請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94470
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳佩貞 | zh_TW |
dc.contributor.advisor | Pei-Jen Chen | en |
dc.contributor.author | 吳元如 | zh_TW |
dc.contributor.author | Yuan-Ru Wu | en |
dc.date.accessioned | 2024-08-16T16:14:09Z | - |
dc.date.available | 2024-08-31 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-04 | - |
dc.identifier.citation | Adeel, M., Lee, J. Y., Zain, M., Rizwan, M., Nawab, A., Ahmad, M. A., Shafiq, M., Yi, H., Jilani, G., Javed, R., Horton, R., Rui, Y., Tsang, D. C. W., & Xing, B. (2019). Cryptic footprints of rare earth elements on natural resources and living organisms. Environment International, 127, 785-800. https://doi.org/10.1016/j.envint.2019.03.022
Agency, E. C. (2008). Guidance on information requirements and chemical safety assessment. Chapter R.10. Andres, Y., Thouand, G., Boualam, M., & Mergeay, M. (2000). Factors influencing the biosorption of gadolinium by micro-organisms and its mobilisation from sand. Applied Microbiology and Biotechnology, 54, 262-267. Arnot, J. A., & Gobas, F. A. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257-297. Ashfaq, M., Khan, K. N., Rehman, M. S. U., Mustafa, G., Nazar, M. F., Sun, Q., Iqbal, J., Mulla, S. I., & Yu, C.-P. (2017). Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicology and Environmental Safety, 136, 31-39. Atchison, G. J., Henry, M. G., & Sandheinrich, M. B. (1987). Effects of metals on fish behavior: a review. Environmental Biology of Fishes, 18, 11-25. Atli, G., Alptekin, Ö., Tükel, S., & Canli, M. (2006). Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 143(2), 218-224. Backhaus, T., & Faust, M. (2012). Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environmental Science & Technology, 46(5), 2564-2573. https://doi.org/10.1021/es2034125 Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285-1303. https://doi.org/10.1016/j.gsf.2018.12.005 Barry, M. J., & Meehan, B. J. (2000). The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere, 41(10), 1669-1674. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase Improved assays and an assay applicable to acrylamide gels. Analytical biochemistry, 44, 276-287. Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide. Journal of Biological Chemistry, 195 (1), 133-140. Bergsten-Torralba, L. R., Magalhaes, D. P., Giese, E. C., Nascimento, C. R. S., Pinho, J. V. A., & Buss, D. F. (2020). Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicology and Environmental Safety, 201, 110795. https://doi.org/10.1016/j.ecoenv.2020.110795 Birge, W., Black, J., & Westerman, A. (1979). Evaluation of aquatic pollutants using fish and amphibian eggs as bioassay organisms. Animals as monitors of environmental pollutants/sponsored by Northeastern Research Center for Wildlife Diseases, University of Connecticut, Registry of Comparative of Lab Animal Resources, National Academy of Sciences. Blaise, C., Gagne, F., Harwood, M., Quinn, B., & Hanana, H. (2018). Ecotoxicity responses of the freshwater cnidarian Hydra attenuata to 11 rare earth elements. Ecotoxicology and Environmental Safety, 163, 486-491. https://doi.org/10.1016/j.ecoenv.2018.07.033 Blinova, I., Lukjanova, A., Muna, M., Vija, H., & Kahru, A. (2018). Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans. Science of The Total Environment, 642, 1100-1107. https://doi.org/10.1016/j.scitotenv.2018.06.155 Bogers, M. (1995a). Daphnia magna, reproduction test with lanthanum (La), Report No.: 139499. Testing Laboratory: NOTOX BV, Owner company: Kemira Pernis B. V,'s-Hertogenbosch, Rotterdam. Bogers, M. (1995b). Lanthanum (La): Prolonged toxicity study with carp in a semi-static system, Report no.: 139488. Testing laboratory: NOTOX BV‘s-Hertogenbosch, The Netherlands. Owner company: Kemira Pernis BV Rotterdam: The Netherlands. Borgmann, U., Couillard, Y., Doyle, P., & Dixon, D. G. (2005). Toxicity of sixty‐three metals and metalloids to Hyalella azteca at two levels of water hardness. Environmental toxicology and chemistry: an international journal, 24(3), 641-652. Boucek, M. M., & Snyderman, R. (1976). Calcium influx requirement for human neutrophil chemotaxis Inhibition by lanthanum chloride. Science, 193(4256), 905-907. Brookins, D. G. (1983). Eh-pH diagrams for the rare earth elements at 25°C and one Bar Pressure. Geochemical Journal, 17. Castiglioni, S., Fanelli, R., Calamari, D., Bagnati, R., & Zuccato, E. (2004). Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy. Regulatory Toxicology and Pharmacology, 39(1), 25-32. Ching, B., Chew, S. F., Wong, W. P., & Ip, Y. K. (2009). Environmental ammonia exposure induces oxidative stress in gills and brain of Boleophthalmus boddarti (mudskipper). Aquatic Toxicology, 95(3), 203-212. https://doi.org/10.1016/j.aquatox.2009.09.004 Chung, C.-H., You, C.-F., & Chu, H.-Y. (2009). Weathering sources in the Gaoping (Kaoping) river catchments, southwestern Taiwan: Insights from major elements, Sr isotopes, and rare earth elements. Journal of Marine Systems, 76(4), 433-443. https://doi.org/10.1016/j.jmarsys.2007.09.013 Connell, D. W. (1989). Bioaccumulation of xenobiotic compounds. Dang, D. H., Filella, M., & Omanovic, D. (2021). Technology-critical elements: an emerging and vital resource that requires more in-depth investigation. Archives of Environmental Contamination and Toxicology, 81(4), 517-520. https://doi.org/10.1007/s00244-021-00892-6 Dang, D. H., Thompson, K. A., Ma, L., Nguyen, H. Q., Luu, S. T., Duong, M. T. N., & Kernaghan, A. (2021). Toward the Circular Economy of Rare Earth Elements: A Review of Abundance, Extraction, Applications, and Environmental Impacts. Archives of Environmental Contamination and Toxicology, 81(4), 521-530. https://doi.org/10.1007/s00244-021-00867-7 Den doore de Jong, L., & Roman, W. (1965). Tolerance of Chlorella vulgaris for metallic and non-metallic ions. Antonie van Leeuwenhoek, 31, 301-313. Domenici, P., & Blake, R. W. (1997). The kinematics and performance of fish fast-start swimming. Journal of Experimental Biology, 200(8), 1165-1178. Draper, H. H., & Hadley, M. (1990). [43] Malondialdehyde determination as index of lipid Peroxidation. In Methods in enzymology (Vol. 186, pp. 421-431). Elsevier. Dube, M., Auclair, J., Hanana, H., Turcotte, P., Gagnon, C., & Gagne, F. (2019). Gene expression changes and toxicity of selected rare earth elements in rainbow trout juveniles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 223, 88-95. https://doi.org/10.1016/j.cbpc.2019.05.009 Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., Rohitha, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., & Dissanayake, K. (2020). The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geology Reviews, 122. https://doi.org/10.1016/j.oregeorev.2020.103521 Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95. Fan, H., Wang, Y., Liu, X., Wang, Y. Y. L., Kazmi, S. S. U. H., Ohore, O. E., Liu, W., & Wang, Z. (2022). Derivation of predicted no-effect concentrations for thirty-five pharmaceuticals and personal care products in freshwater ecosystem. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.1043792 Figueiredo, C., Grilo, T. F., Lopes, C., Brito, P., Diniz, M., Caetano, M., Rosa, R., & Raimundo, J. (2018). Accumulation, elimination and neuro-oxidative damage under lanthanum exposure in glass eels (Anguilla anguilla). Chemosphere, 206, 414-423. https://doi.org/10.1016/j.chemosphere.2018.05.029 Filho, W. L., Kotter, R., Özuyar, P. G., Abubakar, I. R., Eustachio, J. H. P. P., & Matandirotya, N. R. (2023). Understanding rare earth elements as critical raw materials. Sustainability, 15(3), 1919. Foster, J. G., & Hess, J. L. (1980). Responses of Superoxide Dismutase and Glutathione Reductase Activities in Cotton Leaf Tissue Exposed to an Atmosphere Enriched in Oxygen. Plant Physiology, 66, 482-487. Fox, D., Van Dam, R., Fisher, R., Batley, G., Tillmanns, A., Thorley, J., Schwarz, C., Spry, D., & McTavish, K. (2021). Recent developments in species sensitivity distribution modeling. Environmental toxicology and chemistry, 40(2), 293-308. Gonzalez, V., Vignati, D. A., Leyval, C., & Giamberini, L. (2014). Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environment International, 71, 148-157. https://doi.org/10.1016/j.envint.2014.06.019 Gonzalez, V., Vignati, D. A., Pons, M. N., Montarges-Pelletier, E., Bojic, C., & Giamberini, L. (2015). Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organisms. Environmental Pollution, 199, 139-147. https://doi.org/10.1016/j.envpol.2015.01.020 Gu, Y. G., Gao, Y. P., Huang, H. H., & Wu, F. X. (2020). First attempt to assess ecotoxicological risk of fifteen rare earth elements and their mixtures in sediments with diffusive gradients in thin films. Water Research, 185, 116254. https://doi.org/10.1016/j.watres.2020.116254 Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia environmental sciences, 2, 729-736. Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., & Sanganyado, E. (2018). Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Science of The Total Environment, 636, 299-313. https://doi.org/10.1016/j.scitotenv.2018.04.235 Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975-1001. Halliwell, B. (2022). Reactive oxygen species (ROS), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochemical and biophysical research communications, 633, 17-19. Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford university press, USA. Hanana, H., Taranu, Z. E., Turcotte, P., Gagnon, C., Kowalczyk, J., & Gagn´e, F. (2021). Evaluation of general stress, detoxification pathways, and genotoxicity in rainbow trout exposed to rare earth elements dysprosium and lutetium. Ecotoxicology and Environmental Safety, 208, 111588. https://doi.org/10.1016/j.ecoenv.2020.111588 Hanana, H., Taranu, Z. E., Turcotte, P., Gagnon, C., Kowalczyk, J., & Gagné, F. (2021). Sublethal effects of terbium and praseodymium in juvenile rainbow trout. Science of The Total Environment, 777. https://doi.org/10.1016/j.scitotenv.2021.146042 Harper, S., Usenko, C., Hutchison, J., Maddux, B., & Tanguay, R. (2008). In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. Journal of Experimental Nanoscience, 3(3), 195-206. He, J., Mi, N., Kuang, Y., Fan, Q., Wang, X., Guan, W., Li, G., Li, C., & Wang, X. (2004). Speciation and distribution characters of rare earth elements in the Baotou section of the Yellow River. Huan Jing ke Xue= Huanjing Kexue, 25(2), 61-66. Henderson, P. (1984). Chapter 1 - General Geochemical Properties and Abundances of the Rare Earth Elements. In Developments in geochemistry, 2, 1-32. Herrmann, H., Nolde, J., Berger, S., & Heise, S. (2016). Aquatic ecotoxicity of lanthanum - A review and an attempt to derive water and sediment quality criteria. Ecotoxicology and Environmental Safety, 124, 213-238. https://doi.org/10.1016/j.ecoenv.2015.09.033 Hu, Q., & Jin, M. (2000). The chemical behavior and biological effects of rare earth elements in aquatic environment. Agroenvironmental Protection, 5, 274-277. Hua, D., Wang, J., Yu, D., & Liu, J. (2017). Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus). Ecotoxicology, 26(9), 1207-1215. https://doi.org/10.1007/s10646-017-1846-8 Hughes, I. D., Dane, M., Ernst, A., Hergert, W., Luders, M., Poulter, J., Staunton, J. B., Svane, A., Szotek, Z., & Temmerman, W. M. (2007). Lanthanide contraction and magnetism in the heavy rare earth elements. Nature, 446(7136), 650-653. https://doi.org/10.1038/nature05668 Ippolito, M., Fasciano, C., d’Aquino, L., Morgana, M., & Tommasi, F. (2010). Responses of antioxidant systems after exposition to rare earths and their role in chilling stress in common duckweed (Lemna minor L.): a defensive weapon or a boomerang? Archives of Environmental Contamination and Toxicology, 58, 42-52. Ishikawa, Y. (2000). Medakafish as a model system for vertebrate developmental genetics. BioEssays, 22(5), 487-495. https://doi.org/10.1002/(sici)1521-1878(200005)22:5<487::Aid-bies11>3.0.Co;2-8 Ito, A., Otake, T., Shin, K.-C., Ariffin, K. S., Yeoh, F.-Y., & Sato, T. (2017). Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Applied Geochemistry, 82, 89-101. https://doi.org/10.1016/j.apgeochem.2017.05.007 Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development, 121(7-8), 605-618. https://doi.org/10.1016/j.mod.2004.03.012 Jia, Y. Q. (1991). Crystal radii and effective ionic radii of the rare earth ions. Journal of Solid State Chemistry, 95 (1), 184-187. Jin, X., Chu, Z., Yan, F., & Zeng, Q. (2009). Effects of lanthanum (III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Limnologica, 39(1), 86-93. Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Archives of toxicology, 97(10), 2499-2574. Kang, S., Guo, C., Ma, C., Mu, H., Liu, Z., & Sun, L. (2022). Assessment of the biotoxicity of lanthanides (La, Ce, Gd, and Ho) on zebrafish (Danio rerio) in different water environments. Ecotoxicology and Environmental Safety, 246, 114169. https://doi.org/10.1016/j.ecoenv.2022.114169 Kar, S., & Senthilkumaran, B. (2023). Recent advances in understanding neurotoxicity, behavior and neurodegeneration in siluriformes. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2023.08.009 Khangarot, B. S. (1991). Toxicity of metals to a freshwater tubificid worm Tubifex tubifex (Muller). Bulletin of Environmental Contamination and Toxicology; (United States), 46:6, Medium: X; Size: Pages: 906-912 2016-2004-2028. https://doi.org/10.1007/bf01689737 Khangarot, B. S., & Das, S. (2009). Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC(50) values of other test models. Journal of Hazardous Materials, 172(2-3), 641-649. https://doi.org/10.1016/j.jhazmat.2009.07.038 Klaver, G., Verheul, M., Bakker, I., Petelet-Giraud, E., & Négrel, P. (2014). Anthropogenic Rare Earth Element in rivers: Gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (the Netherlands). Applied Geochemistry, 47, 186-197. https://doi.org/10.1016/j.apgeochem.2014.05.020 Kristiansen, K. A., Jensen, P. E., Moller, I. M., & Schulz, A. (2009). Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe CM-H(2)DCFDA and confocal laser microscopy. Physiologia plantarum, 136(4), 369-383. https://doi.org/10.1111/j.1399-3054.2009.01243.x Kulaksiz, S., & Bau, M. (2011). Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37(5), 973-979. https://doi.org/10.1016/j.envint.2011.02.018 Kulaksız, S., & Bau, M. (2011). Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities. Applied Geochemistry, 26(11), 1877-1885. https://doi.org/10.1016/j.apgeochem.2011.06.011 Kulaksız, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43-50. Laville, N., Ait-Aissa, S., Gomez, E., Casellas, C., & Porcher, J. M. (2004). Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology, 196(1-2), 41-55. https://doi.org/10.1016/j.tox.2003.11.002 Lemly, A. D. (1996). Evaluation of the hazard quotient method for risk assessment of selenium. Ecotoxicology and Environmental Safety, 35(2), 156-162. Li, J., Peng, K., Wang, P., Zhang, N., Feng, K., Guan, D., Meng, J., Wei, W., & Yang, Q. (2020). Critical rare-earth elements mismatch global wind-power ambitions. One Earth, 3(1), 116-125. https://doi.org/10.1016/j.oneear.2020.06.009 Liang, T., Li, K., & Wang, L. (2014). State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 186(3), 1499-1513. https://doi.org/10.1007/s10661-013-3469-8 Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 757-772. Lin, C. Y., Chiang, C. Y., & Tsai, H. J. (2016). Zebrafish and Medaka: new model organisms for modern biomedical research. Journal of Biomedical Science, 23, 19. https://doi.org/10.1186/s12929-016-0236-5 Lin, Y.-T., Liu, R.-X., Audira, G., Suryanto, M. E., Roldan, M. J. M., Lee, J.-S., Ger, T.-R., & Hsiao, C.-D. (2022). Lanthanides toxicity in zebrafish embryos are correlated to their atomic number. Toxics, 10(6), 336. Liu, S., Wang, Y., Zhang, R., Guo, G., Zhang, K., Fan, Y., Feng, C., & Li, H. (2022). Water quality criteria for lanthanum for freshwater aquatic organisms derived via species sensitivity distributions and interspecies correlation estimation models. Ecotoxicology, 31(6), 897-908. https://doi.org/10.1007/s10646-022-02557-z Lora-Benítez, A. J., Molina-López, A. M., Mora-Medina, R., Aguilar-Herrera, J. E., Ayala-Soldado, N., & Moyano-Salvago, R. (2024). Evaluation of acute toxicity of neodymium and yttrium in zebrafish (Danio rerio) embryos. Frontiers in Environmental Science, 12. https://doi.org/10.3389/fenvs.2024.1390948 Lu, C. (2015). The Effects of Water Chemistry and Organism Source on Dysprosium Toxicity to Hyalella Azteca (Master's thesis, University of Waterloo). Lugert, V., Thaller, G., Tetens, J., Schulz, C., & Krieter, J. (2014). A review on fish growth calculation: multiple functions in fish production and their specific application. Reviews in Aquaculture, 8(1), 30-42. https://doi.org/10.1111/raq.12071 Lürling, M., & Tolman, Y. (2010). Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna. Water Research, 44(1), 309-319. Malhotra, N., Hsu, H.-S., Liang, S.-T., Roldan, M. J. M., Lee, J.-S., Ger, T.-R., & Hsiao, C.-D. (2020). An Updated Review of Toxicity Effect of the Rare Earth Elements (REEs) on Aquatic Organisms. Animals, 10(9). https://doi.org/10.3390/ani10091663 Manusadžianas, L., Vitkus, R., Gylytė, B., Cimmperman, R., Džiugelis, M., Karitonas, R., & Sadauskas, K. (2020). Ecotoxicity Responses of the Macrophyte Algae Nitellopsis obtusa and Freshwater Crustacean Thamnocephalus platyurus to 12 Rare Earth Elements. Sustainability, 12(17). https://doi.org/10.3390/su12177130 Martino, C., Chianese, T., Chiarelli, R., Roccheri, M. C., & Scudiero, R. (2022). Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. International Journal of Molecular Sciences, 23(5). https://doi.org/10.3390/ijms23052876 Mas-Muñoz, J., Komen, H., Schneider, O., Visch, S. W., & Schrama, J. W. (2011). Feeding behaviour, swimming activity and boldness explain variation in feed intake and growth of sole (Solea solea) reared in captivity. Plos one, 6(6), e21393. Mayfield, D. B., & Fairbrother, A. (2015). Examination of rare earth element concentration patterns in freshwater fish tissues. Chemosphere, 120, 68-74. https://doi.org/10.1016/j.chemosphere.2014.06.010 McDonald, J. W., Ghio, A. J., Sheehan, C. E., Bernhardt, P. F., & Roggli, V. L. (1995). Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc, 8(8), 859-865. Meggers, W. F. (1947). Electron Configurations of "Rare-Earth" Elements. Science, 105(2733), 514-516. Meng, X. (2007). Contents and distribution pattern of dissolved rare earth elements in Ganjiang River in the southern Jiangxi Province. Journal of the Chinese Rare Earth Society, 25(5), 625. Meng, X., & Ji, H. (2008). Advance in study on rare earth elements in waters and their geochemistry. Journal of Capital Normal University (Natural Science Edition), 29(3), 64. Miao, L., Ma, Y., Xu, R., & Yan, W. (2010). Environmental biogeochemical characteristics of rare earth elements in soil and soil-grown plants of the Hetai goldfield, Guangdong Province, China. Environmental Earth Sciences, 63(3), 501-511. https://doi.org/10.1007/s12665-010-0718-9 Michael J. Barry a, Barry J. Meehan b. (2000). The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere, 41, 1669±1674. Migaszewski, Z. M., Galuszka, A., & Dolegowska, S. (2016). Rare earth and trace element signatures for assessing an impact of rock mining and processing on the environment: Wisniowka case study, south-central Poland. Environmental Science and Pollution Research, 23(24), 24943-24959. https://doi.org/10.1007/s11356-016-7713-y Möller, P., Knappe, A., & Dulski, P. (2014). Seasonal variations of rare earths and yttrium distribution in the lowland Havel River, Germany, by agricultural fertilization and effluents of sewage treatment plants. Applied Geochemistry, 41, 62-72. https://doi.org/10.1016/j.apgeochem.2013.11.011 Morin-Crini, N., Lichtfouse, E., Liu, G., Balaram, V., Ribeiro, A. R. L., Lu, Z., Stock, F., Carmona, E., Teixeira, M. R., & Picos-Corrales, L. A. (2022). Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 20(4), 2311-2338. Nassef, M., Matsumoto, S., Seki, M., Khalil, F., Kang, I. J., Shimasaki, Y., Oshima, Y., & Honjo, T. (2010). Acute effects of triclosan, diclofenac and carbamazepine on feeding performance of Japanese medaka fish (Oryzias latipes). Chemosphere, 80(9), 1095-1100. https://doi.org/10.1016/j.chemosphere.2010.04.073 Okonski, A. I., MacDonald, D. B., Potter, K., & Bonnell, M. (2021). Deriving predicted no-effect concentrations (PNECs) using a novel assessment factor method. Human and Ecological Risk Assessment: An International Journal, 27(6), 1613-1635. Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40-48. https://doi.org/10.1016/j.ecoenv.2015.01.030 Pałasz, A., & Czekaj, P. (2000). Toxicological and cytophysiological aspects of lanthanides action. Acta Biochimica Polonica, 47, 1107-1114. Perazella, M. A. (2009). Current status of gadolinium toxicity in patients with kidney disease. Clinical Journal of the American Society of Nephrology, 4(2), 461-469. https://doi.org/10.2215/CJN.06011108 Perelomov, L., & Yoshida, S. (2008). Effect of microorganisms on the sorption of lanthanides by quartz and goethite at the different pH values. Water, air, and soil pollution, 194, 217-225. Peter Caravan, Jeffrey J. Ellison, McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical reviews, 99(9), 2293-2352. Peterson, R. K. (2006). Comparing ecological risks of pesticides: the utility of a risk quotient ranking approach across refinements of exposure. Pest Management Science: formerly Pesticide Science, 62(1), 46-56. Peterson, S. A. (1974). Nutrient Inactivation as a Lake Restoration Procedure: Laboratory Investigations. National Environmental Research Center Posthuma, L., Suter II, G. W., & Traas, T. P. (2001). Species sensitivity distributions in ecotoxicology. Posthuma, L., van Gils, J., Zijp, M. C., van De Meent, D., & de Zwart, D. (2019). Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environmental toxicology and chemistry, 38(4), 905-917. Qiang, T., Xiao-rong, W., Li-qing, T., & Le-mei, D. (1994). Bioaccumulation of the rare earth elements lanthanum, gadolinium and yttrium in carp (Cyprinus carpio). Environmental Pollution, 85(3), 345-350. https://doi.org/10.1016/0269-7491(94)90057-4 Raimondo, S., & Forbes, V. E. (2022). Moving beyond risk quotients: Advancing ecological risk assessment to reflect better, more robust and relevant methods. Ecologies, 3(2), 145-160. Ramesh, R., Ramanathan, A. L., James, R. A., V.Subramanian, Jacobsen, S. B., & Holland, H. D. (1999). Rare earth elements and heavy metal distribution in estuarine sediments of east coast of India. Hydrobiologia, 397, 89–99. Rashid, M. H., Fardous, Z., Chowdhury, M. A. Z., Alam, M. K., Bari, M. L., Moniruzzaman, M., & Gan, S. H. (2016). Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chemistry Central Journal, 10, 1-13. Rice, E. W., Bridgewater, L., & Association, A. P. H. (2012). Standard methods for the examination of water and wastewater (Vol. 10). American public health association Washington, DC. Robert J. Weber, D. J. R. (2012). Rare earth elements A review of production, processing, recycling, and associated environmental issues. US EPA Region, 8, 189-200. Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish Shellfish Immunol, 120, 569-589. https://doi.org/10.1016/j.fsi.2021.12.037 Rue, G. P., & McKnight, D. M. (2021). Enhanced Rare Earth Element Mobilization in a Mountain Watershed of the Colorado Mineral Belt with Concomitant Detection in Aquatic Biota: Increasing Climate Change-Driven Degradation to Water Quality. Environmental Science & Technology, 55(21), 14378-14388. https://doi.org/10.1021/acs.est.1c02958 Safran, P. (1992). Theoretical analysis of the weight-length relationship in fish juveniles. Marine Biology, 112, 545-551. Schijf, J., & Byrne, R. (2001). Stability constants for mono-and dioxalato-complexes of Y and the REE, potentially important species in groundwaters and surface freshwaters. Geochimica et Cosmochimica Acta, 65(7), 1037-1046. Shah, R. (2022). Toxicity of the technology critical elements Germanium and Yttrium to daphnia magna and hyalella azteca and the influence of toxicity modifying factors. Wilfrid Laurier University. Shannon, R. D. (1976). Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances. Acta Crystallographica, 751–767. Sharma, M. (2019). Behavioural responses in effect to chemical stress in fish: A review. International Journal of Fisheries and Aquatic Studies, 7, 1-5. Shima, A., & Mitani, H. (2004). Medaka as a research organism: past, present and future. Mechanisms of Development, 121(7-8), 599-604. https://doi.org/10.1016/j.mod.2004.03.011 Sneller, F., Kalf, D., Weltje, L., & Wezel, A. v. (2000). Maximum Permissible Concentrations and NegligibleConcentrations for Rare Earth Elements (REEs). In Maximaal toelaatbare risiconiveaus enverwaarloosbare risiconiveaus voor zeldzame aardmetalen (ZAMs): Rijksinstituut voor Volksgezondheid en Milieu RIVM. Song, H., Shin, W. J., Ryu, J. S., Shin, H. S., Chung, H., & Lee, K. S. (2017). Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea. Chemosphere, 172, 155-165. https://doi.org/10.1016/j.chemosphere.2016.12.135 Stauber, J., & Binet, M. (2000). Canning River Phoslock field trials–Ecotoxicity testing final report. In CSIRO & the WA Waters and Rivers Commission. Report No: ET 317R. Stephan, C. E. (1977). Methods for calculating an LC 50. In Aquatic toxicology and hazard evaluation. ASTM International. Sugimoto, S. (2011). Current status and recent topics of rare-earth permanent magnets. Journal of Physics D: Applied Physics, 44(6). https://doi.org/10.1088/0022-3727/44/6/064001 Sultan, K., & Shazili, N. A. (2009). Rare earth elements in tropical surface water, soil and sediments of the Terengganu River Basin, Malaysia. Journal of Rare Earths, 27(6), 1072-1078. https://doi.org/10.1016/s1002-0721(08)60391-9 Tai, P., Zhao, Q., Su, D., Li, P., & Stagnitti, F. (2010). Biological toxicity of lanthanide elements on algae. Chemosphere, 80(9), 1031-1035. https://doi.org/10.1016/j.chemosphere.2010.05.030 Tang, J., & Johannesson, K. H. (2003). Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochimica et Cosmochimica Acta, 67(13), 2321-2339. Tao, Y., Shen, L., Feng, C., Yang, R., Qu, J., Ju, H., & Zhang, Y. (2022). Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, 298. https://doi.org/10.1016/j.envpol.2021.118540 Taslima, K., Al-Emran, M., Rahman, M. S., Hasan, J., Ferdous, Z., Rohani, M. F., & Shahjahan, M. (2022). Impacts of heavy metals on early development, growth and reproduction of fish - A review. Toxicology Reports, 9, 858-868. https://doi.org/10.1016/j.toxrep.2022.04.013 Tatara, C. P., Newman, M. C., McCloskey, J. T., & Williams, P. L. (1998). Use of ion characteristics to predict relative toxicity of mono-, di- and trivalent metal ions Caenorhabditis elegans LC50. Aquatic Toxicology 42. Tilton, F. A., Bammler, T. K., & Gallagher, E. P. (2011). Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures. Comparative Biochemistry & Physiology, 153(1), 9-16. https://doi.org/10.1016/j.cbpc.2010.07.008 Tommasi, F., Thomas, P. J., Pagano, G., Perono, G. A., Oral, R., Lyons, D. M., Toscanesi, M., & Trifuoggi, M. (2021). Review of Rare Earth Elements as Fertilizers and Feed Additives: A Knowledge Gap Analysis. Archives of Environmental Contamination and Toxicology, 81(4), 531-540. https://doi.org/10.1007/s00244-020-00773-4 Trapasso, G., Chiesa, S., Freitas, R., & Pereira, E. (2021). What do we know about the ecotoxicological implications of the rare earth element gadolinium in aquatic ecosystems? Science of The Total Environment, 781, 146273. https://doi.org/10.1016/j.scitotenv.2021.146273 Tyler, G. (2004). Rare earth elements in soil and plant systems - A review. Plant and Soil, 267, 191–206. USGS. (2024). Rare earths. Mineral Commodity Summaries 2024. Van Oosterhout, F., & Lürling, M. (2013). The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality variables and plankton. Hydrobiologia, 710, 265-277. Van Sprang, P. A., Verdonck, F. A., Van Assche, F., Regoli, L., & De Schamphelaere, K. A. (2009). Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Science of The Total Environment 407(20), 5373-5391. https://doi.org/10.1016/j.scitotenv.2009.06.029 Vukov, O., Smith, D. S., & McGeer, J. C. (2016). Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach. Aquatic Toxicology, 170, 142-151. https://doi.org/10.1016/j.aquatox.2015.10.016 Wang, L., Zhang, C., & Zhang, S. (1998). Geochemical characteristics of rare earth elements in the Zhujiang River in Guangzhou. Acta Geographica Sinica, 53, 461-467. Wang, Y., Wang, G., Sun, M., Liang, X., He, H., Zhu, J., & Takahashi, Y. (2022). Environmental risk assessment of the potential "Chemical Time Bomb" of ion-adsorption type rare earth elements in urban areas. Science of The Total Environment, 822, 153305. https://doi.org/10.1016/j.scitotenv.2022.153305 Wang, Y., Zhang, M., & Wang, X. (2000). Population growth responses of Tetrahymena shanghaiensis in exposure to rare earth elements. Warne, B., G., van Dam, R., Chapman, J., Fox, D., Hickey, C., and Stauber, J. (2018). Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants. Webb, P. W. (1976). The effect of size on the fast-start performance of rainbow trout Salmo gairdneri, and a consideration of piscivorous predator-prey interactions. Journal of Experimental Biology, 65(1), 157-178. Weber, C. I. E. (2002). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Washington, DC: Environmental Monitoring Systems Laboratory, Office of Research and Development, US Environmental Protection Agency. Wiechelman, K. J., Braun, R. D., & Fitzpatrick, J. D. (1988). Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry, 175(1), 231-237. Xiangsheng, L., Jiachen, W., Jun, Y., Yubin, F., Yanping, W., & He, Z. (2006). Application of Rare Earth Phosphate Fertilizer in Western Area of China. Journal of Rare Earths, 24(1), 423-426. https://doi.org/10.1016/s1002-0721(07)60418-9 Xu, Q., Fu, Y., Min, H., Cai, S., Sha, S., & Cheng, G. (2012). Laboratory assessment of uptake and toxicity of lanthanum (La) in the leaves of Hydrocharis dubia (Bl.) Backer. Environmental Science and Pollution Research, 19, 3950-3958. Yenkoyan, K., Harutyunyan, H., & Harutyunyan, A. (2018). A certain role of SOD/CAT imbalance in pathogenesis of autism spectrum disorders. Free Radical Biology and Medicine, 123, 85-95. Younger, P. (2001). Mine water pollution in Scotland: nature, extent and preventative strategies. Science of The Total Environment, 265(1-3), 309-326. Zelikoff, J. T. (1998). Biomarkers of immunotoxicity in fish and other non-mammalian sentinel species: predictive value for mammals? Toxicology, 129, 63–71. Zhang, H., He, X., Bai, W., Guo, X., Zhang, Z., Chai, Z., & Zhao, Y. (2010). Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics, 2(12), 806-810. https://doi.org/10.1039/c0mt00059k Zhao, Y., Liang, J., Meng, H., Yin, Y., Zhen, H., Zheng, X., Shi, H., Wu, X., Zu, Y., Wang, B., Fan, L., & Zhang, K. (2021). Rare earth elements Lanthanum and Praseodymium adversely affect neural and cardiovascular development in zebrafish (Danio rerio). Environmental Science & Technology, 55(2), 1155-1166. https://doi.org/10.1021/acs.est.0c06632 Zheng, Z.-Y., & Ni, H.-G. (2024). Predicted no-effect concentration for eight PAHs and their ecological risks in seven major river systems of China. Science of The Total Environment, 906. https://doi.org/10.1016/j.scitotenv.2023.167590 Zhou, G., Sun Ba., Liu T., Wei H., Ceng D., & B.., Z. (2012). Geochemical feature of rare earth elements in major riversof eastern China. GEOSCIENCE, 26(5), 1028-1042. Zhu, J. h., Yuan, Z. k., & Wang, X. y. (1989). Investigation on the contents of rare earth elements in environment of rare earth ore area in Jiangxi. Journal of Environment and Health. 國立環境研究院。2019。水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法 (NIEA W311.54C)。 國立環境研究院。2015。生物急毒性檢測方法-廣鹽性青鱂魚靜水式法 (NIEA B908.10B)。 國立環境研究院。2013。感應耦合電漿原子發射光譜法 (NIEA M104.02C)。 呂兆倫。2022。評估稀土元素鑭、鈰及釹在不同水質條件下對青鱂魚的生物有效性與生態毒性。碩士論文,國立臺灣大學,台北。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94470 | - |
dc.description.abstract | 稀土元素 (rare earth elements, REEs) 是指鑭系元素 (La-Lu)、鈧 (Scandium, Sc) 與釔 (Yttrium, Y) 共17種元素的合稱。REEs被廣泛應用在許多領域,如玻璃製造、電子科技、能源、醫療甚至農業等,近年來世界各地的使用量不斷增加,透過各種排放途徑而污染環境,最終累積在水體並可能對水中生物造成威脅,因而被視為新興污染物,目前關於REEs對水生生態的毒理和風險資料不足。本篇研究以青鱂魚 (Oryzias latipes) 作為模式生物,利用急毒性試驗探討13種REEs的 96小時半致死濃度 (96 h- Lethal concentration 50, 96 h-LC50),以挑選毒性風險及暴露風險較高的Y (LC50 = 1.40 μM)、La (LC50 = 1.55 μM)、Gd (LC50 = 2.15 μM) 和Dy (LC50 = 2.20 μM),再以7天的暴露實驗量測4種 REEs對青鱂魚的非致死效應,其中La (47.1 nM) 以及Y (220.3 nM) 干擾幼魚泳動行為,La (47.1 nM) 和Dy (86.6與185.2 nM) 抑制體長和體重,La具有相對較高的生物濃縮係數 (bioconcentration factors, BCFs),La (99.4 nM)、Gd (50.1、99.4及188.8 nM) 與Dy (185.2 nM) 造成暴露魚隻的氧化壓力 (oxidative stress)。本研究利用物種敏感分布 (species sensitivity distribution, SSD) 與評估係數 (assessment factor, AF) 法計算之4種REEs的預期無影響濃度 (predicted-no effect concentration, PNEC) 顯示,PNECAF遠小於PNECSSD,且文獻指出La的環境量測濃度 (measured environmental concentration, MEC) 高 (MECave = 0.47 μg/L; MECmax = 2.41 μg/L),因此4個REEs之中La的生態風險較高 (RQAF = 2.20–37.11; RQSSD = 0.06–0.78; RQave = 1.13–18.94)。因此,本研究評估之REEs的生態風險隨著環境濃度增加而逐漸提高,特別是La具有較高之毒性風險與暴露風險。 | zh_TW |
dc.description.abstract | Rare earth elements (REEs), comprising the lanthanide series (La-Lu) along with scandium (Sc) and yttrium (Y), are a group of 17 elements widely used in various fields such as electronics, energy, medicine, and agriculture. The widespread applications lead to their releases into the environment through different routes, ultimately accumulating in the aquatic ecosystem and posing potential threats to the organisms. Consequently, REEs are considered as emerging contaminants. Currently, there is insufficient toxicological and risk data concerning REEs on aquatic ecosystems. In this study, we aim to screen the toxicity potency and ecological risks of REEs. The 96-hour median lethal concentration 50 (96-h LC50) of 13 REEs on larvae of medaka (Oryzias latipes) were first assessed through acute toxicity tests. Y (LC50 = 1.40 μM), lanthanum (La, LC50 = 1.55 μM), gadolinium (Gd, LC50 = 2.15 μM), and dysprosium (Dy, LC50 = 2.20 μM) were identified as 4 REEs with higher toxicity and exposure risks. Then, the 7-day sublethal exposure with medaka larvae showed impacts on swimming behaviors by La (47.1 nM) and Y (220.3 nM), decreases in body length and weight by La (99.4 nM) and Dy (86.6 and 185.2 nM), and higher bioconcentration factors (BCFs) by La. La (99.4 nM), Gd (50.1、99.4 and 188.8 nM) and Dy (185.2 nM) caused oxidative stress to medaka fish. The predicted no-effect concentrations (PNEC) derived from species sensitivity distribution (SSD) and assessment factor (AF) approaches for the 4 studied REEs showed that the PNECAF were drastically lower than the PNECSSD. Additionally, the measured environmental concentration (MEC) of La from literatures was the highest (MECave = 0.47 μg/L; MECmax = 2.41 μg/L), indicating that the ecological risk of La was the most significant (RQAF = 2.20–37.11; RQSSD = 0.06–0.78; RQave = 1.13–18.94). Therefore, our study highlights the increasing environmental risks of REEs, especially La with higher toxicity risks and exposure risks. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:14:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:14:09Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 ix 表次 xi 第一章 前言與研究動機 1 第二章 文獻回顧 3 2.1 REEs的基本性質與應用 3 2.2 REEs在環境中的污染途徑與宿命 7 2.3 REEs的水體流佈濃度 9 2.3 REEs之毒性效應 17 2.5生態風險評估方法 27 2.6模式生物 29 2.7研究目的 30 第三章 材料與方法 31 3.1研究架構及說明 31 3.2 REEs暴露溶液製備 33 3.3青鱂魚飼養與繁殖 35 3.4青鱂魚幼魚96 小時急毒性試驗 36 3.5優化REEs在VSW中之暴露條件 (用於非致死暴露試驗) 37 3.5.1暴露時間與生物對REEs溶解度的影響 37 3.5.2 溶液pH、換水頻率與魚水比對REEs溶解度的影響 37 3.6青鱂魚幼魚7日非致死毒性試驗 38 3.6.1泳動行為分析 38 3.6.2體長體重分析 39 3.6.3 REEs在魚體累積量測定 39 3.6.4 氧化壓力與神經毒性指標 40 3.7 暴露溶液中水質與REEs濃度分析 44 3.7.1 溶液pH、氧化還原電位 (Oxidation-Reduction Potential, ORP)、導電度 (Electrical conductivity, EC) 量測 44 3.7.2 REEs總濃度分析 44 3.7.3 REEs溶解態濃度分析 44 3.8 REEs之生態風險評估方法 45 3.8.1計算預期無影響濃度 (Predicted-no effect concentration, PNEC) 45 3.8.2風險商數 (Risk quotient, RQ) 46 3.9 統計分析 47 第四章 結果與討論 48 4.1急毒性試驗之REEs濃度量測與死亡率結果 48 4.2 提高REEs在VSW中溶解度的結果 (暴露條件優化) 53 4.3七日暴露實驗之非致死效應結果 58 4.3.1 Y、La、Gd與Dy在7日暴露實驗的濃度變化 58 4.3.2 Y、La、Gd與Dy在魚體的濃度及生物濃縮係數 (BCF) 58 4.3.3 泳動行為分析結果 62 4.3.4 體長體重分析結果 67 4.3.5 氧化壓力指標與乙醯膽鹼酯酶分析結果 69 4.3.6 非致死試驗測得之最低觀察到效應的濃度 (lowest observed effect concentrations, LOECs) 與無觀察到效應的濃度 (no observed effect concentrations, NOECs) 75 4.4 以SSD和AF方法計算Y、La、Gd與Dy的PNECs 77 4.4.1 PNECSSD 77 4.4.2 PNECAF 81 4.5. Y、La、Gd與Dy之RQ 83 第五章 結論與建議 86 第六章 參考文獻 88 第七章 附錄 104 | - |
dc.language.iso | zh_TW | - |
dc.title | 稀土元素對青鱂魚的毒性效應與生態風險評估 | zh_TW |
dc.title | Toxicity of rare earth elements (REEs) on medaka fish and associated ecological risk assessments | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭崇德;魏嘉徵;周佩欣;陳德豪 | zh_TW |
dc.contributor.oralexamcommittee | Chung-Der Hsiao;Chia-Cheng Wei;Pei-Hsin Chou;Te-Hao Chen | en |
dc.subject.keyword | 稀土元素,青鱂魚,新興污染物,急毒性,生物濃縮係數,生態風險評估, | zh_TW |
dc.subject.keyword | rare earth elements,medaka (Oryzias latipes),emerging contaminants,acute toxicity,bioconcentration factors,ecological risk assessment, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU202403272 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農業化學系 | - |
dc.date.embargo-lift | 2026-08-31 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。