Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author吳典鴻zh_TW
dc.contributor.authorDian-Hong Wuen
dc.date.accessioned2024-08-16T16:17:30Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-11-
dc.identifier.citation[1]S. Prakash and S. Kumar, "Fabrication of microchannels: a review," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 229, no. 8, pp. 1273-1288, 2015.
[2]Z. Wan, Y. Li, H. Tang, W. Deng, and Y. Tang, "Characteristics and mechanism of top burr formation in slotting microchannels using arrayed thin slotting cutters," Precision Engineering, vol. 38, no. 1, pp. 28-35, 2014.
[3]M. Pan, D. Zeng, and Y. Tang, "Feasibility investigations on multi-cutter milling process: A novel fabrication method for microreactors with multiple microchannels," Journal of Power Sources, vol. 192, no. 2, pp. 562-572, 2009.
[4]J. Brugger, R. Buser, and N. De Rooij, "Silicon cantilevers and tips for scanning force microscopy," Sensors and Actuators A: Physical, vol. 34, no. 3, pp. 193-200, 1992.
[5]J. Vieillard., "Integrated microfluidic–microoptical systems fabricated by dry etching of soda-lime glass," Microelectronic engineering, vol. 85, no. 2, pp. 465-469, 2008.
[6]徐竣祈, "透過專利、學術論文分析技術發展趨勢-以蝕刻技術為例," 碩士, 科技管理研究所, 國立政治大學, 台北市, 2008. [Online]. Available: https://hdl.handle.net/11296/d2kmr8
[7]P. Dyer, "Excimer laser polymer ablation: twenty years on," Applied Physics A, vol. 77, pp. 167-173, 2003.
[8]Q. Heng, C. Tao, and Z. Tie-chuan, "Surface roughness analysis and improvement of micro-fluidic channel with excimer laser," Microfluidics and Nanofluidics, vol. 2, no. 4, pp. 357-360, 2006.
[9]J. Fernández-Pradas, D. Serrano, P. Serra, and J. Morenza, "Laser fabricated microchannels inside photostructurable glass-ceramic," Applied Surface Science, vol. 255, no. 10, pp. 5499-5502, 2009.
[10]D. Lim, Y. Kamotani, B. Cho, J. Mazumder, and S. Takayama, "Fabrication of microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd: YAG laser direct write method," Lab on a Chip, vol. 3, no. 4, pp. 318-323, 2003.
[11]D. Snakenborg, H. Klank, and J. P. Kutter, "Microstructure fabrication with a CO2 laser system," Journal of Micromechanics and microengineering, vol. 14, no. 2, p. 182, 2003.
[12]D. Day and M. Gu, "Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses," Optics express, vol. 13, no. 16, pp. 5939-5946, 2005.
[13]C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and nanofluidics, vol. 6, pp. 1-16, 2009.
[14]A. Bamshad, A. Nikfarjam, and H. Khaleghi, "A new simple and fast thermally-solvent assisted method to bond PMMA–PMMA in micro-fluidics devices," Journal of Micromechanics and Microengineering, vol. 26, no. 6, p. 065017, 2016.
[15]C.W. Tsao, C.-Y. Chang, and P.-Y. Chien, "Microwave-assisted solvent bonding for polymethyl methacrylate microfluidic device," Micromachines, vol. 13, no. 7, p. 1131, 2022.
[16]I. Doh and Y.H. Cho, "A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process," Sensors and Actuators A: Physical, vol. 121, no. 1, pp. 59-65, 2005.
[17]J. D. Adams, U. Kim, and H. T. Soh, "Multitarget magnetic activated cell sorter," Proceedings of the National Academy of Sciences, vol. 105, no. 47, pp. 18165-18170, 2008.
[18]M. Murata, Y. Okamoto, Y.-S. Park, N. Kaji, M. Tokeshi, and Y. Baba, "Cell separation by the combination of microfluidics and optical trapping force on a microchip," Analytical and bioanalytical chemistry, vol. 394, pp. 277-283, 2009.
[19]J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 9, no. 23, pp. 3354-3359, 2009.
[20]X. Ding ., "Cell separation using tilted-angle standing surface acoustic waves," Proceedings of the National Academy of Sciences, vol. 111, no. 36, pp. 12992-12997, 2014.
[21]Y. Lu, J. Ying, S. Mu, W. Tan, and G. Zhu, "Sheathless and high-throughput separation of multi-target particles combining inertia and deterministic lateral displacement (DLD) in a microchannel," Separation and Purification Technology, vol. 345, p. 127369, 2024.
[22]M. Yamada, M. Nakashima, and M. Seki, "Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel," Analytical chemistry, vol. 76, no. 18, pp. 5465-5471, 2004.
[23]J. Zhang ., "Fundamentals and applications of inertial microfluidics: A review," Lab on a Chip, vol. 16, no. 1, pp. 10-34, 2016.
[24]A. Abdulla, T. Zhang, K. Z. Ahmad, S. Li, J. Lou, and X. Ding, "Label-free separation of circulating tumor cells using a self-amplified inertial focusing (SAIF) microfluidic chip," Analytical Chemistry, vol. 92, no. 24, pp. 16170-16179, 2020.
[25]J. Zhang ., "High-throughput separation of white blood cells from whole blood using inertial microfluidics," IEEE transactions on biomedical circuits and systems, vol. 11, no. 6, pp. 1422-1430, 2017.
[26]A. A. S. Bhagat, S. S. Kuntaegowdanahalli, and I. Papautsky, "Continuous particle separation in spiral microchannels using dean flows and differential migration," Lab on a Chip, vol. 8, no. 11, pp. 1906-1914, 2008.
[27]S. S. Kuntaegowdanahalli, A. A. S. Bhagat, G. Kumar, and I. Papautsky, "Inertial microfluidics for continuous particle separation in spiral microchannels," Lab on a Chip, vol. 9, no. 20, pp. 2973-2980, 2009.
[28]W. Pakhira, R. Kumar, and K. M. Ibrahimi, "Distinct separation of multiple CTCs using inertial focusing phenomena utilizing single-looped spiral microfluidic lab-on-chip," Chemical Engineering Science, vol. 275, p. 118724, 2023.
[29]K. Akbarnataj, S. Maleki, M. Rezaeian, M. Haki, and A. Shamloo, "Novel size-based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells," Talanta, vol. 254, p. 124125, 2023.
[30]M. Adel, A. Allam, A. E. Sayour, H. F. Ragai, S. Umezu, and A. M. Fath El-Bab, "Fabrication of spiral low-cost microchannel with trapezoidal cross section for cell separation using a grayscale approach," Micromachines, vol. 14, no. 7, p. 1340, 2023.
[31]M. E. Warkiani et al., "An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells," Analyst, vol. 139, no. 13, pp. 3245-3255, 2014.
[32]沛霖科技股份有限公司。同軸視覺雷射打標系統。檢自 https://www.lasersolution.com.tw/coaxial-vision-laser-marking-system.html
[33]U. Ali, K. J. B. A. Karim, and N. A. Buang, "A review of the properties and applications of poly (methyl methacrylate)(PMMA)," Polymer Reviews, vol. 55, no. 4, pp. 678-705, 2015.
[34]Keyence. 3D Laser Scanning Confocal Microscope. Retrieved from https://www.keyence.com/products/microscope/laser-microscope/vk-x100_x200/models/vk-x210/
[35]Thermo Fisher. Countess II FL Automated Cell Counter.https://www.thermofisher.com/tw/zt/home/references/newsletters-and-journals/bioprobes-journal-of-cell-biology-applications/bioprobes-70/countess-ii-fl-automated-cell-counter.html
[36]Poon, C. (2022). Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94481-
dc.description.abstract本研究利用 CO2雷射於聚甲基丙烯酸甲酯 (PMMA) 基板上進行微加工製造微流道,使用 CO2雷射進行微加工有製造成本低以及加工時間快速等優點,而使用聚甲基丙烯酸甲酯作為微流道的材料則是因為該聚合物具有一定的耐化學性、熱穩定性、生物相容性以及可以媲美玻璃的光學性能,並且與其他材料相比還有重量輕、成本低廉、易於製造優勢,最重要的是聚甲基丙烯酸甲酯對CO2雷射有相當高的吸收率,因此,非常適合使用CO2雷射加工。
實驗過程中探討了各項雷射參數,包含雷射功率、掃描速度以及掃描間距對微流道之影響,發現雷射功率越大,寬度及深度也會隨之增加;掃描速度的增加,寬度及深度則是會減少,這是因為雷射掃描速度愈快,代表施加在聚甲基丙烯酸甲酯基板上的能量就會越少;增加掃描間距則會使寬度及深度減少。根據雷射共軛焦顯微鏡觀察到的結果,CO2雷射所雕刻出的微流道的寬度與深度分別484.55±6.6µm以及139.09±5.6µm,橫截面形狀呈現類似梯形。
本研究所使用的微流道裝置,在2、3以及4mL/min之流量下分離效率都大於80%,而5mL/min的流量下分離效率僅74.6%,使用流量參數為4mL/min,成熟肝細胞分離效率可達87.2%,因此,本研究最佳流量參數為4mL/min。
進行細胞培養時,使用微流道裝置分離所培養之成熟肝細胞,於第3天時可以觀察到生長出肝細胞之型態,並針對所培養之成熟肝細胞進行肝機能測試,在尿素分析的實驗中,發現微流道裝置分離所培養的成熟肝細胞與經過正常離心處理的成熟肝細胞之尿素濃度,具有相同的趨勢,在第3天時尿素濃度最高,到第5天時下降,並且兩者之間並無太大區別,證明了使用本研究的微流道裝置之可行性。
zh_TW
dc.description.abstractIn this study, microfluidic channels were fabricated on poly(methyl methacrylate) (PMMA) substrates using a CO2 laser. The advantages of using CO2 laser for micromachining include low fabrication cost and fast processing time, and the use of PMMA as the material for the microfluidic channels is due to the polymer's chemical resistance, thermal stability, biocompatibility, and optical properties comparable to those of glass, as well as light weight, low cost, and ease of fabrication compared to other materials. Compared with other materials, the polymer is also lightweight, low cost, easy to manufacture, and most importantly, the poly(methyl methacrylate) has a very high absorption rate of CO2 lasers, making it very suitable for CO2 laser processing.
The experiment investigated the effects of laser power, scanning speed, and scanning distance on the microfluidic channels. Higher laser power resulted in wider and deeper channels, while increasing scanning speed and distance reduced these dimensions. The average channel width and depth were 484.55±6.6 µm and 139.09±5.6 µm, respectively, with a trapezoidal cross-section.
The microfluidic device showed a separation efficiency greater than 80% at flow rates of 2, 3, and 4 mL/min, but only 74.6% at 5 mL/min. The optimal flow rate was 4 mL/min, achieving a separation efficiency of 87.2% for mature hepatocytes.
In the Urea assay experiment, the urea concentration of mature liver cells cultured in the microfluidic device followed the same trend as those cultured by normal centrifugation, peaking on day 3 and decreasing by day 5, demonstrating the device's feasibility.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:17:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:17:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 x
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構 3
第2章 文獻回顧 4
2.1 微流道製造方法 4
2.1.1 機械切削 4
2.1.2 濕蝕刻(Wet etching) 5
2.1.3 乾蝕刻(Dry etching) 5
2.1.4 紫外線雷射 6
2.1.5 紅外線雷射 7
2.1.6 短脈衝及超短脈衝雷射 7
2.2 聚甲基丙烯酸甲酯黏合 9
2.2.1 熱黏合 (Thermal bonding) 9
2.2.2 溶劑黏合 (Solvent bonding) 9
2.2.3 微波黏合 (Microwave bonding) 10
2.3 主動式分離 11
2.3.1 介電泳(Dielectrophoresis) 11
2.3.2 磁泳(Magnetophoresis) 12
2.3.3 光陷阱 (Optical trapping) 13
2.3.4 表面聲波駐波 (Standing surface acoustic wave) 14
2.4 被動式分離 16
2.4.1 確定性橫向位移 (Deterministic lateral displacement) 16
2.4.2 夾流分級 (Pinched flow fractionation) 18
2.4.3 慣性微流體 (Inertial microfluidics) 19
2.4.4 螺旋流道設計原理 26
2.5 小節 27
第3章 材料與方法 28
3.1 微流道製備 28
3.2 實驗設備 30
3.2.1 雷射打標機 30
3.2.2 聚甲基丙烯酸甲酯(PMMA)基板 31
3.2.3 注射幫浦 33
3.3 細胞來源、實驗藥品、耗材與儀器設備 34
3.3.1 細胞來源 34
3.3.2 實驗藥品 34
3.3.3 儀器設備 34
3.3.4 實驗耗材 34
3.4 膠原蛋白修飾培養皿 35
3.5 分析方法 36
3.5.1 雷射共軛焦顯微鏡 36
3.5.2 自動細胞計數儀 38
第4章 實驗結果與討論 39
4.1 雷射參數對微流道之影響 39
4.1.1 雷射功率對流道之影響 39
4.1.2 雷射掃描速度對微流道之影響 41
4.1.3 掃描間距對微流道之影響 43
4.1.4 微流道之表面形貌 45
4.2 液體洩漏測試 48
4.3 分離效率 50
4.4 處理時間比較 55
4.5 成熟肝細胞形貌 56
4.6 尿素分析 (Urea assay) 59
第5章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 62
-
dc.language.isozh_TW-
dc.subject微流道zh_TW
dc.subjectCO2 雷射zh_TW
dc.subject成熟肝細胞zh_TW
dc.subject聚甲基丙烯酸甲酯zh_TW
dc.subjectCO2 laseren
dc.subjectpoly(methyl methacrylate)en
dc.subjectmicrofluidicen
dc.subjectmature hepatocyteen
dc.title雷射直寫微流道晶片製程於肝臟細胞分選之研究zh_TW
dc.titleLaser Direct Writing on Microfluidic Chip Processing for Liver Cell Sortingen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee侯詠德;許聿翔;廖英志zh_TW
dc.contributor.oralexamcommitteeYung-Te Hou;Yu-Hsiang Hsu;Ying-Chin Liaoen
dc.subject.keywordCO2 雷射,微流道,聚甲基丙烯酸甲酯,成熟肝細胞,zh_TW
dc.subject.keywordCO2 laser,microfluidic,poly(methyl methacrylate),mature hepatocyte,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202403859-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.63 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved