請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94479
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 孫啟光 | zh_TW |
dc.contributor.advisor | Chi-Kuang Sun | en |
dc.contributor.author | 畢業俊 | zh_TW |
dc.contributor.author | Yip-Chun But | en |
dc.date.accessioned | 2024-08-16T16:16:54Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | Reference List
1. Keller, D., C. Erö, and H. Markram, Cell densities in the mouse brain: a systematic review. Frontiers in neuroanatomy, 2018. 12: p. 83 2. Arias, A., L. Manubens-Gil, and M. Dierssen, Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Frontiers in Molecular Neuroscience, 2022. 15: p. 958222 3. Tyson, A.L., et al., A deep learning algorithm for 3D cell detection in whole mouse brain image datasets. PLoS computational biology, 2021. 17(5): p. e1009074 4. Yao, Z., et al., A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature, 2023. 624(7991): p. 317-332 5. Chung, K., et al., Structural and molecular interrogation of intact biological systems. Nature, 2013. 497(7449): p. 332-337 6. Susaki, E.A., et al., Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell, 2014. 157(3): p. 726-739 7. Deng, X. and M. Gu, Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation. Applied optics, 2003. 42(16): p. 3321-3329 8. Helmchen, F. and W. Denk, Deep tissue two-photon microscopy. Nature methods, 2005. 2(12): p. 932-940 9. Ji, N., J. Freeman, and S.L. Smith, Technologies for imaging neural activity in large volumes. Nature neuroscience, 2016. 19(9): p. 1154-1164 10. Streich, L., et al., High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy. Nature Methods, 2021. 18(10): p. 1253-1258 11. Murakami, T.C., et al., A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nature neuroscience, 2018. 21(4): p. 625-637 12. Economo, M.N., et al., A platform for brain-wide imaging and reconstruction of individual neurons. elife, 2016. 5: p. e10566 13. Ueda, H.R., et al., Tissue clearing and its applications in neuroscience. Nature Reviews Neuroscience, 2020. 21(2): p. 61-79 14. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: John Wiley & Sons. 15. Pan, C., et al., Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature methods, 2016. 13(10): p. 859-867 16. Barnett, C., Some applications of wave-length turbidimetry in the infrared. The Journal of Physical Chemistry, 1942. 46(1): p. 69-75 17. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der physik, 1908. 330(3): p. 377-445 18. Gu, M., X. Gan, and X. Deng, Microscopic imaging through turbid media. Springeer, 2015. 5: p. 201 19. Gan, X., S. Schilders, and M. Gu, Combination of annular aperture and polarization gating methods for efficient microscopic imaging through a turbid medium: theoretical analysis. Microscopy and Microanalysis, 1997. 3(6): p. 495-503 20. Morgan, S.P., M.P. Khong, and M.G. Somekh, Effects of polarization state and scatterer concentration on optical imaging through scattering media. Applied Optics, 1997. 36(7): p. 1560-1565 21. Wf, C., A review of the optical properties of biological tissues. IEEE J Quantum Electron, 1990. 26: p. 2166-2185 22. Reinig, M.R., et al., Enhancing image quality in cleared tissue with adaptive optics. J Biomed Opt, 2016. 21(12): p. 121508 23. Thayil, A., et al., The influence of aberrations in third harmonic generation microscopy. Journal of Optics, 2010. 12(8): p. 084009 24. Simmonds, R.D., T. Wilson, and M.J. Booth, Effects of aberrations and specimen structure in conventional, confocal and two-photon fluorescence microscopy. J Microsc, 2012. 245(1): p. 63-71 25. Chaigneau, E., et al., Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue. Optics Express, 2011. 19(23): p. 22755-22774 26. Herz, J., et al., Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys J, 2010. 98(4): p. 715-23 27. Ji, N., D.E. Milkie, and E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods, 2010. 7(2): p. 141-147 28. Cha, J.W., J. Ballesta, and P.T. So, Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J Biomed Opt, 2010. 15(4): p. 046022 29. Hsu, K.J., et al., Optical properties of adult Drosophila brains in one-, two-, and three-photon microscopy. Biomed Opt Express, 2019. 10(4): p. 1627-1637 30. Neil, M.A., et al., Adaptive aberration correction in a two-photon microscope. J Microsc, 2000. 200 (Pt 2): p. 105-8 31. Sancataldo, G., O. Barrera, and V. Vetri, Two-Photon Imaging, in Principles of Light Microscopy: From Basic to Advanced, V. Nechyporuk-Zloy, Editor. 2022, Springer International Publishing: Cham. p. 215-241. 32. Alonso, M. and E.J. Finn, Fundamental university physics. Vol. 2. 1967: Addison-Wesley Reading, MA. 33. Jiang, T., H. Gong, and J. Yuan, Whole-brain optical imaging: A powerful tool for precise brain mapping at the mesoscopic level. Neuroscience Bulletin, 2023. 39(12): p. 1840-1858 34. Siedentopf, H. and R. Zsigmondy, Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser. Annalen der Physik, 1902. 315(1): p. 1-39 35. Huisken, J., et al., Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 2004. 305(5686): p. 1007-1009 36. Dodt, H.-U., et al., Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods, 2007. 4(4): p. 331-336 37. Huisken, J. and D.Y. Stainier, Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Optics letters, 2007. 32(17): p. 2608-2610 38. Daetwyler, S. and R.P. Fiolka, Light-sheets and smart microscopy, an exciting future is dawning. Communications biology, 2023. 6(1): p. 502 39. Fahrbach, F.O. and A. Rohrbach, Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media. Nature communications, 2012. 3(1): p. 632 40. Chen, B.-C., et al., Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 2014. 346(6208): p. 1257998 41. Vettenburg, T., et al., Light-sheet microscopy using an Airy beam. Nature methods, 2014. 11(5): p. 541-544 42. Chang, B.-J., et al., Universal light-sheet generation with field synthesis. Nature methods, 2019. 16(3): p. 235-238 43. Golub, I., B. Chebbi, and J. Golub, Toward the optical “magic carpet”: reducing the divergence of a light sheet below the diffraction limit. Optics letters, 2015. 40(21): p. 5121-5124 44. Hillman, E.M., et al., Light-sheet microscopy in neuroscience. Annual review of neuroscience, 2019. 42: p. 295-313 45. Dunsby, C., Optically sectioned imaging by oblique plane microscopy. Optics express, 2008. 16(25): p. 20306-20316 46. Elliott, A.D., Confocal microscopy: principles and modern practices. Current protocols in cytometry, 2020. 92(1): p. e68 47. Bleyl, D., Handbuch der Mikroskopie, 3. Aufl. Herausgegeben von H. Beyer und H. Riesenberg. 488 Seiten, 410 Abb., 30 Tab. VEB Verlag Technik, Berlin 1988. Preis: 48, 50 M. 1989, Wiley Online Library. 48. Lorentz, H.A., The theory of electrons and its applications to the phenomena of light and radiant heat. Vol. 29. 1916: GE Stechert & Company. 49. Boyd, R.W., A.L. Gaeta, and E. Giese, Nonlinear optics, in Springer Handbook of Atomic, Molecular, and Optical Physics. 2008, Springer. p. 1097-1110. 50. Zipfel, W.R., R.M. Williams, and W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nature biotechnology, 2003. 21(11): p. 1369-1377 51. Deng, X., X. Gan, and M. Gu, Monte Carlo simulation of multiphoton fluorescence microscopic imaging through inhomogeneous tissuelike turbid media. Journal of biomedical optics, 2003. 8(3): p. 440-449 52. Gu, M., et al., Comparison of penetration depth between two-photon excitation and single-photon excitation in imaging through turbid tissue media. Applied Physics Letters, 2000. 77(10): p. 1551-1553 53. Shannon, C.E., Communication in the presence of noise. Proceedings of the IRE, 1949. 37(1): p. 10-21 54. Nyquist, H., Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 1928. 47(2): p. 617-644 55. Pawley, J., Handbook of biological confocal microscopy. Vol. 236. 2006: Springer Science & Business Media. 56. Heintzmann, R. and C.J. Sheppard, The sampling limit in fluorescence microscopy. Micron, 2007. 38(2): p. 145-149 57. Stuart, G., N. Spruston, and M. Häusser, Dendrites. 2016: Oxford University Press. 58. Müller, B., et al. High-resolution tomographic imaging of microvessels. in Developments in X-ray tomography VI. 2008. SPIE. 59. Osten, P. and T.W. Margrie, Mapping brain circuitry with a light microscope. Nature methods, 2013. 10(6): p. 515-523 60. Graf, B.W. and S.A. Boppart, Imaging and analysis of three-dimensional cell culture models. Live Cell Imaging: Methods and Protocols, 2010: p. 211-227 61. Theer, P. and W. Denk, On the fundamental imaging-depth limit in two-photon microscopy. JOSA A, 2006. 23(12): p. 3139-3149 62. Richardson, D.S. and J.W. Lichtman, Clarifying tissue clearing. Cell, 2015. 162(2): p. 246-257 63. Ertürk, A., et al., Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature medicine, 2012. 18(1): p. 166-171 64. Renier, N., et al., iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell, 2014. 159(4): p. 896-910 65. Tsai, P.S., et al., Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. Journal of Neuroscience, 2009. 29(46): p. 14553-14570 66. Chiang, A.-S., et al., Insect NMDA receptors mediate juvenile hormone biosynthesis. Proceedings of the National Academy of Sciences, 2002. 99(1): p. 37-42 67. Kuwajima, T., et al., ClearT: a detergent-and solvent-free clearing method for neuronal and non-neuronal tissue. Development, 2013. 140(6): p. 1364-1368 68. Ke, M.-T., S. Fujimoto, and T. Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nature neuroscience, 2013. 16(8): p. 1154-1161 69. Hou, B., et al., Scalable and DiI-compatible optical clearance of the mammalian brain. Frontiers in neuroanatomy, 2015. 9: p. 19 70. Costantini, I., et al., A versatile clearing agent for multi-modal brain imaging. Scientific reports, 2015. 5(1): p. 9808 71. Aoyagi, Y., et al., A rapid optical clearing protocol using 2, 2′-thiodiethanol for microscopic observation of fixed mouse brain. PloS one, 2015. 10(1): p. e0116280 72. Staudt, T., et al., 2, 2′‐thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microscopy research and technique, 2007. 70(1): p. 1-9 73. Yang, B., et al., Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell, 2014. 158(4): p. 945-958 74. Ertürk, A., et al., Three-dimensional imaging of solvent-cleared organs using 3DISCO. Nature protocols, 2012. 7(11): p. 1983-1995 75. Gan, X. and M. Gu, Modified Monte Carlo simulation of multi-dimensional photon distribution for microscopic imaging. Optik (Stuttgart), 1998. 108(3): p. 129-136 76. Hess, S.T., T.P. Girirajan, and M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal, 2006. 91(11): p. 4258-4272 77. Bumstead, J.R., et al., Designing a large field-of-view two-photon microscope using optical invariant analysis. Neurophotonics, 2018. 5(2): p. 025001-025001 78. Susaki, E.A., et al., Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nature protocols, 2015. 10(11): p. 1709-1727 79. Zhang, L.-Y., et al., CLARITY for high-resolution imaging and quantification of vasculature in the whole mouse brain. Aging and disease, 2018. 9(2): p. 262 80. Epp, J.R., et al., Optimization of CLARITY for clearing whole-brain and other intact organs. eneuro, 2015. 2(3) 81. Yang, J., Sensitivity enhanced long-period fiber grating based photonic devices for biosensing. 2007: Sep. 82. Bekkouche, B.M., et al., Comparison of transparency and shrinkage during clearing of insect brains using media with tunable refractive index. Frontiers in Neuroanatomy, 2020. 14: p. 599282 83. Horton, N.G., et al., In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nature photonics, 2013. 7(3): p. 205-209 84. Theer, P., M.T. Hasan, and W. Denk, Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti: Al 2 O 3 regenerative amplifier. Optics letters, 2003. 28(12): p. 1022-1024 85. Xu, C. and W.W. Webb, Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. JOSA B, 1996. 13(3): p. 481-491 86. Xu, C. and W.W. Webb, Multiphoton excitation of molecular fluorophores and nonlinear laser microscopy, in Topics in Fluorescence Spectroscopy: Volume 5: Nonlinear and Two-Photon-Induced Fluorescence. 2002, Springer. p. 471-540. 87. Borah, B.J., et al., Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability. Iscience, 2021. 24(9) 88. Kukkonen, H., et al., Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold. Vision research, 1993. 33(10): p. 1431-1436 89. Ye, L., et al., Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell, 2016. 165(7): p. 1776-1788 90. Gan, X. and M. Gu, Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media. Optics letters, 1999. 24(11): p. 741-743 91. Saleh, B., Beam optics. Fundamentals of photonics, 1991: p. 80-107 92. Friedman, L. Convolution of Gaussian and error function. 2018; Available from: https://math.stackexchange.com/q/2950100 93. Andrews, L.C., Special functions of mathematics for engineers. Vol. 49. 1998: Spie Press. 94. Li, B. and G.J. Babu, A graduate course on statistical inference. 2019: Springer. 95. Zhang, L.Y., et al., CLARITY for High-resolution Imaging and Quantification of Vasculature in the Whole Mouse Brain. Aging Dis, 2018. 9(2): p. 262-272 96. Tomer, R., et al., Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nature Protocols, 2014. 9(7): p. 1682-1697 97. Aoyagi, Y., et al., A rapid optical clearing protocol using 2,2'-thiodiethanol for microscopic observation of fixed mouse brain. PLoS One, 2015. 10(1): p. e0116280 98. Epp, J.R., et al., Optimization of CLARITY for Clearing Whole-Brain and Other Intact Organs. eNeuro, 2015. 2(3) 99. Chen, Y., et al., A Versatile Tiling Light Sheet Microscope for Imaging of Cleared Tissues. Cell Rep, 2020. 33(5): p. 108349 100. Chakraborty, T., et al., Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution. Nature Methods, 2019. 16(11): p. 1109-1113 101. Chakraborty, S., et al., Saturated two-photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth. J Biophotonics, 2019. 12(1): p. e201800136 102. Schwertner, M., M.J. Booth, and T. Wilson, Characterizing specimen induced aberrations for high NA adaptive optical microscopy. Optics Express, 2004. 12(26): p. 6540-6552 103. Feuchtinger, A., A. Walch, and M. Dobosz, Deep tissue imaging: a review from a preclinical cancer research perspective. Histochemistry and Cell Biology, 2016. 146(6): p. 781-806 104. Marx, V., Microscopy: seeing through tissue. Nature Methods, 2014. 11(12): p. 1209-1214 105. Doi, A., et al., High-resolution imaging in two-photon excitation microscopy using in situ estimations of the point spread function. Biomed Opt Express, 2018. 9(1): p. 202-213 106. Drobizhev, M., R.S. Molina, and J. Franklin, Multiphoton Bleaching of Red Fluorescent Proteins and the Ways to Reduce It. Int J Mol Sci, 2022. 23(2) 107. Luu, P., S.E. Fraser, and F. Schneider, More than double the fun with two-photon excitation microscopy. Communications Biology, 2024. 7(1): p. 364 108. Patterson, G.H. and D.W. Piston, Photobleaching in two-photon excitation microscopy. Biophys J, 2000. 78(4): p. 2159-62 109. Hampson, K.M., et al., Adaptive optics for high-resolution imaging. Nat Rev Methods Primers, 2021. 1.68 110. Rai, M.R., et al., Deep learning-based adaptive optics for light sheet fluorescence microscopy. Biomedical Optics Express, 2023. 14(6): p. 2905-2919 111. Booth, M.J., Adaptive optical microscopy: the ongoing quest for a perfect image. Light: Science & Applications, 2014. 3(4): p. e165-e165 112. Jesacher, A., et al., Adaptive harmonic generation microscopy of mammalian embryos. Opt Lett, 2009. 34(20): p. 3154-6 113. Olivier, N., D. Débarre, and E. Beaurepaire, Dynamic aberration correction for multiharmonic microscopy. Optics Letters, 2009. 34(20): p. 3145-3147 114. Bourgenot, C., et al., 3D adaptive optics in a light sheet microscope. Optics Express, 2012. 20(12): p. 13252-13261 115. Debarre, D., M.J. Booth, and T. Wilson, Image based adaptive optics through optimisation of low spatial frequencies. Opt Express, 2007. 15(13): p. 8176-90 116. Zheng, Y., et al., Adaptive optics for structured illumination microscopy based on deep learning. Cytometry A, 2021. 99(6): p. 622-631 117. Débarre, D., et al., Image-based adaptive optics for two-photon microscopy. Optics Letters, 2009. 34(16): p. 2495-2497 118. Gould, T.J., et al., Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express, 2012. 20(19): p. 20998-1009 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94479 | - |
dc.description.abstract | 神經網絡結構解析一直是腦科學中十分重要的議題,當中大腦神經元間之連結體在神經元之間之連結扮演著十分重要之角色。而大腦之神經結構與腦部功能會互相影響,但神經結構以及腦部功能之詳細關係依然需要更多的研究進行驗證,然而,大腦中的細胞密度以及細胞多樣性使神經網絡的解釋變得極其困難。而螢光蛋白基因轉殖小鼠模型可以利用特殊的螢光標記來剋服上述困難,因此螢光蛋白基因轉殖小鼠模型的出現使得光學顯微鏡在神經網絡結構解析的相關研究中扮演著極為重要的角色。目前,透過結合透明化技術以及層光顯微技術 (LSM)已實現單細胞解析度之鼠腦神經網絡重建。
然而,單細胞解析度並不足以解析鼠腦神經網絡。系統必須到達微米等級或以上的解析度才足以解析鼠腦神經網絡之細微結構。由於雙光子顯微鏡的在深層成像時可以維持相對高的信號背景比 (SBR)以及雙光子所使用的長波長光源能有效減少散射,雙光子顯微鏡近年來已被廣泛應用在厚樣品成像。雖然透明化透過減少生物樣品中的折射率差異來減少樣品對光的吸收和散射,藉此提升光學的穿透深度以及解析度,但生物樣品之光學穿透深度目前國際上還沒有突破6mm。 由於成年老鼠之完整大腦厚度大約6-7mm,要解析完整鼠腦之神經網絡結構必須使鼠腦的光學穿透深度至少大於6mm且同時保有微米等級的解析度。本研究建立了能達8mm工作距離之極高解析度雙光子顯微鏡,並用於透明化、完整鼠腦之神經網絡三維成像。本研究利用了中心波長為1070nm, 脈衝寬度為 ~55fs之飛秒雷射作為激發光源以減少光的散射以及散射效率的差異。為了確保穿透深度能超過成年鼠腦之大小以及優化光學系統,本研究所建立之系統選用了有矯正環、工作距離為8mm之物鏡 (NA = 1, 後光圈直徑為14.4mm)。透過研究物鏡矯正環對影像之影響、不同影像平均時間對訊號雜訊比、訊號背景比和對比度之影響、樣品以及浸泡溶液之折射率匹配,本研究發現此具8mm工作距離之雙光子顯微鏡系統之光學穿透深度可達到至少7.1mm,且在此對應之穿透深度達到1.15±0.17微米之系統解析度(1/e^2雙光子點函數之半徑)。 | zh_TW |
dc.description.abstract | Revealing the 3D structure of neural networks plays an important role in neuroscience. Researchers believe the neuron structure and the brain function affect each other. However, the relation between the connectome in the brain and the brain function still needs to be studied. Due to the cell density and cell diversity, analyzing the neural network of the mouse brain is a huge challenge. The fluorescent transgenic mouse model provides a solution for this limitation, and fluorescence microscopy has become an irreplaceable tool for investigating the neuron network. Reconstruction of the neuron network with single-cell resolution was achieved by combining tissue clearing and a light-sheet microscope.
However, to resolve the neuron network of the brain, micron resolution is required for the fine structure of the connectomes. Two-photon microscope has been widely used in deep tissue imaging as longer wavelength reduces the scattering of the light, and the physical mechanism of two-photon excitation maintains high signal-to-background ratio of the images for deep brain imaging. Although tissue clearing reduces the absorption and scattering of the biological samples by minimizing the difference of refractive index in the samples, the penetration depth is usually limited to ~6mm for whole brain imaging. To visualize the neuron network of the intact mouse brain, the minimum penetration depth should be larger than 6mm and preserve microns resolution in such penetration depth. In this study, an ultra-high resolution two-photon microscope with 8mm working distance was developed for visualizing the 3D structure of a cleared, intact mouse brain. A femtosecond laser with central wavelength 1070nm and ~55fs pulse width was used as the excitation source to reduce the scattering of light and minimize the difference in scattering efficiency. An 8mm working distance objective lens with correction collar (NA = 1 and rear aperture =14.4mm) was used to extend the working distance and optimize the optics in two-photon scanning microscope. The effects of the correction collar and the SNR, SBR, and contrast ratio with different numbers of frame averaging were evaluated to study image quality of the system after the light passes through a cleared, intact mouse brain. The image quality and the penetration depth of different immersion media for imaging and cleared mouse brain were studied. We discovered that ≥7.1mm penetration depth and 1.15±0.17μm resolution (defined as the 1/e^2 beam radius of the two-photon point spread function) can be achieved in such penetration depth for the ultra-high resolution two-photon microscope. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:16:54Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:16:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
中文摘要 II Abstract IV List of Figures IX List of Tables XVI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis scope and organization 2 Chapter 2 Background knowledge 5 2.1 Scattering of light 5 2.2 Aberration of light 8 2.3 Principle of conventional single-photon fluorescence microscopy 9 2.3.1 Single-photon excitation of fluorescence 9 2.3.2 Light-sheet Fluorescence Microscopy 11 2.3.3 Confocal Fluorescence Microscopy 13 2.4 Principle of two-photon fluorescence microscopy 14 2.5 Deep brain imaging through single-photon microscope and two-photon Microscope 17 2.6 Nyquist-Shannon sampling theorem 20 2.7 Resolution and the scales of different structures in the brain 22 2.8 Tissue clearing 23 Chapter 3 Experimental Setup 26 3.1 System design 26 3.1.1 Excitation source for deep brain imaging 26 3.1.2 8mm working distance two-photon microscope system27 3.1.3 Customized sample holder for deep brain imaging 31 3.2 Experimental Setup 34 3.2.1 Refractive index matching for deep brain imaging 34 3.2.2 SNR, SBR and contrast ratio 36 3.2.3 Signal intensity and resolution 38 3.3 Samples and immersion medium 39 3.4 Calibration of resolution measurement 40 3.4.1 Point spread function, object function and image 40 3.4.2 Mathematical form of the image of sharp edge and the object function of the measured edge 41 3.4.3. The deconvolution relation of the image function 43 Chapter 4 Result 45 4.1 The effect of correction collar of the objective lens 45 4.2 Refractive index matching for deep brain imaging 47 4.3 SNR, SBR, contrast ratio for different frame-accumulation scenarios 53 4.4 Signal intensity, SNR, SBR, and contrast ratio after the light passes through the cleared mouse brain 55 4.5 Lateral resolution 61 4.6 Scattering coefficient and effective attenuation coefficient 68 Chapter 5 Discussion and summary 76 Reference 82 Appendix A Copyright permissions 97 | - |
dc.language.iso | en | - |
dc.title | 用於透明化完整鼠腦之超高解析度成像之8mm工作距離雙光子顯微鏡 | zh_TW |
dc.title | An ultra-high resolution two-photon microscopy with 8mm working distance for cleared intact mouse brain | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 高甫仁;陳壁彰 | zh_TW |
dc.contributor.oralexamcommittee | Fu-Jen Kao;Bi-Chang Chen | en |
dc.subject.keyword | 腦部深層成像,全腦成像,透明化,雙光子顯微鏡,穿透深度,超高解析度, | zh_TW |
dc.subject.keyword | deep brain imaging,whole-brain imaging,tissue clearing,two-photon microscopy,penetration depth,ultra-high resolution, | en |
dc.relation.page | 131 | - |
dc.identifier.doi | 10.6342/NTU202404275 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 12.3 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。