Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民zh_TW
dc.contributor.advisorLi-Min Wangen
dc.contributor.author洪浩哲zh_TW
dc.contributor.authorHao-Zhe Hongen
dc.date.accessioned2024-08-16T16:11:19Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation英文文獻
H. K.Onnes,“The superconductivity of mercury,” Comm. Phys.Lab.Univ.Leiden, vol.122, p.124,1911.
W. Meissner and R.Ochsenfeld,“Ein neuer effekt bei eintritt der supraleitfähigkeit,”Naturwissenschaften, vol.21,no.44,pp.787–788,1933.
L. Bardeen,“Cooper, and j rschrieffer,” Phys. Rev, vol.108,no.1175,p.5,1957.
P. J. Ray,“Structural investigation of la 2-x sr x cuo 4+y,”Ph.D. dissertation, Master’s thesis (University of Copenhagen, 2015), 2015.
B. A. Bernevig, T.L. Hughes, and S.-C.Zhang,“Quantum spin hall effect and topologi-cal phase transition in hgte quantum wells,” science, vol.314,no.5806,pp.1757–1761,2006.
M. Konig, S.Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W.Molenkamp, X.-L.Qi, and S.-C.Zhang,“Quantum spin hall insulator state in hgte quantum wells,” Science,vol.318,no.5851,pp.766–770,2007.
D. Hsieh, D.Qian,L.Wray, Y.Xia,Y.S.Hor, R.J.Cava, and M.Z.Hasan,“A topo-logical dirac insulator in a quantum spin hall phase,” Nature, vol.452,no.7190,pp.970–974, 2008.
M. Z.Hasan and C.L.Kane,“Colloquium:topologicalinsulators,” Reviews of modern physics, vol.82,no.4,p.3045,2010.
L. Fu and C.L.Kane,“Superconducting proximity effect and majorana fermions at the surface of a topological insulator,” arXiv preprintarXiv:0707.1692, 2007.
J.-P. Xu,C.Liu, M.-X.Wang, J.Ge,Z.-L.Liu, X.Yang, Y.Chen, Y.Liu, Z.-A.Xu, C.-L. Gao et al., “Artificial topological superconductor by the proximity effect,” Physical Review Letters, vol.112,no.21,p.217001,2014.
Q. L.He, H.Liu, M.He, Y.H.Lai, H.He, G.Wang, K.T.Law, R.Lortz, J.Wang, and I.K.Sou,“Two-dimensional superconductivity at the interface of a bi2te3/fete het-erostructure,” Nature communications, vol.5,no.1,p.4247,2014.
S. Sasaki, M.Kriener, K.Segawa, K.Yada, Y.Tanaka, M.Sato, and Y.Ando,“Topo-logical superconductivity in cu x bi2se3,” Physical review letters, vol.107,no.21,p.217001, 2011.
J.-P.Xu, M.-X.Wang, Z.L.Liu, J.-F.Ge, X.Yang, C.Liu, Z.A.Xu, D.Guan, C.L.Gao, D. Qian et al., “Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor bi2te3/nbse2 heterostructure,”Physical review letters, vol.114,no.1,p.017001,2015.
M. Lanius, J.Kampmeier, S.Kölling, G.Mussler, P.Koenraad, and D.Grützmacher,“Topography and structure of ultra thin topological insulators b2te3 films on si(111) grown by means of molecular beam epitaxy,” Journal of Crystal Growth, vol.453,pp.158–162, 2016.
J.-P.Xu, C.Liu, M.-X.Wang, J.Ge, Z.-L.Liu, X.Yang, Y.Chen, Y.Liu, Z.-A.Xu, C.-L. Gao et al., “Artificial topological superconductor by the proximity effect,” Physical Review Letters, vol.112,no.21,p.217001,2014.
B. Fang, Z.Zeng, X.Yan, and Z.Hu,“Effects of annealing on thermoelectric properties of sb2te3 thin films prepared by radio frequency magnetron sputtering,” Journal of Materials Science:Materials in Electronics, vol.24,pp.1105–1111,2013.
M. Tan, Y.Deng, and Y.Hao,“Enhanced thermoelectric properties and layered structure of sb2te3 films induced by special (00l) crystal plane,” Chemical Physics Letters, vol.584, pp.159–164,2013.
J. W.Arblaster, Selected values of the crystallographic properties of elements. ASM International, 2018.
D. Finnemore, T.Stromberg, and C.Swenson,“Superconducting properties of high-purity niobium,” Physical Review, vol.149,no.1,p.231,1966.
M. Zarea, H.Ueki, and J.Sauls,“Effects of anisotropy and disorder on the supercon-ducting properties of niobium,” Frontiers in Physics, vol.11,p.1269872,2023.
B. Brandow,“Strongly anisotropic s-wave gaps in exotic superconductors,” Philosophical Magazine, vol.83,no.21,pp.2487–2519,2003.
M. Z.Hasan and C.L.Kane, “Colloquium:topological insulators,” Reviews of modern physics, vol.82,no.4,p.3045,2010.
T.Ginley, Y.Wang, Z.Wang, and S.Law, “Dirac plasmons and beyond: the past, present, and future of plasmonics in 3d topological insulators,” MRS Communications,vol.8,no.3,pp.782–794,2018.
P.Hor, R.Meng, L.Gao, Z.Huang, Y.Wang, and C.Chu,“Superconductivity at 93 k in a new mixed-phase y-ba-cu-o compound system.” (document), 2.1.1, 2.1
C. Rey, Superconductors in the power grid: Materials and applications. Elsevier, 2015.
F.London and H.London, “Supraleitung und diamagnetismus,” Physica, vol.2,no.1-12, pp.341–354,1935.
A. B.Karki, Y.M.Xiong, N.Haldolaarachchige, S.Stadler, I.Vekhter, P.W.Adams, D. Young, W.Phelan, and J.Y.Chan,“Physical properties of the noncentrosymmetric superconductor nb 0.18 re 0.82,” Physical Review B, vol.83,no.14,p.144525,2011.
R. Flukiger, “Overview of superconductivity and challenges in applications,” Reviews of Accelerator Scienceand Technology, vol.5,pp.1–23,2012.
C. J.Gorter and H.Casimir, “On supraconductivity i,” Physica, vol.1,no.1-6,pp.306–320, 1934.
A. Pippard, “Field variation of the superconducting penetration depth,” Proceedings of the Royal Society of London. Series A.Mathematical and Physical Sciences, vol.203, no. 1073,pp.210–223,1950.
M. Cyrot, “Ginzburg-landau theory for superconductors,” Reports on Progress in Physics, vol.36,no.2,p.103,1973.
D. Sun, “Vortex structure in a mesoscopic superconducting sphere.”
A. A. Abrikosov, “The magnetic properties of superconducting alloys,” Journal of Physics and Chemistry of Solids, vol.2,no.3,pp.199–208,1957.
B. Shen, Study of second generation high temperature superconductors: Electromag-netic characteristics and ac loss analysis. Springer Nature,2020.
I. Santoso et al., “k-space microscopy of bi2sr2cacu2o8+ δ: Fermiology and many-body effects,” Van der Waals-Zeeman Institute, 2008.
K. Berger, “Study of magneto-thermal coupled phenomena in high temperature superconductors,”2006.
A. Geim, S.Dubonos, J.Lok, M.Henini, and J.Maan,“Paramagnetic meissner effect in small superconductors,” Nature, vol.396,no.6707,pp.144–146,1998.
A. Geim, I.Grigorieva, S.Dubonos, J.Lok, J.Maan, A.Filippov, and F.Peeters, “Phase transitions in individual sub-micrometre superconductors,” Nature, vol.390,no.6657,pp. 259–262,1997.
M. R. Koblischka, L.Puust, C.-S.Chang, T.Hauet, and A.Koblischka-Veneva,“The paramagnetic meissner effect (pme) in metallic superconductors,” Metals, vol.13,no.6,p. 1140,2023.
S. Yampolskii and F.Peeters, “Vortex structure of thin mesoscopic disks with enhanced surface superconductivity,” Physical Review B, vol.62,no.14,p.9663,2000.
V. Schweigert, F.Peeters, and P.S.Deo, “Vortex phase diagram for mesoscopic superconducting disks,” Physical review letters, vol.81,no.13,p.2783,1998.
C. P. Bean, “Magnetization of hard superconductors,” Physical review letters, vol.8,no. 6,p.250,1962.
B. C. P,“Magnetization of high-field superconductors,” Reviews of modern physics,vol.36,no.1,p.31,1964.
K. Bui, J.Fauman, D.Kes, L.Torres Mandiola, A.Ciomaga, R.Salazar, A.L.Bertozzi, J. Gilles, D.P.Goronzy, A.I.Guttentag et al., “Segmentation of scanning tunneling microscopy images using variational methods and empirical wavelets,” Pattern Analysis and Applications, vol.23,pp.625–651,2020.
T.Proslier, A.Kohen, Y.Noat, T.Cren, D.Roditchev, and W.Sacks,“Probing the superconducting condensate on a nanometer scale,” Europhysics Letters, vol.73,no.6,p. 962,2006.
J. Bardeen, L.N.Cooper, and J.R.Schrieffer, “Theory of superconductivity,” Physical review, vol.108,no.5,p.1175,1957.
K. Iwaya, Y.Kohsaka, K.Okawa, T.Machida, M.Bahramy, T.Hanaguri, and T.Sasagawa, “Full-gap superconductivity in spin-polarised surface states of topological semimetal β-pdbi2,” Nature communications, vol.8,no.1,p.976,2017.
Y.Ji, Z.Dong, H.Wang, Q.Li, S.Ye, Z.Gao, Z.Hao, and Y.Wang, “Magnetic field orientation dependence of planar tunneling spectroscopy in the superconducting state of nbse2,” Quantum Frontiers, vol.2,no.1,p.5,2023.
R. C.Dynes, V.Narayanamurti, and J.P.Garno, “Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor,” Physical Review Letters,vol.41,no.21,p.1509,1978.
F.Herman and R.Hlubina, “Thermodynamic properties of dynes superconductors,”Physical Review B, vol.97,no.1,p.014517,2018.
Y.Noat, V.Cherkez, C.Brun, T.Cren, C.Carbillet, F.Debontridder, K.Ilin, M.Siegel, A. Semenov, H.-W.Hübers et al., “Unconventional superconductivity in ultrathin superconducting nbn films studied byscanning tunneling spectroscopy,” Physical Review B, vol.88,no.1,p.014503,2013.
N. K.Jain, M.S.Sawant, S.H.Nikam, and S.Jhavar, “Metal deposition: Plasma-based processes,” Encyclopedia of Plasma Technology,1sted.;Taylor and Francis:New York,NY,USA, pp.722–740,2016.
S. Swann, “Magnetron sputtering,” Physics in technology, vol.19,no.2,p.67,1988.3.1.1
W.H. Bragg and W.L.Bragg, “The reflection of x-rays by crystals,” Proceedings of the Royal Society of London.Series A,Containing Papers of a Mathematical and Physical Character, vol.88,no.605,pp.428–438,1913.
V.Mikla, J.Turovci, V.Mikla, and N.Mehta, “Molecular structure of se-rich amorphous films,” Progress in Solid State Chemistry, vol.49,pp.1–15,2018.
R. Sultana, G.Gurjar, S.Patnaik, and V.Awana,“Crystal growth and characterization of bulk sb2te3 topological insulator, ” Materials research express, vol.5,no.4,p.046107,2018. 3.2
N. Werthamer, E.Helfand, and P.Hohenberg, “Temperature and purity dependence of the superconducting critical field, hc2.iii.electron spin and spin-orbit effects,”Physical Review, vol.147,no.1,p.295,1966.
M. Hosseinzadeh, S. R. Ghorbani, and H. Arabi, “On the determination of pinning mechanisms and regimes in type-ii superconductors with weak thermal fluctuations,” Journal of Superconductivity and Novel Magnetism, vol. 33, pp. 971–980, 2020.
W.Zhou, X.Xing, W.Wu, H.Zhao, and Z.Shi, “Second magnetization peak effect,vortex dynamics and flux pinning in112-type superconductor ca0.8la0.2fe1-xcoxas2,” Scientific reports, vol.6,no.1,p.22278,2016.
R. Lortz, N.Musolino, Y.Wang, A.Junod, and N.Toyota,“Origin of the magnetization peak effect in the nb3sn superconductor,” Physical Review B, vol.75,no.9,p.094503,2007.
A. Galluzzi, K.Buchkov, V.Tomov, E.Nazarova, A.Leo, G.Grimaldi, A.Nigro, S. Pace, and M.Polichetti, “Second magnetization peak effect in a fe(se,te)iron based superconductor,”in Journal of Physics: Conference Series, vol.1226,no.1.IOP Publishing, 2019,p.012012.
D. R.Strachan, M.C.Sullivan, and C.J.Lobb, “Probing the limits of superconductivity,”in Superconducting and Related Oxides: Physics and Nanoengineering V, vol.4811. SPIE,2002,pp.65–77.
R. Pervin, M.Krishnan, S.Arumugam, and P.M.Shirage, “Second magnetization peak effect and the vortex phase diagram of v0.0015nbse2 single crystal,” Journal of Magnetism and Magnetic Materials, vol.507,p.166817,2020.
D. Bonnet, S.Erlenkämper, H.Germer, and H.Rabenhorst, “A new measurement of the
energy gap in superconducting niobium,” Physics Letters A, vol.25,no.6,pp.452–453,1967.
中文文獻
褚勵丞, “以濺鍍方式成長鐵-硒-碲超導薄膜之製程與特性研究,”國立臺灣大學物理學研究所, 2020。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94461-
dc.description.abstract在本研究中,首先 Sb2Te3 靶材中加入額外之 Te 粉末,並以磁控濺鍍之方式製作Sb2Te3 薄膜,成功製作出 c 軸朝上之磊晶 Sb2Te3 薄膜,其 c 軸長度為 30.473 Å。之後製做 Sb2Te3 / Nb / Sb2Te3 三層薄膜與單層 Nb 薄膜進行磁性量測,在量測其磁化率時,觀察到在零磁冷時,三層薄膜會有明顯之順磁性效應,而在量測磁化強度與外加磁場關係圖時,在三層薄膜與單層薄膜接觀測到在下臨界磁場與上臨界磁場之間,若溫度遠小於 Tc 時,其曲線會有類似於震盪之現象,因此推論是渦漩生了改變,並引入順磁性邁斯納效應,成功解釋其機制。此外量測此兩樣品之磁滯曲線時,觀測到與一般超導體之磁滯曲線完全不同之現象,其磁滯曲線有兩個波峰,將磁滯曲線轉換成臨界電流密度時,發現兩樣品之臨界電流密度皆有先據烈增大而後衰減之現象,為解釋此現象引入 Second PeakEffect(SPE),發現上下臨界磁場之間有一臨界磁場(Hg),將渦漩分成固相及液相,在外加磁場接近上臨界磁場時,渦漩會經歷相變的過程,因此造成釘札力的增強,連帶影響了臨界電流密度與磁滯曲線,而本研究的數據與 Second PeakEffect 互相吻合,並製作此兩樣品之相圖。本研究也同時量測了微分電導,並比較了三層薄膜樣品、 Sb2Te3 / Nb 雙層薄膜樣品與 Sb2Te3 / NbSe2 樣品,分別量測在不同磁場與溫度下之超導能隙,並計算三種樣品在BCS理論下的超導能隙與Nb超導能隙之理論值來相互比較。zh_TW
dc.description.abstractIn this study, additional Te powder was added to the Sb2Te3 target, and an Sb2Te3 film was produced via magnetron sputtering. An epitaxial Sb2Te3 film with the c-axis oriented upward was successfully fabricated, with a c-axis length of 30.473 Å. Subsequently, Sb2Te3 / Nb / Sb2Te3 three-layer films and single-layer Nb films were prepared for magnetic measurements. The magnetic susceptibility measurements revealed a pronounced paramagnetic effect in the three-layer film at zero magnetic field cooling. When examining the relationship between magnetization intensity and external magnetic field, a phenomenon resembling oscillation was observed in the three-layer film between the lower and upper critical magnetic fields when the temperature was significantly below Tc. This behavior suggests changes in vortex dynamics and the introduction of the paramagnetic Meissner effect, which successfully explains its mechanism. Additionally, the hysteresis curves of these two samples exhibited a distinctly different pattern compared to those of conventional superconductors, displaying two peaks. When these hysteresis curves were converted into critical current densities, it was found that the critical current density initially increased and then decreased. This behavior can be explained by the Second Peak Effect (SPE). It was observed that there is a critical magnetic field (Hg) between the upper and lower critical magnetic fields, which separates the vortex into solid and liquid phases. As the external magnetic field approaches the upper critical magnetic field, the vortex undergoes a phase transition, leading to an increase in the pinning force, which in turn affects the critical current density and hysteresis curve. The data in this study align with the Second Peak Effect, and phase diagrams for the two samples were constructed. Furthermore, differential conductance measurements were performed on the three-layer film, Sb2Te3 / Nb bilayer films, and Sb2Te3 / NbSe2 samples. The superconducting energy gap was assessed under varying magnetic fields and temperatures, and the experimental results were compared with the theoretical superconducting energy gap for Nb according to BCS theory.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:11:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T16:11:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
圖次 viii
Chapter1序論 1
1.1 超導發展 1
1.1.1 超導歷史 1
1.1.2 拓撲絕緣體之發現 2
1.1.3 拓撲超導體之應用 3
1.1.4 拓撲超導體之製作 3
1.2 Sb2Te3 (碲化銻)之結構與拓撲特性 4
1.2.1 Sb2Te3 之結構 4
1.2.2 Sb2Te3 之拓撲特性 4
1.2.3 Te 對 Sb2Te3 之磊晶薄膜影響 5
1.3 鈮( Nb )簡介 6
1.3.1 鈮( Nb )結構 6
1.3.2 鈮( Nb )超導特性 6
1.4 拓撲絕緣體簡介 7
1.5 研究動機 8
Chapter2理論與背景簡介 9
2.1 超導特性 9
2.1.1 零電阻現象 9
2.1.2 邁斯納效應(Meissner effect) 9
2.1.3 臨界磁場(critical magneticfield) 11
2.1.4 臨界電流(critical current) 11
2.2 超導理論 12
2.2.1 倫敦穿透深度(London penetrationdepth) 12
2.2.2 二流體模型(Two-fluidmodel) 14
2.2.3 Pippard 理論 19
2.3 Ginzburg-Landau 理論 21
2.3.1 二級相變理論與GL方程式 21
2.3.2 特徵長度 λ(T)與 ξ(T) 22
2.3.3 以 GL 參量(κ)分類I類與II類超導 23
2.4 第二類超導體(type IIsuperconductor) 25
2.4.1 第二類超導體之臨界磁場 25
2.4.2 渦旋態(vortexstate) 26
2.4.3 順磁性邁斯納效應(ParamagneticMeissnereffect) 27
2.4.4 臨界電流密度(critical currentdensity)與比恩模型(Bean model) 29
2.5 微分電導 32
2.5.1 微分電導之量測 32
2.5.2 超導之微分電導 33
2.5.3 微分電導公式 34
Chapter3實驗方法 36
3.1 量測系統 36
3.1.1 磁控濺鍍與腔體構造 36
3.1.2 X射線繞射儀(XRD) 37
3.1.3 SQUID量測系統 39
3.2 實驗流程 40
3.3 實驗中實際測量微分電導之方法 44
Chapter4實驗量測結果與討論 45
4.1 薄膜成長 45
4.1.1 多晶薄膜 45
4.1.2 磊晶 Sb2Te3 薄膜 48
4.1.3 Sb2Te3 / Nb多層膜製作 49
4.2 磁性量測 51
4.2.1 M-T量測結果 51
4.2.2 M − H 圖與臨界磁場 55
4.2.3 特徵長度 λ(T)與 ξ(T) 62
4.2.4 磁滯曲線與臨界電流密度(Jc) 67
4.3 電性量測之微分電導 71
4.3.1 微分電導計算方式 71
4.3.2 微分電導與溫度關係 72
4.3.3 微分電導與磁場關係 75
4.3.4 微分電導分析討論 77
Chapter5結論 78
reference 80
-
dc.language.isozh_TW-
dc.subject順磁性邁斯納效應zh_TW
dc.subject拓撲超導體zh_TW
dc.subject渦旋zh_TW
dc.subject微分電導zh_TW
dc.subject第二波峰效應zh_TW
dc.subjectSecond Peak Effecten
dc.subjectdiffirential conductanceen
dc.subjectvortexen
dc.subjectParamagnetic Messiner Effecten
dc.subjectTopological superconductoren
dc.title磊晶碲化銻薄膜之成長與超導碲化銻/鈮多層膜之電磁傳輸特性之研究zh_TW
dc.titleGrowth of epitaxial Sb2Te3 thin films and magnetotransport properties of superconducting Sb2Te3 /Nb mutilayersen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳昭翰;尤孝雯zh_TW
dc.contributor.oralexamcommitteeJau-Han Chen;Hsiao-Wen Yuen
dc.subject.keyword拓撲超導體,順磁性邁斯納效應,第二波峰效應,微分電導,渦旋,zh_TW
dc.subject.keywordTopological superconductor,Paramagnetic Messiner Effect,Second Peak Effect,diffirential conductance,vortex,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202404181-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved