Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張嘉升zh_TW
dc.contributor.advisorChia-Seng Changen
dc.contributor.author楊昇翰zh_TW
dc.contributor.authorSheng-Han Yangen
dc.date.accessioned2024-08-16T16:15:03Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAvouris, P. (2010). Graphene: electronic and photonic properties and devices. Nano letters, 10(11), 4285-4294.
Chen, L.-Y., & Chang, C.-S. (2014). In situ tuning and probing the ambipolar field effect on multiwall carbon nanotubes. Applied Physics Letters, 105(24).
Chetia, A., Bera, J., Betal, A., & Sahu, S. (2022). A brief review on photodetector performance based on zero dimensional and two dimensional materials and their hybrid structures. Materials Today Communications, 30, 103224.
Chin, S.-C., Chang, Y.-C., & Chang, C.-S. (2009). The fabrication of carbon nanotube probes utilizing ultra-high vacuum transmission electron microscopy. Nanotechnology, 20(28), 285307.
Cong, C., Shang, J., Wu, X., Cao, B., Peimyoo, N., Qiu, C., Sun, L., & Yu, T. (2014). Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater, 2(2), 131-136.
Ding, J., Feng, A., Li, X., Ding, S., Liu, L., & Ren, W. (2021). Properties, preparation, and application of tungsten disulfide: A review. Journal of Physics D: Applied Physics, 54(17), 173002.
Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., & Roth, S. (2006). Raman spectrum of graphene and graphene layers. Physical review letters, 97(18), 187401.
Forcherio, G. T., Dunklin, J. R., Backes, C., Vaynzof, Y., Benamara, M., & Roper, D. K. (2017). Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping. AIP Advances, 7(7).
Geim, A. K., & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature, 499(7459), 419-425.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
Heine, T. (2015). Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Accounts of chemical research, 48(1), 65-72.
Huang, T.-X., Huang, S.-C., Li, M.-H., Zeng, Z.-C., Wang, X., & Ren, B. (2015). Tip-enhanced Raman spectroscopy: tip-related issues. Analytical and bioanalytical chemistry, 407, 8177-8195.
Huh, T. W., Han, G., Ban, W. J., & Ahn, H.-S. (2017). Efficient fabrication of gold tips by electrochemical etching for tip-enhanced Raman spectroscopy. International Journal of Precision Engineering and Manufacturing, 18, 221-226.
Huo, C., Yan, Z., Song, X., & Zeng, H. (2015). 2D materials via liquid exfoliation: a review on fabrication and applications. Science bulletin, 60(23), 1994-2008.
Kolobov, A. V., & Tominaga, J. (2016). Two-dimensional transition-metal dichalcogenides (Vol. 239). Springer.
Koma, A. (1992). Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216(1), 72-76.
Kuc, A., Zibouche, N., & Heine, T. (2011). Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2. Physical Review B—Condensed Matter and Materials Physics, 83(24), 245213.
Lee, C., Kim, S. T., Jeong, B. G., Yun, S. J., Song, Y. J., Lee, Y. H., Park, D. J., & Jeong, M. S. (2017). Tip-enhanced Raman scattering imaging of two-dimensional tungsten disulfide with optimized tip fabrication process. Scientific reports, 7(1), 40810.
Lee, Y.-H., Yu, L., Wang, H., Fang, W., Ling, X., Shi, Y., Lin, C.-T., Huang, J.-K., Chang, M.-T., & Chang, C.-S. (2013). Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano letters, 13(4), 1852-1857.
Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J. T.-W., Chang, C.-S., & Li, L.-J. (2012). Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. arXiv preprint arXiv:1202.5458.
Liu, N., Yang, X., Zhu, Z., Chen, F., Zhou, Y., Xu, J., & Liu, K. (2022). Silicon nitride waveguides with directly grown WS 2 for efficient second-harmonic generation. Nanoscale, 14(1), 49-54.
Liu, Y., Weiss, N. O., Duan, X., Cheng, H.-C., Huang, Y., & Duan, X. (2016). Van der Waals heterostructures and devices. Nature Reviews Materials, 1(9), 1-17.
Muratore, C., Voevodin, A. A., & Glavin, N. R. (2019). Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films, 688, 137500.
Novoselov, K., & Neto, A. C. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012(T146), 014006.
Rani, S., Sharma, M., Verma, D., Ghanghass, A., Bhatia, R., & Sameera, I. (2022). Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Materials Science in Semiconductor Processing, 139, 106313.
Reidy, K., Thomsen, J. D., Lee, H. Y., Zarubin, V., Yu, Y., Wang, B., Pham, T., Periwal, P., & Ross, F. M. (2022). Mechanisms of quasi van Der waals epitaxy of three-dimensional metallic nanoislands on suspended two-dimensional materials. Nano letters, 22(14), 5849-5858.
Reidy, K., Varnavides, G., Thomsen, J. D., Kumar, A., Pham, T., Blackburn, A. M., Anikeeva, P., Narang, P., LeBeau, J. M., & Ross, F. M. (2021). Direct imaging and electronic structure modulation of moiré superlattices at the 2D/3D interface. Nature communications, 12(1), 1290.
Rettenberger, A., Bruker, P., Metzler, M., Mugele, F., Matthes, T. W., Böhmisch, M., Boneberg, J., Friemelt, K., & Leiderer, P. (1998). STM investigation of the island growth of gold on WS2 and WSe2. Surface science, 402, 409-412.
Reyes-Gasga, J., Gómez-Rodríguez, A., Gao, X., & José-Yacamán, M. (2008). On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles. Ultramicroscopy, 108(9), 929-936.
Roy, S., & Bermel, P. (2018). Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications. Solar Energy Materials and Solar Cells, 174, 370-379.
Ryu, H., Park, H., Kim, J.-H., Ren, F., Kim, J., Lee, G.-H., & Pearton, S. J. (2022). Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth. Applied Physics Reviews, 9(3).
Schranghamer, T. F., Sharma, M., Singh, R., & Das, S. (2021). Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chemical Society Reviews, 50(19), 11032-11054.
Wallace, P. R. (1947). The band theory of graphite. Physical review, 71(9), 622.
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 7(11), 699-712.
Watson, A. J., Lu, W., Guimarães, M. H., & Stöhr, M. (2021). Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2D Materials, 8(3), 032001.
Weston, A. (2022). Atomic and Electronic Properties of 2D Moiré Interfaces. Springer Nature.
Yang, Y., Huang, L., Xiao, Y., Li, Y., Zhao, Y., Luo, D., Tao, L., Zhang, M., Feng, T., & Zheng, Z. (2018). Tunable polarity behavior and high-performance photosensitive characteristics in Schottky-barrier field-effect transistors based on multilayer WS2. ACS applied materials & interfaces, 10(3), 2745-2751.
Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J. D., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., & LeRoy, B. J. (2012). Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature physics, 8(5), 382-386.
Zhang, Y., Shi, J., Han, G., Li, M., Ji, Q., Ma, D., Zhang, Y., Li, C., Lang, X., & Zhang, Y. (2015). Chemical vapor deposition of monolayer WS 2 nanosheets on Au foils toward direct application in hydrogen evolution. Nano research, 8, 2881-2890.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94473-
dc.description.abstract二維材料異質結構物理性質的高度可塑性使其具備廣泛的應用前景,而金屬奈米粒子與二維材料組成的異質結構在光電領域、生物醫學和能源轉換等領域展現出巨大的應用潛力。本研究旨在探討金奈米粒子(AuNPs)在二維二硫化鎢(WS2)表面的成長行為、結晶型態以及溫度對凡得瓦壘晶所造成的影響。
我們以超高真空穿透式電子顯微鏡(UHV-TEM)結合超高真空電子束蒸鍍器,藉由控制蒸鍍時間及溫度,對AuNPs在懸空二維WS2表面的原位生長進行系統性控制,並記錄臨場生長過程。最後以影像分析軟體對其較宏觀的成長行為與微觀的結晶型態進行了深度的分析,並與理論所模擬之結果進行對應。
實驗結果顯示,溫度對AuNPs在二維WS2表面的凡得瓦壘晶具有顯著的影響。在室溫條件下,AuNPs傾向以凡得瓦壘晶的二維生長,呈現三角形或六邊形的奈米島;高溫條件下,AuNPs則傾向以三維生長,呈半球狀的奈米顆粒。我們也探討了溫度對AuNPs/ WS2異質結構介面晶格應變效應的影響,根據理論與實驗的比較,凡得瓦壘晶中的晶格應變效應並不顯著,然而溫度對結晶形態的影響仍導致異質結構介面的晶格應變出現些微差異。此外我們也觀察到了AuNPs/ WS2異質結構中因原子間距差異所引起的摩爾紋。在光電導特性的測量方面,我們嘗試了多種研究方法,但在過程中面臨了接觸電阻與量測穩定性等挑戰,需要進一步克服以提高測量精度和穩定性。
總結來說,本研究深入的地探討了室溫及高溫下AuNPs於懸浮二維WS2表面凡得瓦壘晶的成長行為及其結晶型態。這些結果不僅有助於理解異質結構的成長機制,還為光電器件的設計和製作提供了有價值的參考。此外,本研究中所遇到的光電導測量挑戰也為未來研究提供了改進方向。
zh_TW
dc.description.abstractThe high tunability of the physical properties of two-dimensional (2D) material heterostructures endows them with broad application prospects. Heterostructures composed of metal nanoparticles and 2D materials exhibit significant potential in the fields of optoelectronics, biomedicine, and energy conversion. This study aims to investigate the growth behavior, crystalline morphology, and the effect of temperature on the van der Waals epitaxy of gold nanoparticles (AuNPs) on the surface of 2D tungsten disulfide (WS2).
Using an ultra-high vacuum transmission electron microscope (UHV-TEM) combined with an ultra-high vacuum electron beam evaporator, we systematically controlled the in situ growth of AuNPs on suspended 2D WS2 surfaces by regulating the deposition time and temperature, and recorded the real-time growth process. Subsequently, we conducted an in-depth analysis of the macroscopic growth behavior and microscopic crystalline morphology using image analysis software, and compared the results with theoretical simulations.
The experimental results show that temperature has a significant impact on the van der Waals epitaxy of AuNPs on 2D WS2 surfaces. At room temperature, AuNPs tend to grow in a 2D manner, forming triangular or hexagonal nanostructures; at high temperatures, AuNPs tend to grow in a 3D manner, forming hemispherical nanoparticles. We also explored the effect of temperature on the lattice strain at the AuNPs/WS2 heterostructure interface. Theoretical and experimental comparisons indicate that the lattice strain in the van der Waals epitaxy is not significant; however, the influence of temperature on the crystalline morphology still leads to slight differences in the lattice strain at the heterostructure interface. Additionally, we observed moiré patterns caused by the atomic spacing differences in the AuNPs/WS2 heterostructure. In terms of photoconductivity measurements, we tried various research methods but encountered challenges related to contact resistance and measurement stability, which need to be further addressed to improve measurement accuracy and stability.
In summary, this study thoroughly investigates the growth behavior and crystalline morphology of AuNPs on suspended 2D WS2 surfaces under room and high-temperature conditions. These results not only contribute to understanding the growth mechanisms of heterostructures but also provide valuable references for the design and fabrication of optoelectronic devices. Furthermore, the challenges encountered in photoconductivity measurements in this study provide directions for future research improvements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:15:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:15:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
誌謝 I
中文摘要 III
英文摘要 V
目次 VII
圖次 X
表次 XVIII
第1章 簡介 1
1.1 二維材料 1
1.1.1 石墨烯 1
1.2 二維過渡金屬硫化物 1
1.2.1 二維二硫化鎢 2
1.2.2 晶體結構 2
1.2.3 電子能帶結構 3
1.2.4 合成方法 5
1.2.5 轉移方法 10
第2章 文獻回顧 13
2.1 二維材料的異質結構 13
2.1.1 金屬奈米粒子與二維材料之異質結構 14
2.1.2 凡得瓦壘晶 14
2.1.3 金奈米粒子的成長行為 14
2.2 金屬奈米粒子與二維材料的電子能帶結構調控 16
2.2.1 蕭特基能障 16
2.2.2 局域表面電漿共振效應 17
2.3 研究目標 19
第3章 實驗設計 20
3.1 實驗儀器 20
3.1.1 超高真空系統 22
3.1.2 電子源與電磁透鏡系統 23
3.1.3 超高真空電子束蒸鍍器 24
3.1.4 奈米步進系統 25
3.2 實驗方法 26
3.2.1 奈米金屬粒子成長研究方法 26
3.3 樣品製備步驟 30
3.3.1 二硫化鎢生長品質分析 30
3.3.2 拉曼光譜對二維材料的層數分析 31
3.3.3 二維材料的轉移 33
第4章 實驗結果與討論 37
4.1 金屬粒子於二硫化鎢成長行為 37
4.1.1 金奈米粒子在不同條件下的平均成長行為 39
4.1.2 黏附效應對金奈米粒子沉積的影響 41
4.1.3 金奈米粒子於凡得瓦表面的成核機制 43
4.1.4 金屬粒子於凡得瓦表面的成核形貌 48
4.2 二維二硫化鎢與金奈米粒子TEM分析 52
4.2.1 單層二硫化鎢TEM分析 52
4.2.2 金奈米粒子於非晶相碳膜表面TEM分析 53
4.3 金屬粒子於二硫化鎢表面的結晶型態 55
4.3.1 介面汙染物對凡得瓦壘晶電子成長的影響 55
4.3.2 溫度對凡得瓦壘晶所造成的結晶型態影響 56
4.3.3 溫度對AuNPs/ WS2異質結構的晶格應變效應的影響 61
4.3.4 AuNPs/ WS2異質結構的摩爾紋 63
4.3.5 電子束對AuNPs/ WS2異質結構的影響 66
第5章 AuNPs/ WS2異質結構的光電導特性 67
5.1 研究方法 67
5.1.1 AFM懸臂電性量測研究方法 67
5.1.2 傾斜銅網電性量測研究方法 71
5.2 電性量測系統建置 73
5.2.1 STM金探針製備 73
5.2.2 電泳法排列奈米碳管 75
5.2.3 奈米碳管結合金探針 77
5.2.4 傾斜銅網之電性量測 80
5.3 AuNPs與WS2異質結構之電性量測 84
第6章 結論 85
第7章 參考文獻 86
-
dc.language.isozh_TW-
dc.subject穿透式電子顯微鏡zh_TW
dc.subject成長行為zh_TW
dc.subject結晶型態zh_TW
dc.subject二硫化鎢zh_TW
dc.subject二維材料zh_TW
dc.subject金奈米粒子zh_TW
dc.subject異質結構zh_TW
dc.subjectGrowth Behavioren
dc.subjectGold Nanoparticlesen
dc.subjectTwo-Dimensional Materialsen
dc.subjectTungsten Disulfideen
dc.subjectHeterostructuresen
dc.subjectCrystalline Morphologyen
dc.subjectTransmission Electron Microscopeen
dc.title二維二硫化鎢上金奈米粒子生長之研究zh_TW
dc.titleStudy of Growth of Gold Nanoparticles on Two-dimensional Tungsten Disulfideen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇維彬;邱雅萍zh_TW
dc.contributor.oralexamcommitteeWei-Bin Su;Ya-Ping Chiuen
dc.subject.keyword金奈米粒子,二維材料,二硫化鎢,異質結構,成長行為,結晶型態,穿透式電子顯微鏡,zh_TW
dc.subject.keywordGold Nanoparticles,Two-Dimensional Materials,Tungsten Disulfide,Heterostructures,Growth Behavior,Crystalline Morphology,Transmission Electron Microscope,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202403276-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2027-08-05-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2027-08-05
12.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved