請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94468完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕蓓德 | zh_TW |
| dc.contributor.advisor | Pei-Te Chiueh | en |
| dc.contributor.author | 古育寧 | zh_TW |
| dc.contributor.author | Yu-Nien Ku | en |
| dc.date.accessioned | 2024-08-16T16:13:34Z | - |
| dc.date.available | 2024-08-31 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., & Bochtis, D. (2019). Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6), 676. https://doi.org/10.3390/rs11060676
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., & Hatté, C. (2018). Atmosphere–Soil Carbon Transfer as a Function of Soil Depth. Nature, 559(7715), 599-602. https://doi.org/10.1038/s41586-018-0328-3 Batjes, N., Ceschia, E., Heuvelink, G., Demenois, J., Maire, G., Cardinael, R., Arias-Navarro, C., & van Egmond, F. (2023). International Review of Current Mrv Initiatives for Soil Carbon Stock Change Assessment and Associated Methodologies. ORCaSa Project Deliverable 4.1. ISRIC, INRAE and CIRAD, 122 pp. Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z., Jiang, X., van Dijk, A. I. J. M., & Miralles, D. G. (2023). High-Resolution (1 Km) Köppen-Geiger Maps for 1901–2099 Based on Constrained Cmip6 Projections. Scientific Data, 10(1), 724. https://doi.org/10.1038/s41597-023-02549-6 Bessou, C., Tailleur, A., Godard, C., Gac, A., de la Cour, J. L., Boissy, J., Mischler, P., Caldeira-Pires, A., & Benoist, A. (2020). Accounting for Soil Organic Carbon Role in Land Use Contribution to Climate Change in Agricultural Lca: Which Methods? Which Impacts? The International Journal of Life Cycle Assessment, 25(7), 1217-1230. https://doi.org/10.1007/s11367-019-01713-8 Cao, M., & Woodward, F. I. (1998). Dynamic Responses of Terrestrial Ecosystem Carbon Cycling to Global Climate Change. Nature, 393(6682), 249-252. https://doi.org/10.1038/30460 Chen, H. W., Yen, J. H., Chung, R. S., Lai, C. M., Yang, S. S., & Wang, Y. S. (2001). Carbon Dioxide Flux Density in Cultivated Rice Paddy Field. Proceedings of the National Science Council, Republic of China 25(4), 239-247. Chen, S. C., Arrouays, D., Angers, D. A., Chenu, C., Barre, P., Martin, M. P., Saby, N. P. A., & Walter, C. (2019). National Estimation of Soil Organic Carbon Storage Potential for Arable Soils: A Data-Driven Approach Coupled with Carbon-Landscape Zones. Science of the Total Environment, 666, 355-367. https://doi.org/10.1016/j.scitotenv.2019.02.249 Cho, S., Kang, M., Ichii, K., Kim, J., Lim, J.-H., Chun, J.-H., Park, C.-W., Kim, H. S., Choi, S.-W., Lee, S.-H., Indrawati, Y. M., & Kim, J. (2021). Evaluation of Forest Carbon Uptake in South Korea Using the National Flux Tower Network, Remote Sensing, and Data-Driven Technology. Agricultural and Forest Meteorology, 311, 108653. https://doi.org/10.1016/j.agrformet.2021.108653 Cruz, P. L. (2019). Satellite-Based Modelling of Vegetation Productivity in the Netherlands. [Master's thesis, Radboud University]. Nijmegen. Dar, A. A., & Parthasarathy, N. (2023). Ecological Drivers of Soil Carbon in Kashmir Himalayan Forests: Application of Machine Learning Combined with Structural Equation Modelling. Journal of Environmental Management, 330, 117147. https://doi.org/10.1016/j.jenvman.2022.117147 Dewi, I. L., Tang, S., Maimunah, M. A., Cantona, E., Dukuzumuremyi, J. Y., Nkurunziza, C., Utami, S. N. H., Hanudin, E., Hattori, S., Tawaraya, K., & Cheng, W. (2024). Long-Term Conversion of Upland to Paddy Increased Soc Content and N Availability in a Sand Dune of Japan. Catena, 234, 107603. https://doi.org/10.1016/j.catena.2023.107603 Fan, J., McConkey, B. G., Liang, B. C., Angers, D. A., Janzen, H. H., Kröbel, R., Cerkowniak, D. D., & Smith, W. N. (2019). Increasing Crop Yields and Root Input Make Canadian Farmland a Large Carbon Sink. Geoderma, 336, 49-58. https://doi.org/10.1016/j.geoderma.2018.08.004 FAO. (2020). A Protocol for Measurement, Monitoring, Reporting and Verification of Soil Organic Carbon in Agricultural Landscapes – Gsoc-Mrv Protocol. Rome. https://doi.org/10.4060/cb0509en Fowler, A. F., Basso, B., Millar, N., & Brinton, W. F. (2023). A Simple Soil Mass Correction for a More Accurate Determination of Soil Carbon Stock Changes. Scientific Reports, 13(1), 2242. https://doi.org/10.1038/s41598-023-29289-2 Gang, C., Shi, H., Tian, H., Pan, S., Pan, N., Xu, R., Wang, Z., Bian, Z., You, Y., & Yao, Y. (2023). Uncertainty in Land Use Obscures Global Soil Organic Carbon Stock Estimates. Agricultural and Forest Meteorology, 339, 109585. https://doi.org/10.1016/j.agrformet.2023.109585 Gao, S.-j., Li, S., Zhou, G.-p., & Cao, W.-d. (2023). The Potential of Green Manure to Increase Soil Carbon Sequestration and Reduce the Yield-Scaled Carbon Footprint of Rice Production in Southern China. Journal of Integrative Agriculture, 22(7), 2233-2247. https://doi.org/10.1016/j.jia.2022.12.005 Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P., & Sainju, U. M. (2017). Tillage, Crop Residue, and Nutrient Management Effects on Soil Organic Carbon in Rice-Based Cropping Systems: A Review. Journal of Integrative Agriculture, 16(1), 1-15. https://doi.org/10.1016/S2095-3119(16)61337-0 Glenk, K., & Colombo, S. (2011). Designing Policies to Mitigate the Agricultural Contribution to Climate Change: An Assessment of Soil Based Carbon Sequestration and Its Ancillary Effects. Climatic Change, 105(1-2), 43-66. https://doi.org/10.1007/s10584-010-9885-7 Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., McConkey, B. G., Campbell, C. A., & Nemecek, T. (2015). Accounting for Soil Carbon Changes in Agricultural Life Cycle Assessment (Lca): A Review. Journal of Cleaner Production, 104, 23-39. https://doi.org/10.1016/j.jclepro.2015.05.040 Gong, W., Wang, L., Lin, A., & Zhang, M. (2012). Evaluating the Monthly and Interannual Variation of Net Primary Production in Response to Climate in Wuhan During 2001 to 2010. Geosciences Journal, 16(3), 347-355. https://doi.org/10.1007/s12303-012-0025-4 González-Domínguez, B., Niklaus, P. A., Studer, M. S., Hagedorn, F., Wacker, L., Haghipour, N., Zimmermann, S., Walthert, L., McIntyre, C., & Abiven, S. (2019). Temperature and Moisture Are Minor Drivers of Regional-Scale Soil Organic Carbon Dynamics. Scientific Reports, 9(1), 6422. https://doi.org/10.1038/s41598-019-42629-5 Gupta, S., Deb Burman, P. K., Tiwari, Y. K., Dumka, U. C., Kumari, N., Srivastava, A., & Raghubanshi, A. S. (2023). Understanding Carbon Sequestration Trends Using Model and Satellite Data under Different Ecosystems in India. Science of the Total Environment, 897, 166381. https://doi.org/10.1016/j.scitotenv.2023.166381 Herzfeld, T., Heinke, J., Rolinski, S., & Müller, C. (2021). Soil Organic Carbon Dynamics from Agricultural Management Practices under Climate Change. Earth System Dynamics, 12(4), 1037-1055. https://doi.org/10.5194/esd-12-1037-2021 Ho, Y. T., Wu, C.-F., Yang, M.-C., Chen, T.-Y., & Chang, Y.-H. (2019). Replanting Your Forest: Nvm-Friendly Bagging Strategy for Random Forest. 2019 IEEE Non-Volatile Memory Systems and Applications Symposium 1-6. https://doi.org/10.1109/NVMSA.2019.8863525. Huang, J. Y., Hartemink, A. E., & Zhang, Y. K. (2019). Climate and Land-Use Change Effects on Soil Carbon Stocks over 150 Years in Wisconsin, USA. Remote Sensing, 11(12), Article 1504. https://doi.org/10.3390/rs11121504 Hussin, F., Md Rahim, S. A. N., Hatta, N. S. M., Aroua, M. K., & Mazari, S. A. (2023). A Systematic Review of Machine Learning Approaches in Carbon Capture Applications. Journal of CO2 Utilization, 71, 102474. https://doi.org/10.1016/j.jcou.2023.102474 IPCC. 2022. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group Iii to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926 Ito, A., Hajima, T., Lawrence, D. M., Brovkin, V., Delire, C., Guenet, B., Jones, C. D., Malyshev, S., Materia, S., McDermid, S. P., Peano, D., Pongratz, J., Robertson, E., Shevliakova, E., Vuichard, N., Warlind, D., Wiltshire, A., & Ziehn, T. (2020). Soil Carbon Sequestration Simulated in Cmip6-Lumip Models: Implications for Climatic Mitigation. Environmental Research Letters, 15(12), 15. https://doi.org/10.1088/1748-9326/abc912 Ito, A., Reyer, C. P. O., Gädeke, A., Ciais, P., Chang, J., Chen, M., François, L., Forrest, M., Hickler, T., Ostberg, S., Shi, H., Thiery, W., & Tian, H. (2020). Pronounced and Unavoidable Impacts of Low-End Global Warming on Northern High-Latitude Land Ecosystems. Environmental Research Letters, 15(4), 044006. https://doi.org/10.1088/1748-9326/ab702b Jakrawatana, N., Gheewala, S. H., & Towprayoon, S. (2019). Carbon Flow and Management in Regional Rice Production in Thailand. Carbon Management, 10(1), 93-103. https://doi.org/10.1080/17583004.2018.1555491 Janzen, H. H., van Groenigen, K. J., Powlson, D. S., Schwinghamer, T., & van Groenigen, J. W. (2022). Photosynthetic Limits on Carbon Sequestration in Croplands. Geoderma, 416, 115810. https://doi.org/10.1016/j.geoderma.2022.115810 Jiang, Z., Yang, S., Ding, J., Sun, X., Chen, X., Liu, X., & Xu, J. (2021). Modeling Climate Change Effects on Rice Yield and Soil Carbon under Variable Water and Nutrient Management. Sustainability, 13(2), 568. https://doi.org/10.3390/su13020568 Johannes, A., Sauzet, O., Matter, A., & Boivin, P. (2023). Soil Organic Carbon Content and Soil Structure Quality of Clayey Cropland Soils: A Large-Scale Study in the Swiss Jura Region. Soil Use and Management, 39(2), 707-716. https://doi.org/10.1111/sum.12879 John, K., Abraham Isong, I., Michael Kebonye, N., Okon Ayito, E., Chapman Agyeman, P., & Marcus Afu, S. (2020). Using Machine Learning Algorithms to Estimate Soil Organic Carbon Variability with Environmental Variables and Soil Nutrient Indicators in an Alluvial Soil. Land, 9(12), 487. https://doi.org/10.3390/land9120487 Koga, N., Smith, P., Yeluripati, J. B., Shirato, Y., Kimura, S. D., & Nemoto, M. (2011). Estimating Net Primary Production and Annual Plant Carbon Inputs, and Modelling Future Changes in Soil Carbon Stocks in Arable Farmlands of Northern Japan. Agriculture, Ecosystems & Environment, 144(1), 51-60. https://doi.org/10.1016/j.agee.2011.07.019 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386 Kuhnert, M., Vetter, S., & Smith, P. (2022). Measuring and Monitoring Soil Carbon Sequestration (I. C. Rumpel, Ed.). Burleigh Dodds Science Publishing. https://shop.bdspublishing.com/store/bds/detail/product/3-190-9781801467063 Lal, R. (2004). The Potential of Carbon Sequestration in Soils of South Asia In: International Soil Conservation Organisation Conference, Brisbane July, 2004. https://www.researchgate.net/publication/242523772_THE_POTENTIAL_OF_CARBON_SEQUESTRATION_IN_SOILS_OF_SOUTH_ASIA Liu, X., Lai, Q., Yin, S., Bao, Y., Tong, S., Adiya, Z., Sanjjav, A., & Gao, R. (2024). Spatio-Temporal Patterns and Control Mechanism of the Ecosystem Carbon Use Efficiency across the Mongolian Plateau. Science of the Total Environment, 907, 167883. https://doi.org/10.1016/j.scitotenv.2023.167883 Liu, X., Lu, D., Zhang, A., Liu, Q., & Jiang, G. (2022). Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environmental science & technology, 56(4), 2124-2133. https://doi.org/10.1021/acs.est.1c06157 Liu, Y., Ge, T., van Groenigen, K. J., Yang, Y., Wang, P., Cheng, K., Zhu, Z., Wang, J., Li, Y., Guggenberger, G., Sardans, J., Penuelas, J., Wu, J., & Kuzyakov, Y. (2021). Rice Paddy Soils Are a Quantitatively Important Carbon Store According to a Global Synthesis. Communications Earth & Environment, 2(1), 154. https://doi.org/10.1038/s43247-021-00229-0 Long, H., Li, X., Wang, H., Wei, D., & Zhang, C. (2010). Net Primary Productivity (Npp) of Grassland Ecosystem and Its Relationship with Climate in Inner Mongolia. Chinese Journal of Plant Ecology, 30(5), 1367-1378. https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952722291&partnerID=40&md5=2c0598b4299214ef1d0067fe69874972 Luo, Z. K., Feng, W. T., Luo, Y. Q., Baldock, J., & Wang, E. L. (2017). Soil Organic Carbon Dynamics Jointly Controlled by Climate, Carbon Inputs, Soil Properties and Soil Carbon Fractions. Global Change Biology, 23(10), 4430-4439. https://doi.org/10.1111/gcb.13767 Luo, Z. K., Rossel, R. A. V., & Shi, Z. (2020). Distinct Controls over the Temporal Dynamics of Soil Carbon Fractions after Land Use Change. Global Change Biology, 26(8), 4614-4625. https://doi.org/10.1111/gcb.15157 Ma, Y., Minasny, B., Viaud, V., Walter, C., Malone, B., & McBratney, A. (2023). Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia. Land, 12(1), 255. https://doi.org/10.3390/land12010255 Malik, A. D., Nasrudin, A., Parikesit, & Withaningsih, S. (2023). Vegetation Stands Biomass and Carbon Stock Estimation Using Ndvi - Landsat 8 Imagery in Mixed Garden of Rancakalong, Sumedang, Indonesia. IOP Conference Series: Earth and Environmental Science, 1211(1), 012015. https://doi.org/10.1088/1755-1315/1211/1/012015 Mandal, A., Majumder, A., Dhaliwal, S. S., Toor, A. S., Mani, P. K., Naresh, R. K., Gupta, R. K., & Mitran, T. (2022). Impact of Agricultural Management Practices on Soil Carbon Sequestration and Its Monitoring through Simulation Models and Remote Sensing Techniques: A Review. Critical Reviews in Environmental Science and Technology, 52(1), 1-49. https://doi.org/10.1080/10643389.2020.1811590 Meliho, M., Boulmane, M., Khattabi, A., Dansou, C. E., Orlando, C. A., Mhammdi, N., & Noumonvi, K. D. (2023). Spatial Prediction of Soil Organic Carbon Stock in the Moroccan High Atlas Using Machine Learning. Remote Sensing, 15(10), 2494. https://doi.org/10.3390/rs15102494 Meng, X., Bao, Y., Luo, C., Zhang, X., & Liu, H. (2024). Soc Content of Global Mollisols at a 30 m Spatial Resolution from 1984 to 2021 Generated by the Novel Ml-Cnn Prediction Model. Remote Sensing of Environment, 300, 113911. https://doi.org/10.1016/j.rse.2023.113911 Merante, P., Dibari, C., Ferrise, R., Sánchez, B., Iglesias, A., Lesschen, J. P., Kuikman, P., Yeluripati, J., Smith, P., & Bindi, M. (2017). Adopting Soil Organic Carbon Management Practices in Soils of Varying Quality: Implications and Perspectives in Europe. Soil and Tillage Research, 165, 95-106. https://doi.org/10.1016/j.still.2016.08.001 Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., . . . Winowiecki, L. (2017). Soil Carbon 4 Per Mille. Geoderma, 292, 59-86. https://doi.org/10.1016/j.geoderma.2017.01.002 Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., & Thépaut, J. N. (2021). Era5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth System Science Data, 13(9), 4349-4383. https://doi.org/10.5194/essd-13-4349-2021 Nishimura, S., Yonemura, S., Sawamoto, T., Shirato, Y., Akiyama, H., Sudo, S., & Yagi, K. (2008). Effect of Land Use Change from Paddy Rice Cultivation to Upland Crop Cultivation on Soil Carbon Budget of a Cropland in Japan. Agriculture, Ecosystems & Environment, 125(1), 9-20. https://doi.org/10.1016/j.agee.2007.11.003 Padarian, J., Minasny, B., McBratney, A., & Smith, P. (2022). Soil Carbon Sequestration Potential in Global Croplands. the Journal of Life & Environmental Sciences, 10, 21, Article e13740. https://doi.org/10.7717/peerj.13740 Padarian, J., Minasny, B., & McBratney, A. B. (2020). Machine Learning and Soil Sciences: A Review Aided by Machine Learning Tools. Soil, 6(1), 35-52. https://doi.org/10.5194/soil-6-35-2020 Pan, B., Yu, H., Cheng, H., Du, S., Cai, S., Zhao, M., Du, J., & Xie, F. (2023). A Cnn–Lstm Machine-Learning Method for Estimating Particulate Organic Carbon from Remote Sensing in Lakes. Sustainability, 15(17), 13043. https://doi.org/10.3390/su151713043 Pan, X., & Srikumar, V. (2016). Expressiveness of Rectifier Networks Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v48/panb16.html Peng, X., Shi, T., Song, A., Chen, Y., & Gao, W. (2014). Estimating Soil Organic Carbon Using Vis/Nir Spectroscopy with Svmr and Spa Methods. Remote Sensing, 6(4), 2699-2717. https://doi.org/10.3390/rs6042699 Piao, S. L., Zhang, X. P., Chen, A. P., Liu, Q., Lian, X., Wang, X. H., Peng, S. S., & Wu, X. C. (2019). The Impacts of Climate Extremes on the Terrestrial Carbon Cycle: A Review. Science China Earth Sciences, 62(10), 1551-1563. https://doi.org/10.1007/s11430-018-9363-5 Prasad, J. V. N. S., Veni, V. G., Srinivasarao, C., Kundu, S., Ramakrishna, B., Sammi Reddy, K., Singh, R., Singh, S. K., Murai, A. S., Rohilla, P. P., Makkar, G. S., Rampal, V. K., Grover, J., Brar, J. S., Goyal, N. K., Jakhar, D. S., Kiran, B. V. S., Singh, V. K., & Bhaskar, S. (2023). Can Adoption of Climate Resilient Management Practices Achieve Carbon Neutrality in Traditional Green Revolution States of Punjab and Haryana? Journal of Environmental Management, 338, 117761. https://doi.org/10.1016/j.jenvman.2023.117761 Qi, S., Zhang, H., & Zhang, M. (2023). Net Primary Productivity Estimation of Terrestrial Ecosystems in China with Regard to Saturation Effects and Its Spatiotemporal Evolutionary Impact Factors. Remote Sensing, 15(11), 2871. https://doi.org/10.3390/rs15112871 Rabbi, S. M. F., Tighe, M., Cowie, A., Wilson, B. R., Schwenke, G., McLeod, M., Badgery, W., & Baldock, J. (2014). The Relationships between Land Uses, Soil Management Practices, and Soil Carbon Fractions in South Eastern Australia. Agriculture, Ecosystems & Environment, 197, 41-52. https://doi.org/10.1016/j.agee.2014.06.020 Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L. S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J. F., Whitehead, D., & Wollenberg, E. (2020). The 4p1000 Initiative: Opportunities, Limitations and Challenges for Implementing Soil Organic Carbon Sequestration as a Sustainable Development Strategy. A Journal of Environment and Society, 49(1), 350-360. https://doi.org/10.1007/s13280-019-01165-2 Senapati, N., Hulugalle, N. R., Smith, P., Wilson, B. R., Yeluripati, J. B., Daniel, H., Ghosh, S., & Lockwood, P. (2014). Modelling Soil Organic Carbon Storage with Rothc in Irrigated Vertisols under Cotton Cropping Systems in the Sub-Tropics. Soil and Tillage Research, 143, 38-49. https://doi.org/10.1016/j.still.2014.05.009 Sha, Z., Bai, Y., Li, R., Lan, H., Zhang, X., Li, J., Liu, X., Chang, S., & Xie, Y. (2022). The Global Carbon Sink Potential of Terrestrial Vegetation Can Be Increased Substantially by Optimal Land Management. Communications Earth & Environment, 3(1), 8. https://doi.org/10.1038/s43247-021-00333-1 Sha, Z., Bai, Y., Li, R., Lan, H., Zhang, X., Li, J., Liu, X., & Xie, Y. (2020). Assessing Terrestrial Carbon Sink Potential from Vegetation under Optimal Land Management. Research Square. https://doi.org/10.21203/rs.3.rs-88083/v1 Shen, Q., Liu, X., & Zhang, X. (2023). Evaluating Soil Organic Carbon Changes after 16 Years of Soil Relocation in Chinese Mollisols by Optimizing the Input Data of the Rothc Model. Soil and Tillage Research, 225, 105561. https://doi.org/10.1016/j.still.2022.105561 Singh, R. K., Biradar, C. M., Behera, M. D., Prakash, A. J., Das, P., Mohanta, M. R., Krishna, G., Dogra, A., Dhyani, S. K., & Rizvi, J. (2024). Optimising Carbon Fixation through Agroforestry: Estimation of Aboveground Biomass Using Multi-Sensor Data Synergy and Machine Learning. Ecological Informatics, 79, 102408. https://doi.org/10.1016/j.ecoinf.2023.102408 Smith, S. M., Geden, O., Nemet, G. F., Gidden, M. J., Lamb, W. F., Powis, C., Bellamy, R., Callaghan, M. W., Cowie, A., Cox, E., Fuss, S., Gasser, T., Grassi, G., Greene, J., Lück, S., Mohan, A., Müller-Hansen, F., Peters, G. P., Pratama, Y., . . . Minx, J. C. (2023). The State of Carbon Dioxide Removal - 1st Edition. http://dx.doi.org/10.17605/OSF.IO/W3B4Z Tan, Z., & Liu, S. (2013). Baseline-Dependent Responses of Soil Organic Carbon Dynamics to Climate and Land Disturbances. Applied and Environmental Soil Science, 2013, 206758. https://doi.org/10.1155/2013/206758 Tayebi, M., Fim Rosas, J. T., Mendes, W. d. S., Poppiel, R. R., Ostovari, Y., Ruiz, L. F. C., dos Santos, N. V., Cerri, C. E. P., Silva, S. H. G., Curi, N., Silvero, N. E. Q., & Demattê, J. A. M. (2021). Drivers of Organic Carbon Stocks in Different Lulc History and Along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 13(11), 2223. https://doi.org/10.3390/rs13112223 Tsui, C.-C., Guo, H.-Y., & Chen, Z.-S. (2013). Estimation of Soil Carbon Stock in Taiwan Arable Soils by Using Legacy Database and Digital Soil Mapping. In C. H. S. Maria (Ed.), Soil Processes and Current Trends in Quality Assessment (pp. Ch. 11). IntechOpen. https://doi.org/10.5772/53211 Umair, M., Kim, D., Ray, R. L., & Choi, M. (2020). Evaluation of Atmospheric and Terrestrial Effects in the Carbon Cycle for Forest and Grassland Ecosystems Using a Remote Sensing and Modeling Approach. Agricultural and Forest Meteorology, 295, 108187. https://doi.org/10.1016/j.agrformet.2020.108187 Vijayaprabakaran, K., & Sathiyamurthy, K. (2022). Towards Activation Function Search for Long Short-Term Model Network: A Differential Evolution Based Approach. Journal of King Saud University - Computer and Information Sciences, 34(6), 2637-2650. https://doi.org/10.1016/j.jksuci.2020.04.015 Wadoux, A., Saby, N. P. A., & Martin, M. P. (2023). Shapley Values Reveal the Drivers of Soil Organic Carbon Stock Prediction. Soil, 9(1), 21-38. https://doi.org/10.5194/soil-9-21-2023 Wang, L., Zhang, Y., Yao, Y., Xiao, Z., Shang, K., Guo, X., Yang, J., Xue, S., & Wang, J. (2021). Gbrt-Based Estimation of Terrestrial Latent Heat Flux in the Haihe River Basin from Satellite and Reanalysis Datasets. Remote Sensing, 13(6), 1054. https://doi.org/10.3390/rs13061054 Wang, M. M., Guo, X. W., Zhang, S., Xiao, L. J., Mishra, U., Yang, Y. H., Zhu, B. A., Wang, G. C., Mao, X. L., Qian, T., Jiang, T., Shi, Z., & Luo, Z. K. (2022). Global Soil Profiles Indicate Depth-Dependent Soil Carbon Losses under a Warmer Climate. Nature Communications, 13(1), Article 5514. https://doi.org/10.1038/s41467-022-33278-w Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., & Kögel-Knabner, I. (2019). Soil Organic Carbon Storage as a Key Function of Soils - a Review of Drivers and Indicators at Various Scales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026 World Bank. (2021). Soil Organic Carbon Mrv Sourcebook for Agricultural Landscapes. © World Bank, Washington, DC. Yang, L., Cai, Y., Zhang, L., Guo, M., Li, A., & Zhou, C. (2021). A Deep Learning Method to Predict Soil Organic Carbon Content at a Regional Scale Using Satellite-Based Phenology Variables. International Journal of Applied Earth Observation and Geoinformation, 102, 102428. https://doi.org/10.1016/j.jag.2021.102428 Zhang, L., Cai, Y., Huang, H., Li, A., Yang, L., & Zhou, C. (2022). A Cnn-Lstm Model for Soil Organic Carbon Content Prediction with Long Time Series of Modis-Based Phenological Variables. Remote Sensing, 14(18), 4441. https://doi.org/10.3390/rs14184441 Zhang, M., Shi, W., & Xu, Z. (2020). Systematic Comparison of Five Machine-Learning Models in Classification and Interpolation of Soil Particle Size Fractions Using Different Transformed Data. Hydrology and Earth System Sciences, 24(5), 2505-2526. https://doi.org/10.5194/hess-24-2505-2020 Zhang, N., Chen, X., Wang, J., Dong, H., Han, X., Lu, X., Yan, J., & Zou, W. (2023). Anthropogenic Soil Management Performs an Important Role in Increasing Soil Organic Carbon Content in Northeastern China: A Meta-Analysis. Agriculture, Ecosystems & Environment, 350, 108481. https://doi.org/10.1016/j.agee.2023.108481 Zhang, X., Xie, E., Chen, J., Peng, Y., Yan, G., & Zhao, Y. (2023). Modelling the Spatiotemporal Dynamics of Cropland Soil Organic Carbon by Integrating Process-Based Models Differing in Structures with Machine Learning. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-023-03516-9 Zhang, Y., Fan, M., Xu, Z., Jiang, Y., Ding, H., Li, Z., Shu, K., Zhao, M., Feng, G., Yong, K.-T., Dong, B., Zhu, W., & Xu, G. (2023). Machine-Learning Screening of Luminogens with Aggregation-Induced Emission Characteristics for Fluorescence Imaging. Journal of Nanobiotechnology, 21(1), 107. https://doi.org/10.1186/s12951-023-01864-9 洪蕾音、劉子揚、丁雅珠 (2018)。 各項農作物主要種植期間,斗南鎮公所。 許健輝、顏淳阡、劉滄棽 (2024)。 利用RothC模式進行土壤有機碳固存潛力時空變化分析-以濁水溪流域為例,農業試驗所技術服務季刊。 郭鴻裕、劉滄棽、朱戩良、江志峰、吳懷國 (1995)。 臺灣地區土壤有機質含量及有機資材之施用狀況,有機質肥料合理施用技術研討會。 陳柱中、戴宏宇、蘇子珊、廖崇億、許龍欣 (2023)。 應用DNDC模擬作物生育與溫室氣體排放,作物永續栽培體系國際研討會,國立臺灣大學。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94468 | - |
| dc.description.abstract | 隨著工業快速發展伴隨而來的氣候變遷現象,減碳議題近年來受到國內外組織規劃與政策實施之重視,為因應減少大氣中的二氧化碳總量,以實現減緩氣候變遷的現象。我國農業部門為達到減量的目標,亦提出永續農耕方式,並嘗試提升農業土壤碳匯量。然而,目前尚未有明確訂定用於分析土壤碳匯量之動態變化的模型框架。
本研究為解決該問題,參考國外相關之方法學基礎,考量極端氣候及非氣候因子對農業土壤有機碳儲存潛量帶來不確定性,以臺灣主要糧食水稻產區--雲嘉南為研究對象,探討未來約十五年的土壤有機碳動態分布。本文利用機器學習整合氣候、土壤條件等資料建立模型,以評估淨初級生產量及土壤有機碳之動態變化。其中包含兩階段模型,其一為淨初級生產量之時空動態模型,推估其隨時間之分布變化;其二則為地上部與地下部之數值迴歸模型,建立遙測與土壤調查資料之關係。藉由統計方法,於研究結果說明參數相關性特徵,檢視參數對於模型之顯著性,並分析環境變量對於碳潛量的分布特性。 本研究進而探討氣候變遷情境與土地管理實踐情境之碳潛量變化。於劇烈的氣候變遷條件 (SSP5-8.5) 下,其變化率相對較和緩的氣候情境 (SSP1-2.6) 對於歷史情境的23%,提升為29%,顯示土壤碳儲存潛量穩定性有下降的可能性。接著,以SSP1-2.6為基線推估未來在土地管理實踐措施下,土壤有機碳儲存潛量的變化情形,相對2000年,至2035年可提升27%以上。這些結果顯示面對不同氣候變遷情境下,土地管理實踐對於土壤碳潛量的重要性。 本研究透過衛星遙測資料、地理資訊系統與機器學習方法,呈現並說明時空間農業土壤碳潛量之連續性變化;並致力於提升對水稻田土壤碳儲存潛量變化之理解,分析環境變量對土壤碳指標的影響,以供未來相關研究與政策之參考。 | zh_TW |
| dc.description.abstract | Climate change has accompanies the rapid development of industrialization, and carbon reduction issues have received attention from domestic and foreign organizations in planning and policy implementation, aiming at reducing the sum of carbon dioxide, and mitigating the phenomenon of climate change. To address carbon reduction, Taiwan’s Ministry of Agriculture (MOA) has proposed sustainable agricultural practices to increase soil carbon storage. However, Taiwan lacks a clearly defined model framework for analyzing the dynamic changes in soil carbon sinks.
In order to solve this problem, this study refers to foreign methodological foundations, considers the uncertainty caused by environmental variables on soil organic carbon (SOC) potential, and focuses on the primary rice-growing regions of Yulin, Chiayi, and Tainan in Taiwan. The goal is to explore the future spatiotemporal patterns of SOC distribution. This study employs machine learning to develop a model to evaluate the dynamic changes in net primary production (NPP) and SOC. The model comprises two stages: a dynamic potential change model of NPP distribution with the spatiotemporal resolution, and a regression model for aboveground and underground parts to establish a remote sensing relationship with soil survey data. Furthermore, statistical methods are used to analyze the significance of climate variables on soil carbon indicators. This study explores the changes in carbon potential under further climate change scenarios and land management practices (LMPs). Under the severe climate scenario (SSP5-8.5), the climate scenario with a relatively mild changing rate (SSP1-2.6) increased from 23% of the historical scenario to 29%, indicating that the stability of SOC storage potential has declined. Using SSP1-2.6 as a baseline, it is showed that future land management practices could increase soil carbon storage potential by up to 27% by 2035 compared to the year 2000. These results indicated the importance of land management practices for SOC in the face of climate change. This study focuses on using satellite remote sensing data, Geographic Information Systems (GIS), and machine learning methodologies to present and explain changes in spatiotemporal continuity. It is also committed to understanding changes in soil carbon storage potential in rice fields and analyzing the dynamic changes of various environmental variables on soil carbon indicators to provide a reference for future studies and policy development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:13:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T16:13:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 x 第一章、緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 第二章、文獻回顧 5 2.1 國內外政策與趨勢說明 5 2.1.1 國際規範與國內政策 5 2.1.1.1 國際規範 5 2.1.1.2 國內碳減量發展與未來規劃 6 2.1.2 國內外碳移除與自然碳匯 7 2.1.2.1 自然碳匯 7 2.1.2.2 陸域生態系統 7 2.2 農業土壤碳系統 8 2.2.1 土壤碳動態平衡與重要性 9 2.2.2 影響土壤碳平衡之因子 10 2.3 衛星遙測於土壤碳系統之應用 13 2.3.1 遙測指標之應用 13 2.3.2 地下部土壤碳系統與地上部遙測資料之關聯性 15 2.4 土壤碳量之動態模擬方法 16 2.4.1 已建立之土壤模擬系統 16 2.4.2 查表法 17 2.4.3 機器學習 18 2.5 土壤碳儲存潛量分析與研究案例 21 2.5.1 時間解析度之趨勢探討 21 2.5.2 空間解析度之動態分布分析 22 第三章、研究方法 24 3.1 研究範疇 26 3.2 研究材料 28 3.2.1 參數設定與選擇 28 3.2.2 參數來源與軟體工具 28 3.2.2.1參數來源 28 3.2.2.2軟體工具與運用 30 3.2.3 情境分析與設計 31 3.2.3.1 氣候情境之設定 31 3.2.3.2 土地管理實踐之設定 33 3.3 研究之建模 34 3.3.1 模型架構與建模簡述 34 3.3.2 模型設置與資料處理 35 3.3.3 淨初級生產量之時空動態模型 36 3.3.3.1 演算法說明:CNN、LSTM、RF 37 3.3.3.2 使用不同環境變數組合作為預測變量 41 3.3.4 地上部(NPP)與地下部(SOC)之數值迴歸模型 41 3.3.4.1 演算法說明:RF、GBRT、KNN、MLP、XGB 43 3.3.4.2 使用不同環境變數組合預測變量 46 3.3.5 驗證與分析階段 47 第四章、結果與討論 49 4.1 模型預測能力 49 4.1.1 模型一-淨初級生產量之時空動態模型 49 4.1.1.1 模型驗證與特性說明 52 4.1.1.2 模型一選用與分析 57 4.1.2 模型二-地上部(NPP)與地下部(SOC)之數值迴歸模型 58 4.1.2.1 模型驗證與特性說明 60 4.1.2.2 模型二選用與分析 65 4.1.2.3 土壤碳潛量指標之趨勢分析-SOC、NPP 66 4.2 氣候情境下之土壤碳潛量變化 68 4.3 不同土地管理實踐下之土壤碳儲存動態潛量 75 4.4 綜合討論 78 第五章、結論與建議 81 5.1 結論 81 5.2 未來研究建議 83 參考文獻 87 附錄 97 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 農業土壤碳匯 | zh_TW |
| dc.subject | 碳儲存潛量 | zh_TW |
| dc.subject | 時間與空間動態評估 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 土地管理實踐 | zh_TW |
| dc.subject | Carbon sink potential | en |
| dc.subject | Machine learning (ML) | en |
| dc.subject | Land management practices (LMPs) | en |
| dc.subject | Climate change | en |
| dc.subject | Spatio-temporal | en |
| dc.subject | Agriculture soil | en |
| dc.title | 應用機器學習推估水稻田土壤有機碳之時空動態與儲存潛力 | zh_TW |
| dc.title | Machine Learning Assessment of Soil Organic Carbon in Paddy Fields: Spatiotemporal Dynamics and Sequestration Potential | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 駱尚廉;蕭友晉 | zh_TW |
| dc.contributor.oralexamcommittee | Shang-Lien Lo;Yo-Jin Shiau | en |
| dc.subject.keyword | 機器學習,農業土壤碳匯,碳儲存潛量,時間與空間動態評估,氣候變遷,土地管理實踐, | zh_TW |
| dc.subject.keyword | Machine learning (ML),Agriculture soil,Carbon sink potential,Spatio-temporal,Climate change,Land management practices (LMPs), | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202402830 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
