., Arguello, A., Przybyla, L., Moerke, N. J., Huntwork-Rodriguez, S., & Henry, A. G. (2021). Understanding LRRK2 kinase activity in preclinical models and human subjects through quantitative analysis of LRRK2 and pT73 Rab10. Scientific Reports, 11(1), 12900. https://doi.org/10.1038/s41598-021-91943-4
Wéra, O., Lancellotti, P., & Oury, C. (2016). The Dual Role of Neutrophils in Inflammatory Bowel Diseases. Journal of Clinical Medicine, 5(12), Article 12. https://doi.org/10.3390/jcm5120118
Xu, X.-R., Liu, C.-Q., Feng, B.-S., & Liu, Z.-J. (2014). Dysregulation of mucosal immune response in pathogenesis of inflammatory bowel disease. World Journal of Gastroenterology : WJG, 20(12), 3255–3264. https://doi.org/10.3748/wjg.v20.i12.3255
Zhang, X., & Kortholt, A. (2023). LRRK2 Structure-Based Activation Mechanism and Pathogenesis. Biomolecules, 13(4), 612. https://doi.org/10.3390/biom13040612
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94482-
dc.description.abstract發炎性腸道疾病(Inflammatory Bowel Disease, IBD)是一種胃腸道疾病,其特徵是消化道中反覆性的發炎,可以區分為克隆氏症和潰瘍性結腸炎兩類。在先天免疫系統中,嗜中性球作為抵禦感染的第一道防線,先前的研究發現嗜中性球會大量浸潤在IBD患者的腸道區域,甚至會釋放大量中性粒細胞胞外陷阱(Neutrophil extracellular traps, NETs)。此外,多白胺酸重複激酶2(Leucine-rich repeat kinase 2, LRRK2)基因的多態性已被確定為一個重要的危險因素,其在嗜中性球中的表現最高。LRRK2 是一種多功能蛋白質,具有多種酶功能,包括鳥糞嘌呤核苷三磷酸酶(GTPase)和激酶,並參與多種細胞過程,例如粒線體活性以及溶小體穩態。然而,LRRK2、嗜中性球和 IBD 之間的關係仍不清楚。
在我的研究中,我使用HL-60細胞系,並使用全反式維甲酸(all-trans retinoic acid, ATRA)或二甲基亞碸(Dimethyl sulfoxide, DMSO)作為分化劑將其分化為嗜中性球樣HL-60細胞(neutrophil-like HL-60, dHL-60),建立了研究模型。此外,我使用 LRRK2 激酶抑制劑 MLi-2 抑制 dHL-60 細胞中的 LRRK2 激酶活性,並刺激去顆粒化或中性粒細胞胞外陷阱,以研究 LRRK2 激酶活性在這兩種嗜中性球細胞功能中的作用。在我的實驗結果顯示,ATRA 和DMSO dHL-60 細胞對去顆粒化和NETs形成有不同的反應,證實與ATRA dHL-60 相比,DMSO dHL-60 是更適合研究嗜中性球功能(特別是NETs 形成)的分化模型。此外,我的研究結果表明,LRRK2 激酶活性不會影響 DMSO dHL-60 細胞去顆粒化後產生的髓過氧化物(Myeloperoxidase, MPO)的釋放。然而,在不依賴 NAPDH 氧化酶 (NOX) 的 NETosis 路徑刺激後,抑制 LRRK2 激酶活性會增加 DMSO dHL-60 細胞中擴散型 NETs 的誘導。進一步的機制研究發現當MLi-2會抑制 LRRK2 在 S935 位點及其下游蛋白 Rab10的磷酸化,在結果中也觀察到和控制組相比當LRRK2激酶活性被抑制的情況下刺激 A23187 誘導的 NETosis過程中,反而會減少組蛋白瓜氨酸化的表達。綜上所述,根據我的研究結果可以發現,LRRK2激酶活性不影響 DMSO dHL-60細胞的去顆粒化過程,但在不依賴 NOX的NETosis途徑中發揮作用,影響組蛋白瓜氨酸化。
zh_TW
dc.description.abstractInflammatory Bowel Disease (IBD) is a gastrointestinal condition characterized by recurrent inflammation in the digestive tract, including Crohn's Disease (CD) and Ulcerative Colitis (UC). Neutrophils, as the first line of defense in the innate immune system, infiltrate the intestinal areas of IBD patients and release significant amounts of Neutrophil Extracellular Traps (NETs). The polymorphism of the Leucine-rich repeat kinase 2 (LRRK2) gene has been identified as an important risk factor, with its highest expression found in neutrophils. LRRK2 is a multifunctional protein with various enzymatic functions, including GTPase and kinase activities, involved in cellular processes such as autophagy and mitochondrial activity. However, the relationship between LRRK2, neutrophils, and IBD remains unclear.
In my study, I used the HL-60 cell line. We differentiated it into neutrophil-like HL-60 cells (dHL-60) using all-trans retinoic acid (ATRA) or Dimethyl sulfoxide (DMSO) as a differentiation agent to establish a research model. Additionally, I inhibited LRRK2 kinase activity in dHL-60 cells using the LRRK2 kinase inhibitor - MLi-2 and stimulated degranulation or NET formation to investigate the role of LRRK2 kinase activity in these neutrophil functions. My experiment results demonstrated that ATRA and DMSO dHL-60 cells responded differently to degranulation and NET formation stimuli, confirming that DMSO dHL-60 cells are a more suitable differentiation model for studying neutrophil functions, especially NET formation. Furthermore, my study showed that LRRK2 kinase activity did not affect Myeloperoxidase (MPO) release after degranulation in DMSO dHL-60 cells. However, inhibiting LRRK2 kinase activity increased the induction of spread-form NETs in the NADPH-Oxidase (NOX) - independent NETosis pathway. Further mechanistic studies revealed that MLi-2 inhibited the phosphorylation of LRRK2 at the S935 site and its downstream protein Rab10, and decreased histone citrullination during A23187-induced NETosis compared to the control group. In conclusion, our findings suggest that LRRK2 kinase activity does not impact the degranulation process in DMSO dHL-60 cells but plays a role in the NOX-independent NETosis pathway, affecting histone citrullination.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:17:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:17:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
Abstract v
Contents vii
Chapter 1 Introduction 1
1.1 Inflammatory Bowel Disease (IBD) 1
1.2 Neutrophils 1
1.2.1 Neutrophil anti-bacterial functions 2
1.2.2 Neutrophil extracellular traps (NETs) 4
1.2.3 Neutrophils in IBD 6
1.2.4 NETs in IBD 7
1.3 Leucine-Rich Repeat Kinase 2 (LRRK2) 7
1.3.1 The function of LRRK2 7
1.3.2 LRRK2 and Innate Immunity 8
1.3.3 LRRK2 kinase activity and IBD 9
1.4 HL-60 cell line model 10
1.5 Specific Aim 11
Chapter 2 Materials & Methods 13
2.1 Cell culture and differentiation 13
2.2 Quantification of HL-60 Differentiation Level 13
2.3 Degranulation 14
2.4 Simulation of NETosis 14
2.5 Detection of NETs with SYTOX green staining 15
2.6 Immunofluorescence staining 15
2.7 Quantification of NETs 16
2.8 Western blot 17
2.9 Detection of total ROS and mitochondrial ROS by plate reader 18
2.10 Data analysis 18
Chapter 3 Results 20
3.1 The optimal differentiation of HL-60 into neutrophil-like cells (dHL-60) utilizing 1 μM all-trans retinoic acid (ATRA) or 1.3% dimethyl sulfoxide (DMSO) for five days 20
3.2 Differential responses of neutrophil-like HL-60 cells differentiated with ATRA or DMSO to myeloperoxidase (MPO) release induced by cytochalasin B and N-formyl-met-leu-phe (fMLP) 21
3.3 The enzymatic activity of LRRK2 kinase has no impact on the release of MPO induced by cytochalasin B and fMLP stimulation 22
3.4 Differentiation-dependent responses of dHL-60 cells to NETosis stimuli 23
3.5 Inhibition of LRRK2 kinase activity affects NET formation in DMSO dHL-60 cells through NOX-independent NETosis pathway 25
3.6 Differential effects of LRRK2 kinase inhibition on NET formation and the phosphorylation of Rab10 in ATRA and DMSO dHL-60 27
3.7 LRRK2 kinase regulation of NET formation via histone citrullination in the NOX-independent NETosis pathway 31
Chapter 4 Discussion 34
Chapter 5 Conclusion 39
Figures 40
Figure 1. Morphological Assessment of HL-60 Cells Differentiation Level 42
Figure 2. Effected of two differentiated types of HL-60, ATRA, and DMSO, on degranulation stimulation 45
Figure 3. The activity of LRRK2 kinase did not affect the myeloperoxidase (MPO) released from DMSO dHL-60 47
Figure 4. Differential responses of dHL-60 to NET formation stimuli under various differentiation conditions 52
Figure 5. Quantification of activated SYTOX green+ cells and spread-form NETs in ATRA or DMSO dHL-60 cells with and without LRRK2 kinase inhibition 54
Figure 6. Western blot analysis of pRab10/Rab10 ratio and LRRK2 expression in ATRA and DMSO dHL-60 cells 59
Figure 7. The molecular Changes of NETosis during the inhibition of LRRK2 kinase activity 61
Figure 8. The response of differentiated HL-60 cells and the effect of LRRK2 kinase on NET formation 63
Tables 65
Table 1. Antibody list 65
Reference 66
-
dc.language.isoen-
dc.subject發炎性腸道疾病zh_TW
dc.subject多白胺酸重複激酶2zh_TW
dc.subject嗜中性球胞外網狀結構zh_TW
dc.subject去顆粒化zh_TW
dc.subjectMLi-2zh_TW
dc.subjectHL-60細胞系zh_TW
dc.subjectIBDen
dc.subjectHL-60 cell lineen
dc.subjectLRRK2en
dc.subjectNETosisen
dc.subjectDegranulationen
dc.subjectMLi-2en
dc.title利用HL-60細胞模型探討多白胺酸重複激酶2在嗜中性球功能中所參與的機制zh_TW
dc.titleUtilize the HL-60 cell model to investigate the role of LRRK2 in neutrophil functionsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊任;傅化文zh_TW
dc.contributor.oralexamcommitteeChun-Jen Chen;Hua-Wen Fuen
dc.subject.keywordHL-60細胞系,多白胺酸重複激酶2,嗜中性球胞外網狀結構,去顆粒化,MLi-2,發炎性腸道疾病,zh_TW
dc.subject.keywordHL-60 cell line,LRRK2,NETosis,Degranulation,MLi-2,IBD,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202404037-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved