Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘zh_TW
dc.contributor.advisorDer-Ming Yehen
dc.contributor.author莊皓翔zh_TW
dc.contributor.authorHao-Hsiang Chuangen
dc.date.accessioned2024-08-16T16:12:58Z-
dc.date.available2024-08-31-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation白克智. 1996. 赤霉素的生理作用及其在生產上的應用. 生物學通報 31:20-21.
吳安娜. 2010. 巴克素及萘乙酸處理對盆栽玉蘭花生育與開花之影響. 桃園區農業改良場研究彙報:1-8.
吳淑均、張育森. 1996. 溫度對矮仙丹生長與開花之影響. 中國園藝 42:123-130.
李巧峽、張麗、王玉、黃小霞. 2019. 赤黴素調控植物開花及花器官發育的研究進展. 中國細胞生物學學報 4:746-758.
李守岭、李國明、王應清、張麗萍、李文偉. 2014. 迷迭香扦插繁殖技術研究. 熱帶農業科技 37:15-16.
曹福亮、蔡金峰、汪貴斌、張往祥. 2010. 淹水脅迫對烏桕生長及光合作用的影響. 林業科學 46:57-61.
梁瑞娟、張育森. 1998. 遮陰與生長調節劑對九重葛生長及開花之影響. 中國園藝 44:429-437.
陳子婷. 2007. 光週、低溫貯藏與激勃素對薰衣草生長與開花之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
陳坤燦. 2021. 千變萬化的海州常山屬花木. 台灣花卉園藝 410:10-18.
黃東瑞、王瑛華、陳剛、梁明然、于斐. 2017. 不同激素處理對鼎湖山狀元紅扦插繁殖的影響. 安徽農業科學 45:40-43.
楊林、朱莉、孫奐明、趙菲. 2010. 直立迷迭香不同木質化程度插條扦插效果研究. 北方園藝 5:114-115.
賈志遠、葛曉敏、唐羅忠. 2015. 木本植物扦插繁殖及其影響因素. 世界林業研究 28:36-41.
劉傑. 2017. 木本花卉花期調控技術. 現代園藝:80-81.
劉影、李國譚、葉德銘. 2022. 溫度及光週對非洲芙蓉開花之影響. 臺灣園藝 68:97-110.
黎仲軒. 2010. 植物生長調節劑對盆栽銀柳生長與發育之影響. 國立宜蘭大學園藝學系碩士論文. 宜蘭.
諶振、楊光穗、張東雪、王存. 2018. 不同種類生根劑對煙火樹扦插繁殖的影響. 現代農業科技:136-137.
聶麗雲、張彎彎、李仕裕、簡曙光、劉東明、邢福武、王發國. 2020. 水氮處理對島礁植物假茉莉生理適應的影響. 熱帶亞熱帶植物學報 28:403-410.
中島敦司、万木豊、永田洋. 1994. 夏期の温度および日長がサザンカの開花に及ぼす影響. 日本林學會誌 76:584-589.
井上宏. 1990. ウンシュウミカンの芽の休眠と花芽分化の温度条件. 園芸学会雑誌 58:919-926.
Aboyeji, C., Y. Abayomi, and M. Aduloju. 2014. Effect of periods of field establishment and irrigation on growth and yield performance of Thevetia peruviana (Pers.) Schum. J. Agr. Res. Dev. 13:34-45.
Ahmad, N., M. Ahmad, I. Ullah, A. Basit, A. Khattak, A. Rab, M. Sajid, S. Nasir, and Z. Hussain. 2020. Effect of irrigation intervals on growth and production of roselle (Hibiscus sabdariffa). Biosci. Res. 17:759-767.
Ahmad Nazarudin, M. 2012. Plant growth retardants effect on growth and flowering of potted Hibiscus rosa-sinensis L. J. Trop. Plant Physiol. 4:29-40.
Alam, B., D. Nair, and J. Jacob. 2005. Low temperature stress modifies the photochemical efficiency of a tropical tree species Hevea brasiliensis: Effects of varying concentration of CO2 and photon flux density. Photosynthetica 43:247-252.
Álvarez, S. and M.J. Sánchez-Blanco. 2013. Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Scientia Hort. 156:54-62.
Anjum, S.A., X. Xie, L. Wang, M.F. Saleem, C. Man, and W. Lei. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African J. Agr. Res. 6:2026-2032.
Armitage, A.M. 1995. Photoperiod, irradiance, and temperature influence flowering of Hamelia patens (Texas firebush). HortScience 30:255-256.
Ashraf, M.A. 2012. Waterlogging stress in plants: A review. African J. Agr. Res. 7:1976-1981.
Ausín, I., C. Alonso-Blanco, and J. Martínez-Zapater. 2005. Environmental regulation of flowering. Intl. J. Dev. Biol. 49:689-705.
Banker, G. and A. Mukhopadhay. 1982. Gibberellic acid influences growth. and flowering of rose ‘Queen Elizabeth’. Indian J. Hort. 39:130-133.
Barraclough, P. and J. Kyte. 2001. Effect of water stress on chlorophyll meter readings in winter wheat, p. 722-723. In: W.J. Horst, M.K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W.B. Frommer, H. Goldbach, H.-W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. Wirén and L. Wittenmayer (eds.). Plant Nutrition. Springer Dordrecht, Netherland.
Barros, V., A. Melo, M. Santos, L. Nogueira, G. Frosi, and M.G. Santos. 2020. Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiol. Biochem. 147:181-190.
Basu, S., V. Ramegowda, A. Kumar, and A. Pereira. 2016. Plant adaptation to drought stress. Plant Breeding 132:21-32.
Beeson, R.C. 1991. Scheduling woody plants for production and harvest. HortTechnology 1:30-35.
Belniaki, A.C., L.A.d.N. Rabel, E.N. Gomes, and K.C. Zuffellato-Ribas. 2018. Does the presence of leaves on coleus stem cuttings influence their rooting? Ornam. Hort. 24:206-210.
Berry, J. and O. Bjorkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543.
Bhargava, S. and K. Sawant. 2013. Drought stress adaptation: Metabolic adjustment and regulation of gene expression. Plant Breeding 132:21-32.
Bispo, T.M. and E.A. Vieira. 2022. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. J. Plant Res. 135:323-336.
Bolhar-Nordenkampf, H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funtional Ecol. 3:497-514.
Brand, M.H. 1997. Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L. cultivars. HortScience 32:206-208.
Burri, S., E. Haeler, W. Eugster, M. Haeni, S. Etzold, L. Walthert, S. Braun, and R. Zweifel. 2019. How did Swiss forest trees respond to the hot summer 2015? Die Erde 150:214-229.
Cai, X., T. Starman, G. Niu, C. Hall, and L. Lombardini. 2012. Response of selected garden roses to drought stress. HortScience 47:1050-1055.
Cameron, R., R. Harrison-Murray, and M.A. Scott. 1999. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv. Hoppy. J. Hort. Sci. Biotechnol. 74:161-169.
Chaikiattiyos, S., C.M. Menzel, and T.S. Rasmussen. 1994. Floral induction in tropical fruit trees: Effects of temperature and water supply. J. Hort. Sci. 69:397-415.
Chandler, J. 2011. The hormonal regulation of flower development. J. Plant Growth Regulat. 30:242-254.
Chelli-Chaabouni, A. 2013. Mechanisms and adaptation of plants to environmental stress: A case of woody species, p. 1-24. In: A. Parvaiz and W. Mohd Rafiq (eds.). Physiological mechanisms and adaptation strategies in plants under changing environment. Vol. 1. Springer, New York.
Chen, S., K.H. Ten Tusscher, R. Sasidharan, S.C. Dekker, and H.J. de Boer. 2023. Parallels between drought and flooding: An integrated framework for plant eco‐physiological responses to water stress. Plant Environ. Interactions 4:175-187.
Chorbadjian, R.A., P. Bonello, and D.A. Herms. 2011. Effect of the growth regulator paclobutrazol and fertilization on defensive chemistry and herbivore resistance of Austrian pine (Pinus nigra) and paper birch (Betula papyrifera). Arboriculture Urban For. 37:279-287.
Cirillo, C., Y. Rouphael, R. Caputo, G. Raimondi, and S. De Pascale. 2014. The influence of deficit irrigation on growth, ornamental quality, and water use efficiency of three potted Bougainvillea genotypes grown in two shapes. HortScience 49:1284-1291.
Coelho, M.d.F.B., R. Arruda, E.D. Pereira, A.B. Bomfim, and E.B. Germano. 2014. Propagation of Plectranthus neochilus Schlechter. J. Global Biosciences 3:494-498.
Corgan, J.N. and F.B. Widmoyer. 1971. The effects of gibberellic acid on flower differentiation, date of bloom, and flower hardiness of peach. J. Amer. Soc. Hort. Sci. 96:54-57.
Cunningham, S.C. and J. Read. 2006. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia. Tree Physiol. 26:1435-1443.
Dawson, I. and R. King. 1993. Effect of environment and applied chemicals on the flowering and form of Geraldton Wax (Chamelaucium uncinatum Schauer). Scientia Hort. 54:233-246.
Delaune, A. 2005. Aspects of production for Clerodendrum as potted flowering plants. MS thesis, Louisiana State Univ., USA.
Desta, B. and G. Amare. 2021. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agr. 8:1-15.
Dodd, I.C. and A.C. Ryan. 2016. Whole-plant physiological responses to water-deficit stress, p. 1-9. In: A.M. Hetherington (ed.). Encyclopedia of life sciences. John Wiley & Sons, Hoboken, New Jersey.
Drinnan, J. and C.M. Menzel. 1995. Temperature affects vegetative growth and flowering of coffee (Coffea arabica L.). J. Hort. Sci. 70:25-34.
Echer, F., D. Oosterhuis, D. Loka, and C. Rosolem. 2014. High night temperatures during the floral bud stage increase the abscission of reproductive structures in cotton. J. Agron. Crop Sci. 200:191-198.
El‐Beltagy, A. and M. Hall. 1974. Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol. 73:47-60.
Elcan, J. and S. Pezeshki. 2002. Effects of flooding on susceptibility of Taxodium distichum L. seedlings to drought. Photosynthetica 40:177-182.
Fahad, S., A.A. Bajwa, U. Nazir, S.A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, and S. Saud. 2017. Crop production under drought and heat stress: plant responses and management options. Frontiers Plant Sci. 8:1-16.
Faust, J.E., J.M. Dole, and R.G. Lopez. 2016. The floriculture vegetative cutting industry. Hort. Rev. 44:121-172.
Feng, W., H. Lindner, N.E. Robbins, and J.R. Dinneny. 2016. Growing out of stress: The role of cell-and organ-scale growth control in plant water-stress responses. Plant Cell 28:1769-1782.
Gad, M., E. Abdul-Hafeez, and O. Ibrahim. 2016. Foliar application of salicylic acid and gibberellic acid enhances growth and flowering of Ixora coccinea L. plants. J. Plant Prod. 7:85-91.
Gao, C., H. Chen, G. Li, H. Ma, X. Li, S. Long, B. Xu, X. Li, X. Zeng, and H. Yan. 2019. Land–atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin. Climat. Dynamics. 53:6181-6198.
Goulston, G. and S. Shearing. 1984. Review of the effects of paclobutrazol on ornamental pot plants. Acta Hort. 167:339-348.
Grunerberg, H., L. Ehrich, and N. Gruda. 2007. Growth regulation of new clones of Rotheca myricoides ‘Ugandensis’ (syn. Clerodendrum ugandense). European J. Hort. Sci. 72:119-121.
Gu, Z., Z. Qi, R. Burghate, S. Yuan, X. Jiao, and J. Xu. 2020. Irrigation scheduling approaches and applications: A review. J. Irr. Drainage Eng. 146:1-15.
Guardiola, J., C. Monerri, and M. Agusti. 1982. The inhibitory effect of gibberellic acid on flowering in Citrus. Physiol. Plant. 55:136-142.
Gupta, R. and S.K. Chakrabarty. 2013. Gibberellic acid in plant: Still a mystery unresolved. Plant Signaling Behavior 8:1-5.
Ha, T.M. 2014. A review of plants’ flowering physiology: The control of floral induction by juvenility, temperature and photoperiod in annual and ornamental crops. Asian J. Agr. Food Sci. 2:186-195.
Han, H., S. Zhang, and X. Sun. 2009. A review on the molecular mechanism of plants rooting modulated by auxin. African J. Biotechnol. 8:348-353.
Hansen, C.W. and K.K. Petersen. 2004. Reduced nutrient and water availability to Hibiscus rosa-sinensis ‘Cairo Red’ as a method to regulate growth and improve post-production quality. European J. Hort. Sci. 69:159-166.
Hartmann, H.T., D.E. Kester, and F.T. Davies Jr. 1990. Plant propagation: Principles and practices. 5th ed., Prentice Hall, Englewood Cliffs, N.J.
Hatfield, J.L. and J.H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather Climate Extremes 10:4-10.
He, J., K. Ng, L. Qin, Y. Shen, H. Rahardjo, C.L. Wang, H. Kew, Y.C. Chua, C.H. Poh, and S. Ghosh. 2024. Photosynthetic gas exchange, plant water relations and osmotic adjustment of three tropical perennials during drought stress and re-watering. Plos One 19:1-22.
Hedden, P. and V. Sponsel. 2015. A century of gibberellin research. J. Plant Growth Regulat. 34:740-760.
Hedhly, A. 2011. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Expt. Bot. 74:9-16.
Henriod, R., P. Jameson, and J. Clemens. 2000. Effects of photoperiod, temperature and bud size on flowering in Metrosideros excelsa (Myrtaceae). J. Hort. Sci. Biotechnol. 75:55-61.
Henriod, R., P. Jameson, and J. Clemens. 2003. Effect of irradiance during floral induction on floral initiation and subsequent development in buds of different size in Metrosideros excelsa (Myrtaceae). J. Hort. Sci. Biotechnol. 78:204-212.
Henry, P.H., F.A. Blazich, and L.E. Hinesley. 1992. Vegetative propagation of eastern redcedar by stem cuttings. HortScience 27:1272-1274.
Hildrum, H. 1973. The effect of day length, source of light and growth regulators on growth and flowering of Clerodendrum thomsonae Balf. Scientia Hort. 1:1-11.
Hsiao, J.Y. and M.L. Lin. 1995. A chemotaxonomic study of essential oils from the leaves of genus Clerodendrum (Verbenaceae) native to Taiwan. Bot. Bul. Acad. Sinica 36:247-251.
Izanloo, A., A.G. Condon, P. Langridge, M. Tester, and T. Schnurbusch. 2008. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Expt. Bot. 59:3327-3346.
Jamal, A., G. Ayub, A.R. Ali Rahman, J. Ali, and M. Shahab. 2015. Effect of IBA (indole butyric acid) levels on the growth and rooting of different cutting types of Clerodendrum splendens. Pure Appl. Biol. 5:64-71.
Jing, Y., G. Li, B. Gu, D. Yang, L. Xiao, R. Liu, and C. Peng. 2009. Leaf gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings to flooding and subsequent recovery. Photosynthetica 47:595-601.
Kamoutsis, A., A. Chronopoulou-Sereli, and E. Paspatis. 1999. Paclobutrazol affects growth and flower bud production in gardenia under different light regimes. HortScience 34:674-675.
Karlsson, M.G., R.D. Heins, J.O. Gerberick, and M.E. Hackmann. 1991. Temperature driven leaf unfolding rate in Hibiscus rosa-sinensis. Scientia Hort. 45:323-331.
Kathiravan, M., A. Ponnuswamy, and C. Vanitha. 2009. Determination of suitable cutting size for vegetative propagation and comparison of propagules to evaluate the seed quality attributes in Jatropha curcas Linn. Natl. Prod. Radiance 8:162-166.
King, R., I. Dawson, and S. Speer. 1992. Control of growth and flowering in two Western Australian species of Pimelea. Austral. J. Bot. 40:377-388.
Kishore, K., H.S. Singh, and R. Kurian. 2015. Paclobutrazol use in perennial fruit crops and its residual effects: A review. Indian J. Agr. Sci. 85:863-872.
Koranski, D.S., B.H. McCown, B.E. Struckmeyer, and G. Beck. 1979. Gibberellin‐growth retardant interactions on the growth and flowering of Clerodendrum thomsoniae. Physiol. Plant. 45:88-92.
Koranski, D.S., B.E. Struckmeyer, G. Beck, and B.H. McCown. 1987. Interaction of photoperiod, light intensity, light quality and ancymidol on growth and flowering of Clerodendrum thomsoniae Balf. ‘Wisconsin’. Scientia Hort. 33:147-154.
Koranski, D.S., B.E. Struckmeyer, and G.E. Beck. 1978. The role of ancymidol in Clerodendrum flower initiation and development. J. Amer. Soc. Hort. Sci. 103:813-815.
Kozlowski, T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. 17:490-490.
Krause, G.H. and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology: II. Interpretation of fluorescence signals. Photosyn. Res. 5:139-157.
Kreuzwieser, J. and H. Rennenberg. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 37:2245-2259.
Kumar, S. and K. Haripriya. 2010. Effect of growth retardants on growth, flowering and yield of nerium (Nerium odorum L.). Plant Arch. 10:681-684.
Lane, H., H. Cathey, and L. Evans. 1965. The dependence of flowering in several long‐day plants on the spectral composition of light extending the photoperiod. Amer. J. Bot. 52:1006-1014.
Lang, A. and E. Reinhard. 1961. Gibberellins and flower formation, p. 71-79. In: R.F. Gould (ed.). Gibberellins. American Chemical Society, Washington.
Larkindale, J., M. Mishkind, and E. Vierling. 2005. Plant responses to high temperature, p. 100-144. In: M.A. Jenks and P.M. Hasegawa (eds.). Plant abiotic stress. Blackwell Publishing Ltd., N.J.
Leakey, R.R. 2004. Physiology of vegetative reproduction, p. 1655-1668. In: J. Burley (ed.). Encyclopedia of forest sciences. Academic Press, London, UK.
Leakey, R.R.B. and M.P. Coutts. 1989. The dynamics of rooting in Triplochiton scleroxylon cuttings: Their relation to leaf area, node position, dry weight accumulation, leaf water potential and carbohydrate composition. Tree Physiol. 5:135-146.
Lee, Y., J.E. Olsen, and S. Torre. 2024. Average daily temperature controls floral bud formation rate, callose deposition and flower development of Hydrangea macrophylla ‘Early Blue’. J. Hort. Sci. Biotechnol. 99:106-114.
Leeratiwong, C., P. Chantaranothal, and A.J. Paton. 2011. A synopsis of the genus Clerodendrum L. (Lamiaceae) in Thailand. Trop. Natural History 11:177-211.
Lenz, F. and A. Karnatz. 1975. The effect of GA3, Alar and CCC on citrus cuttings. Acta Hort. 49:147-156.
Li, J., B.-Z. Pan, L. Niu, M.-S. Chen, M. Tang, and Z.-F. Xu. 2018. Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas. J. Plant Growth Regulat. 37:999-1006.
Liu, C.C., Y.G. Liu, K. Guo, Y.R. Zheng, G.Q. Li, L.F. Yu, and R. Yang. 2010. Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering. Physiol. Plant. 139:39-54.
Lynch, D.V. 1990. Chilling injury in plants: the relevance of membrane lipids, p. 17-34. In: F. Katterman (ed.). Environmental injury to plants. Academic Press, Sandiago, California.
Maes, W.H., W.M. Achten, B. Reubens, D. Raes, R. Samson, and B. Muys. 2009. Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. J. Arid Environ. 73:877-884.
Malik, N.S. and J.L. Perez. 2011. The effect of high temperature interruptions during inductive period on the extent of flowering and on metabolic responses in olives (Olea europaea L.). Scientia Hort. 129:207-212.
Marosz, A. and B. Matysiak. 2005. Influence of growth retardants on growth and flower bud formation in rhododendron and azalea. Dendrobiology 54:35-40.
Mattson, N.S. and J.E. Erwin. 2005. The impact of photoperiod and irradiance on flowering of several herbaceous ornamentals. Scientia Hort. 104:275-292.
Megersa, H., D. Lemma, and D. Banjawu. 2018. Effects of plant growth retardants and pot sizes on the height of potting ornamental plants: A short review. J. Hort. 5:1-5.
Meng, H.H., C.Y. Zhang, Y.G. Song, X.Q. Yu, G.L. Cao, L. Li, C.N. Cai, J.H. Xiao, S.S. Zhou, and Y.H. Tan. 2022. Opening a door to the spatiotemporal history of plants from the tropical Indochina Peninsula to subtropical China. Mol. Phylogenet. Evolution 171:107458.
Menzel, C. and D. Simpson. 1991. Effects of temperature and leaf water stress on panicle and flower development of litchi (Litchi chinensis Sonn.). J. Hort. Sci. 66:335-344.
Miura, K. and T. Furumoto. 2013. Cold signaling and cold response in plants. Intl. J. Mol. Sci. 14:5312-5337.
Moe, R. and R. Heins. 1989. Control of plant morphogenesis and flowering by light quality and temperature. Acta Hort. 272:81-90.
Moss, G. 1976. Temperature effects on flower initiation in sweet orange (Citrus sinensis). Austral. J. Agr. Res. 27:399-407.
Mutasa-Göttgens, E. and P. Hedden. 2009. Gibberellin as a factor in floral regulatory networks. J. Expt. Bot. 60:1979-1989.
Naidu, R. and N. Jones. 2009. The effect of cutting length on the rooting and growth of subtropical Eucalyptus hybrid clones in South Africa. Southern For. 71:297-301.
Neumaier, E.E., T.M. Blessington, and J.A. Price. 1987. Effect of light and fertilizer rate and source on flowering, growth, and quality of Hibiscus. HortScience 22:902-904.
Nezami, A., H.R. Khazaei, R.Z. Boroumand, and A. Hosseini. 2008. Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions. Desert 12:99-104.
Ni, J., C. Gao, M.S. Chen, B.Z. Pan, K. Ye, and Z.F. Xu. 2015. Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant Cell Physiol. 56:1655-1666.
Nordli, E.F., M. Strøm, and S. Torre. 2011. Temperature and photoperiod control of morphology and flowering time in two greenhouse grown Hydrangea macrophylla cultivars. Scientia Hort. 127:372-377.
Nyan, T.M., A. Yahya, A. Izham, and S.N. Ranj. 2017. Gas exchange, growth and flowering of Lagerstroemia indica treated with different concentration and application techniques of paclobutrazol. Asian J. Plant Sci. 16:37-44.
Okoro, O. and J. Grace. 1976. The physiology of rooting Populus cuttings: I. Carbohydrates and photosynthesis. Physiol. Plant. 36:133-138.
Oluwole, S.O., M.L. Ogun, and S. Arowosegbe. 2020. Effects of waterlogging on the growth and chlorophyll content of Ixora coccinea Lin. (Jungle Flame). Intl. J. Plant Res. 10:17-26.
Otiende, M.A., J.O. Nyabundi, K. Ngamau, and P. Opala. 2017. Effects of cutting position of rose rootstock cultivars on rooting and its relationship with mineral nutrient content and endogenous carbohydrates. Scientia Hort. 225:204-212.
OuYang, F., J. Wang, and Y. Li. 2015. Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New For. 46:91-105.
Owen Jr, J.S. and B.K. Maynard. 2007. Environmental effects on stem-cutting propagation: A brief review. Intl. Plant Propagators Soc. 57:558-564.
Pal, S. 2019. Role of plant growth regulators in floriculture: An overview. J. Pharmacognosy Phytochem. 8:789-796.
Pineda-García, F., H. Paz, F.C. Meinzer, and G. Angeles. 2016. Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol. 36:208-217.
Pobudkiewicz, A. 2008. The influence of growth retardants and cytokinins on flowering of ornamental plants. Acta Agrobot. 61:137-141.
Polthanee, A., T. Changdee, J. Abe, and S. Morita. 2008. Effects of flooding on growth, yield and aerenchyma development in adventitious roots in four cultivars of kenaf (Hibiscus cannabinus L.). Asian J. Plant Sci. 7:544-550.
Proietti, S., V. Scariot, S. De Pascale, and R. Paradiso. 2022. Flowering mechanisms and environmental stimuli for flower transition: bases for production scheduling in greenhouse floriculture. Plants 11:432.
Rademacher, W. 2015. Plant growth regulators: Backgrounds and uses in plant production. J. Plant Growth Regulat. 34:845-872.
Rajiv, G., M. Jawaharlal, S. Subramanian, D. Sudhakar, and D. Uma. 2018. Effect of plant growth retardants on the growth and flowering of nerium (Nerium oleander L.) cv. Red. Chem. Sci. Rev. Lett. 7:875-879.
Read, P.E. and C.M. Bavougian. 2014. Woody Ornamentals, p. 619-644. In: G.R. Dixon and D.E. Aldous (eds.). Horticulture: plants for people and places. Springer, Dordrecht, Netherlands.
Reig, C., V. Farina, G. Volpe, C. Mesejo, A. Martínez-Fuentes, F. Barone, F. Calabrese, and M. Agustí. 2011. Gibberellic acid and flower bud development in loquat (Eriobotrya japonica Lindl.). Scientia Hort. 129:27-31.
Rezazadeh, A., R.L. Harkess, and T. Telmadarrehei. 2018. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae 4:36.
Rossi, P. 1999. Length of cuttings in establishment and production of short-rotation plantations of Salix ‘Aquatica’. New For. 18:161-177.
Rowland, L., J.A. Ramírez‐Valiente, I.P. Hartley, and M. Mencuccini. 2023. How woody plants adjust above‐and below‐ground traits in response to sustained drought. New Phytol. 239:1173-1189.
Rueda, R.M. 1993. The genus Clerodendrum (Verbenaceae) in mesoamerica. Ann. Missouri Bot. Garden 80:870-890.
Ruter, J.M. 1994. Growth and landscape establishment of Pyracantha and Juniperus after application of paclobutrazol. HortScience 29:1318-1320.
Sabatino, L., D.A. Fabio, and G. Iapichino. 2017. Effect of cutting size and basal heat on rooting of Micromeria fruticulosa stem cuttings. Notulae Bot. Hort. Agrobot. Cluj-Napoca 45:353-357.
Sajjad, Y., M.J. Jaskani, M. Asif, and M. Qasim. 2017. Application of plant growth regulators in ornamental plants: A review. Pakistan J. Agr. Sci. 54:327-333.
Salazar, C., C. Hernández, and M.T. Pino. 2015. Plant water stress: associations between ethylene and abscisic acid response. Chilean J. Agr. Res. 75:71-79.
Salmon, Y., A. Lintunen, A. Dayet, T. Chan, R. Dewar, T. Vesala, and T. Hölttä. 2020. Leaf carbon and water status control stomatal and nonstomatal limitations of photosynthesis in trees. New Phytol. 226:690-703.
Sena Gomes, A. and T. Kozlowski. 1986. The effects of flooding on water relations and growth of Theobroma cacao var. catongo seedlings. J. Hort. Sci. 61:265-276.
Sharma, A., V. Kumar, B. Shahzad, M. Ramakrishnan, G.P. Singh Sidhu, A.S. Bali, N. Handa, D. Kapoor, P. Yadav, and K. Khanna. 2020. Photosynthetic response of plants under different abiotic stresses: A review. J. Plant Growth Regulat. 39:509-531.
Shrivastava, N. and T. Patel. 2007. Clerodendrum and healthcare: an overview. Med. Aromat. Plant Sci. Biotechnol. 1:142-150.
Shu, Z. and T. Sheen. 1987. Floral induction in axillary buds of mango (Mangifera indica L.) as affected by temperature. Scientia Hort. 31:81-87.
Singh, K. and C. Kushwaha. 2016. Deciduousness in tropical trees and its potential as indicator of climate change: A review. Ecol. Indicators 69:699-706.
Snowball, A.M., I. Warrington, E.A. Halligan, and M. Mullins. 1994. Phase change in citrus: The effects of main stem node number, branch habit and paclobutrazol application on flowering in citrus seedlings. J. Hort. Sci. 69:149-160.
Starman, T.W. and M.S. Williams. 2000. Growth retardants affect growth and flowering of Scaevola. HortScience 35:36-38.
Steane, D.A., R.W. Scotland, D.J. Mabberley, and R.G. Olmstead. 1999. Molecular systematics of Clerodendrum (Lamiaceae): ITS sequences and total evidence. Amer. J. Bot. 86:98-107.
Steane, D.A., R.W. Scotland, D.J. Mabberley, S.J. Wagstaff, P.A. Reeves, and R.G. Olmstead. 1997. Phylogenetic relationships of Clerodendrum s.l. (Lamiaceae) inferred from chloroplast DNA. Systematic Bot. 22:229-243.
Stubbs, H.L., F.A. Blazich, T.G. Ranney, and S.L. Warren. 1997. Propagation of ‘Carolina Sapphire’ smooth Arizona cypress by stem cuttings: Effects of growth stage, type of cutting, and IBA treatment. J. Environ. Hort. 15:61-64.
Sun, C., X. Gao, X. Chen, J. Fu, and Y. Zhang. 2016. Metabolic and growth responses of maize to successive drought and re-watering cycles. Agr. Water Mgt. 172:62-73.
Szász-len, A.-M., L. Holonec, A. Truța, and F.A. Rebrean. 2015. Effect of cutting size on the rooting of Thuja occidentalis ‘Columna’. Bul. Univ. Agr. Sci. Veterinary Med. Hort. 72:233-234.
Szwarcbaum, I. 1982. Influence of leaf morphology and optical properties on leaf temperature and survival in three Mediterranean shrubs. Plant Sci. Lett. 26:47-56.
Tahir, F. and M.H. Ibrahim. 2003. Effect of drought stress on vegetative and reproductive growth behaviour of mango (Mangifera indica L.). Asian J. Plant Sci. 2:116-118.
Tchoundjeu, Z., M.L. Avana, R.R.B. Leakey, A.J. Simons, E. Assah, B. Duguma, and J.M. Bell. 2002. Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agroforestry Systems 54:183-192.
Teto, A.A., C.P. Laubscher, P.A. Ndakidemi, and I. Matimati. 2016. Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R.Br. Lamiaceae for a multipurpose flowering potted plant. South African J. Bot. 106:67-70.
Theocharis, A., C. Clément, and E.A. Barka. 2012. Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091-1105.
Tinklen, I., E. Wilkinson, and W. Schwabe. 1970. Factors affecting flower initiation in the black currant Ribes nigrum (L.). J. Hort. Sci. 45:275-282.
Tombesi, S., A. Palliotti, S. Poni, and D. Farinelli. 2015. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Frontiers Plant Sci. 6:973.
Tromp, J. 1983. Flower-bud formation in apple as affected by air and root temperature, air humidity, light intensity, and day length. Acta Hort. 149:39-48.
Turnbull, C., K. Anderson, and E. Winston. 1996. Influence of gibberellin treatment on flowering and fruiting patterns in mango. Austral. J. Expt. Agr. 36:603-611.
Upreti, K.K., Y. Reddy, S.S. Prasad, G. Bindu, H. Jayaram, and S. Rajan. 2013. Hormonal changes in response to paclobutrazol induced early flowering in mango cv. Totapuri. Scientia Hort. 150:414-418.
Vaadia, Y., F.C. Raney, and R.M. Hagan. 1961. Plant water deficits and physiological processes. Annu. Rev. Plant Physiol. 12:265-292.
Väinölä, A. and O. Junttila. 1998. Growth of Rhododendron cultivars as affected by temperature and light. J. Hort. Sci. Biotechnol. 73:812-821.
Wainwright, H. and H. Hawkes. 1987. The influence of the length of hardwood cuttings on the propagation of blackcurant (Ribes nigrum). Acta Hort. 227:266-268.
Wang, H., W. Shen, J. Guo, C. Wang, and Z. Zhao. 2019. Regulating growth of Betula alnoides Buch. Ham. ex D. Don seedlings with combined application of paclobutrazol and gibberellin. Forests 10:378.
Warner, R.M. and J.E. Erwin. 2001. Variation in floral induction requirements of Hibiscus sp. J. Amer. Soc. Hort. Sci. 126:262-268.
Warner, R.M. and J.E. Erwin. 2003. Effect of photoperiod and daily light integral on flowering of five Hibiscus sp. Scientia Hort. 97:341-351.
Wearn, J.A. and D.J. Mabberley. 2011. Clerodendrum (Lamiaceae) in Borneo. Systematic Bot. 36:1050-1061.
Whiley, A., T. Rasmussen, J. Saranah, and B. Wolstenholme. 1989. Effect of temperature on growth, dry matter production and starch accumulation in ten mango (Mangifera indica L.) cultivars. J. Hort. Sci. 64:753-765.
Wilkie, J.D., M. Sedgley, and T. Olesen. 2008. Regulation of floral initiation in horticultural trees. J. Expt. Bot. 59:3215-3228.
William, B. and P. Harold. 1972. Effect of soil temperature on growth and development of some woody plants. J. Amer. Soc. Hort. Sci. 97:632-635.
Xie, F., H. Wang, and D. Qin. 2017. Photosynthetic characteristics of Clerodendrum trichotomum Thumb. responses to drought, salt and water-logging stresses. J. Northeast. Agr. Univ. 24:1-9.
Xu, L., S. Sun, H. Chen, R. Chai, J. Wang, Y. Zhou, Q. Ma, C. Chotamonsak, and P. Wangpakapattanawong. 2021. Changes in the reference evapotranspiration and contributions of climate factors over the Indo-China Peninsula during 1961-2017. Intl. J. Climatol. 41:6511-6529.
Yadav, S.K. 2010. Cold stress tolerance mechanisms in plants. A review. Agron. Sustainable Dev. 30:515-527.
Yuan, Y.W., D.J. Mabberley, D.A. Steane, and R.G. Olmstead. 2010. Further disintegration and redefinition of Clerodendrum (Lamiaceae): Implications for the understanding of the evolution of an intriguing breeding strategy. Taxon 59:125-133.
Yulianti, Y. and D.J. Sudrajat. 2016. Morphological responses, sensitivity and tolerance indices of four tropical trees species to drought and waterlogging. Biodiversitas J. Biol. Diversity 17.
Zewdinesh, D.Z. and M.K. Beemnet. 2016. Effect of cutting size and position on propagation ability of Sage (Salvia officinalis L.). Intl. J. Adv. Biol. Biomedical. Res. 4:68-76.
Zhang, F., K. Lu, Y. Gu, L. Zhang, W. Li, and Z. Li. 2020. Effects of low-temperature stress and brassinolide application on the photosynthesis and leaf structure of tung tree seedlings. Frontiers Plant Sci. 10:1767.
Zhang, M., Z.-Q. Zhou, R. Zhang, Y. Tan, and M. Wen. 2023. Interannual variability of surface air temperature over Indo-China Peninsula during summer monsoon onset. Climat. Dynamics. 60:3543-3560.
Zhao, H., Y. Zhao, C. Zhang, X. Tao, and X. Xu. 2014. Growth, leaf gas exchange, and chlorophyll fluorescence responses of two cultivars of Salix integra Thunb. to waterlogging stress. J. Agr. Sci. Tech. 16:137-149.
Zheng, H., X. Zhang, W. Ma, J. Song, S.U. Rahman, J. Wang, and Y. Zhang. 2017a. Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ. Expt. Bot. 138:77-87.
Zheng, Y., R. Li, Y. Sun, M. Xu, H. Zhang, L. Huang, Y. Zhu, H. Wang, G. Li, and L. Liu. 2017b. The optimal temperature for the growth of blueberry (Vaccinium corymbosum L.). Pak. J. Bot 49:965-979.
Zhou, C., S. Wu, C. Li, W. Quan, and A. Wang. 2023. Response mechanisms of woody plants to high-temperature stress. Plants 12:3643.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94466-
dc.description.abstract  玉蝶花(Clerodendrum schmidtii C.B. Clarke)為唇形科大青屬之常綠或落葉灌木。其圓錐花序自然垂墜,白色與紅褐色的花萼與花序軸對比鮮明,可作盆花或景觀植物應用。然玉蝶花自然花期限於冬季,對其繁殖與開花生理資訊尚未明瞭。本研究擬探討適宜玉蝶花扦插繁殖之插穗型式、介質體積含水量、溫度、光週期與生長調節劑對其生長與開花之影響,以供栽培業者參考。
  取玉蝶花不帶花芽之綠枝、半硬枝與硬枝部位,剪成15 cm之插穗。綠枝與半硬枝插穗去除所有葉片或僅保留頂部一對成熟展開葉,硬枝本身不帶葉。扦插28天後,綠枝插穗存活率較低,其餘處理全數存活,而僅硬枝插穗全數發根。帶葉之綠枝與半硬枝插穗發根數與最大根長最佳,且根系發育完整。另取其半硬枝部位,裁為5、10、15與20 cm之插穗,各保留頂部一對成熟展開葉。扦插28天後,四處理皆全數存活並發根,且根系長度與發育程度無明顯差異。但15與20 cm插穗之發根數較多, 5 cm插穗僅少量發根。綜合兩扦插試驗,採用15-20 cm長,帶一對成熟展開葉的半硬枝插穗即可達良好繁殖成果。
  對玉蝶花施予20%、40%、20/50%與70%之介質體積含水量(volumetric water content, VWC)處理。以20% VWC栽培之玉蝶花生長勢差,嚴重黃化、落葉。且淨光合作用、氣孔導度與蒸散速率最低,而細胞間隙二氧化碳濃度提高,顯示其同時受氣孔與非氣孔因素影響。以40% VWC處理生長旺盛,側枝之數量、長度,及總葉片數與葉面積最高。20/50% VWC處理之生長情形次於40% VWC。而以70% VWC栽培之黃葉與落葉率略低於20% VWC,植株生長亦受限。顯示玉蝶花適合栽培於保持濕潤之環境,乾旱與淹水皆不利生長。
  將玉蝶花置於日夜溫為15/13、20/15、25/20、30/25與35/30 ℃的人工氣候室內。植株於15/13 ℃下生長近乎停滯,於試驗末期才產生少量側枝。以20/15 ℃栽培者生長緩慢,側枝數量、長度與葉片數皆低於更高溫之處理。25/20與30/25 ℃最適玉蝶花營養生長。長期置於35/30 ℃下,植株外觀黃化、葉片捲曲,顯示此溫度已構成高溫逆境。玉蝶花以15/13與20/15 ℃處理125天後現蕾,而25/20 ℃處理遲至271.6天後才產生可見花芽。30/25 ℃處理則無花芽產生。於25/20與30/25 ℃處理170天後,將半數植株移至20/15 ℃,其餘植株不移動。兩高溫處理移至20/15 ℃後各於82.2與72.8天時現蕾。
  將玉蝶花置於20/15 ℃環境下栽培2、4、6、8、10與12週,再移至自然光照溫室內。隨低溫處理時期延長,玉蝶花之新生花下節數減少,且花序數量增加,顯示充足低溫栽培可促進其花芽形成,並降低花序敗育情形。
   以五種光週期栽培玉蝶花,分別為11 h之自然日長(natural daylength, ND)、ND下另以高壓鈉燈(high-pressure sodium lamps, HPS)補充照明(ND with HPS)、以鎢絲燈延長光週期至16 h (day-extension, DE)、以高壓鈉燈延長日長至16 h (ND+HPS DE)與以鎢絲燈行4 h之暗期中斷(night break, NB)。玉蝶花於ND下植株矮小但有少量花序生成。以ND with HPS處理之側枝長度與葉片數較ND為多,且花序發育較快,花序軸長度與花朵數為處理間最高。其餘三處理的植株營養生長旺盛,但不利開花,僅極少量花芽形成,且花序短,花朵數稀少。
  以100與200 mg·L-1之GA3,或50、100與150 mg·L-1之巴克素(paclobutrazol)處理玉蝶花之扦插苗,以施用清水為對照組。噴施GA3使側枝與節間延長,但花下節數增加並延後現蕾。經巴克素處理的植株矮小,且高濃度效果更甚。施用巴克素可提升單株花序數量,但花序長度與花朵直徑縮減。而100與150 mg·L-1之巴克素可減少花下節數,顯示其花芽創始提前。
  綜上所述,帶一對成熟展開葉、15-20 cm長之半硬枝插穗最適玉蝶花繁殖。保持介質濕潤有利玉蝶花發育,乾旱與淹水皆有害生長。25/20與30/25 ℃為適宜玉蝶花營養生長之溫度範圍,植株於20/15 ℃生長緩慢,但可促進花芽形成。玉蝶花應屬相對短日植物,且高光強度有利生長與花序發育。GA3促進其生長且延後花芽創始,巴克素則矮化植株並加速開花,但濃度過高使生長勢衰弱。
zh_TW
dc.description.abstract  Clerodendrum schmidtii C.B. Clarke (family Lamiacea), an evergreen or deciduous shrub, has been widely used for ornamental decoration or potted plants. The reddish-brown calyx and rachis contrast sharply with white five-lobed petals. However, information on propagation and flowering physiology is presently limited. This study aimed to determine the appropriate cutting type for C. schmidtii propagation, the effect of volumetric water content, temperature, photoperiod, and plant growth regulators on the growth and flowering of C. schmidtii.
  Softwood, semi-hardwood, and hardwood cuttings taken from non-flowering shoots of C. schmidtii were cut into 15-cm length. Softwood and semi-hardwood cuttings were either defoliated or retained one pair of fully expanded leaves. Hardwood cuttings were leafless. All cuttings survived except for softwood cuttings at 28 days after inserting in the rooting medium. Only hardwood cuttings all rooted. Leafy softwood and semi-hardwood cuttings produced the highest number and length of roots, and the root system well developed. Furthermore, semi-hardwood cuttings were cut into 5, 10, 15, and 20-cm length, retaining one pair of fully expanded leaves on each cutting. All cuttings survived and rooted in each treatment at 28 days after inserting in the rooting medium. There were no significant differences in root length and rooting stage among all treatments. However, 15- and 20-cm-length cuttings produced the most root number while 5-cm-length cuttings had less roots. The results above suggest that 15- to 20-cm-length leafy semi-hardwood cuttings could achieve better propagation results.
  C. schmidtii were treated with four of volumetric volume water content (20%, 40%, 20/50%, and 70%). Plant treated 20% VWC resulted in poor growth with severe chlorosis and leaf abscission, along with the lowest net photosynthesis rate which was caused by both stomatal and non-stomatal factors. Plants treated 40% VWC were the most vigorous, with the highest number and length of lateral shoots, as well as the most total fully expanded leaf number and leaf area among all treatments. The chlorotic and leaf abscission rate of the 70% VWC treatment was slightly lower than that of 20% VWC, growth were also limited. This suggests that C. schmidtii is suitable for humid environment, and both drought and waterlogging are detrimental.
  C. schmidtii was placed in phytotron with day/night temperatures of 15/13, 20/15, 25/20, 30/25, and 35/30 ℃. Plants treated 15/13 ℃ were stunted. Plants grown at 20/15 °C produced less and shorter lateral shoots, and less leaves than treated at higher temperatures. 25/20 and 30/25 ℃ were optimal for the vegetative growth of C. schmidtii. Plants treated 35/30 ℃ turned weak and chlorotic in the later stage of the experiment. Flowering occurred within 170 days in the 15/13 and 20/15 ℃ treatments and 271.6 days in the 25/20 ℃ treatment. After 170 days of cultivation at 25/20 and 30/25 ℃, half of the plants from each temperature were transferred to 20/15 ℃ while the remaining plants were not moved. Buds appeared 82.2 and 72.8 days after transfer into 20/15 ℃ from 25/20 and 30/25 ℃ treatments, respectively. No flower buds were produced under 30/25 ℃.
  C. schmidtii was treated at 20/15 ℃ for 2, 4, 6, 8, 10, and 12 weeks and then transferred to the greenhouse. The number of newly-grown nodes below the first flower bud decreased and inflorescence number increased with increasing duration of 20/15 ℃ treatment, indicating that sufficient low temperature cultivation could promote flower formation.
  C. schmidtii was cultivated under five photoperiods: natural daylength (ND), ND supplemented with high-pressure sodium lamps (ND with HPS), day-extension with tungsten lamps to 16 h (day-extension, DE), day-extension with HPS to 16 h (ND+HPS DE), and night break with tungsten lamps for 4 h (night break, NB). Plants were short but produced a few inflorescences under ND. Plants under ND with HPS obtained longer lateral shoots and more leaves than ND. The inflorescence developed faster under ND with HPS and obtained the longest rachis length and the highest number of flowers among all treatments. Plants in the other three treatments were vigorous but not suitable to flowering, producing sparse flower buds.
  Cuttings of C. schmidtii were treated with 100 and 200 mg·L-1 GA3 or 50, 100, and 150 mg·L-1 paclobutrazol (PAZ), while water treatment as control. Spraying C. schmidtii with GA3 elongated lateral shoots and internodes. However, GA3 treatment increased the number of nodes below the first flower bud as well as delayed the days to visible bud. Plants treated with PAZ were significant shorter than the other treatments. High concentrations of PAZ resulted in severely dwarf performance. Application of PAZ promoted the formation of inflorescences but the rachis length and flower diameter reduced. While 100 and 150 mg·L-1 PAZ reduced the number of nodes below the first flower bud, indicating that PBZ could promote flower bud initiation in C. schmidtii.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:12:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:12:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目次 vi
圖次 ix
表次 xi
前言(Introduction) 1
前人研究(Literature Review) 3
一、 大青屬植物與玉蝶花簡介 3
二、 影響觀賞花木扦插繁殖之因子 4
三、 水分對觀賞花木生長之影響 7
(一)水分對大青屬植物生長之影響 8
(二)乾旱對觀賞花木生長之影響 9
(三)淹水對觀賞花木生長之影響 10
四、 影響觀賞花木生長與開花之因子 12
(一)溫度 12
(二)光 13
(三)激勃素(GAs)與矮化劑 19
材料與方法(Materials and Methods) 23
試驗一、插穗型式對玉蝶花插穗發根及生長之影響 23
試驗二、帶葉之半硬枝插穗長度對玉蝶花插穗發根及生長之影響 25
試驗三、介質體積含水量對玉蝶花生長與光合作用之影響 25
試驗四、溫度對玉蝶花生長、光合作用與開花之影響 27
試驗五、變溫對玉蝶花開花之影響 28
試驗六、低溫(20/15 ℃)處理時期對玉蝶花開花之影響 28
試驗七、不同光照處理對玉蝶花生長與開花之影響 29
試驗八、生長調節劑對玉蝶花生長與開花之影響 29
結果(Results) 31
試驗一、插穗型式對玉蝶花插穗發根及生長之影響 31
試驗二、帶葉之半硬枝插穗長度對玉蝶花插穗發根及生長之影響 31
試驗三、介質體積含水量對玉蝶花生長與光合作用之影響 32
試驗四、溫度對玉蝶花生長、光合作用與開花之影響 33
試驗五、變溫對玉蝶花開花之影響 34
試驗六、低溫(20/15 ℃)處理時期對玉蝶花開花之影響 35
試驗七、不同光照處理對玉蝶花生長與開花之影響 35
試驗八、生長調節劑對玉蝶花生長與開花之影響 36
討論(Discussion) 78
試驗一、插穗型式對玉蝶花插穗發根及生長之影響 78
試驗二、帶葉之半硬枝插穗長度對玉蝶花插穗發根及生長之影響 79
試驗三、介質體積含水量對玉蝶花生長與光合作用之影響 80
試驗四、溫度對玉蝶花生長、光合作用與開花之影響 84
試驗五、變溫對玉蝶花開花之影響 88
試驗六、低溫(20/15 ℃)處理時期對玉蝶花開花之影響 89
試驗七、不同光照處理對玉蝶花生長與開花之影響 91
試驗八、生長調節劑對玉蝶花生長與開花之影響 94
綜合討論與結論(General Discussion and Conclusions) 98
參考文獻(References) 100
附錄(Appendix) 120
-
dc.language.isozh_TW-
dc.title玉蝶花之扦插繁殖與開花生理zh_TW
dc.titleCutting Propagation and Flowering Physiology of Clerodendrum schmidtiien
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李國譚;張育森;陳彥銘zh_TW
dc.contributor.oralexamcommitteeKuo-Tan Li;Yu-Sen Chang;Yen-Ming Chenen
dc.subject.keyword玉蝶花,大青屬,扦插繁殖,開花生理,生長調節劑,zh_TW
dc.subject.keywordClerodendrum schmidtii,cutting propagation,flowering physiology,plant growth regulator,en
dc.relation.page120-
dc.identifier.doi10.6342/NTU202403103-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2025-01-04-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved