請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94458
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 藍俊宏 | zh_TW |
dc.contributor.advisor | Jakey Blue | en |
dc.contributor.author | 王懷葳 | zh_TW |
dc.contributor.author | Huai-Wei Wang | en |
dc.date.accessioned | 2024-08-16T16:10:22Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-12 | - |
dc.identifier.citation | [1] 陳奕憲. (2023). 發展基於資料定義域分佈之線上學習框架以分析具概念漂移之數據. 臺灣大學工業工程學研究所學位論文, 2023, 1-91.
[2] Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., ... & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Information fusion, 76, 243-297. [3] Aggarwal, C. C. (Ed.). (2007). Data streams: models and algorithms (Vol. 31). Springer Science & Business Media. [4] Amari, S. I. (1993). Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5), 185-196. [5] Amini, A., Schwarting, W., Soleimany, A., & Rus, D. (2020). Deep evidential regression. Advances in neural information processing systems, 33, 14927-14937. [6] Antorán, J., Bhatt, U., Adel, T., Weller, A., & Hernández-Lobato, J. M. (2020). Getting a clue: A method for explaining uncertainty estimates. arXiv preprint arXiv:2006.06848. [7] Baier, L., Schlör, T., Schöffer, J., & Kühl, N. (2021). Detecting concept drift with neural network model uncertainty. arXiv preprint arXiv:2107.01873. [8] Bifet, A., & Gavalda, R. (2007, April). Learning from time-changing data with adaptive windowing. In Proceedings of the 2007 SIAM international conference on data mining (pp. 443-448). Society for Industrial and Applied Mathematics. [9] Bifet, A., Gavalda, R., Holmes, G., & Pfahringer, B. (2023). Machine learning for data streams: with practical examples in MOA. MIT press. [10] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010, September). Moa: Massive online analysis, a framework for stream classification and clustering. In Proceedings of the first workshop on applications of pattern analysis (pp. 44-50). PMLR. [11] Bishop, C. M. (1994). Mixture density networks. [12] Caldeira, J., & Nord, B. (2020). Deeply uncertain: comparing methods of uncertainty quantification in deep learning algorithms. Machine Learning: Science and Technology, 2(1), 015002. [13] Choi, J., Chun, D., Kim, H., & Lee, H. J. (2019). Gaussian yolov3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE/CVF International conference on computer vision (pp. 502-511). [14] Domingos, P., & Hulten, G. (2000, August). Mining high-speed data streams. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 71-80). [15] Dreyfus, P. A., Psarommatis, F., May, G., & Kiritsis, D. (2022). Virtual metrology as an approach for product quality estimation in Industry 4.0: a systematic review and integrative conceptual framework. International Journal of Production Research, 60(2), 742-765. [16] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639), 115-118. [17] Fanaee-T,Hadi. (2013). Bike Sharing. UCI Machine Learning Repository. https://doi.org/10.24432/C5W894. [18] Gal, Y., Hron, J., & Kendall, A. (2017). Concrete dropout. Advances in neural information processing systems, 30. [19] Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In Advances in Artificial Intelligence–SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-Ocotber 1, 2004. Proceedings 17 (pp. 286-295). Springer Berlin Heidelberg. [20] Gama, J., Rodrigues, P. P., Spinosa, E., & Carvalho, A. (2010). Knowledge discovery from data streams. In Web Intelligence and Security (pp. 125-138). IOS Press. [21] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM computing surveys (CSUR), 46(4), 1-37. [22] Gomes, H. M., Barddal, J. P., Ferreira, L. E. B., & Bifet, A. (2018, April). Adaptive random forests for data stream regression. In ESANN. [23] Gunasekara, N., Gomes, H. M., Pfahringer, B., & Bifet, A. (2022, July). Online hyperparameter optimization for streaming neural networks. In 2022 international joint conference on neural networks (IJCNN) (pp. 1-9). IEEE. [24] Gunasekara, N., Pfahringer, B., Gomes, H. M., & Bifet, A. (2023, August). Survey on Online Streaming Continual Learning. In IJCAI (pp. 6628-6637). [25] Hahn, G. J. (1969). Factors for calculating two-sided prediction intervals for samples from a normal distribution. Journal of the American Statistical Association, 64(327), 878-888. [26] Hahn, G. J., & Nelson, W. (1973). A survey of prediction intervals and their applications. Journal of Quality Technology, 5(4), 178-188. [27] He, W., & Jiang, Z. (2023). A survey on uncertainty quantification methods for deep neural networks: An uncertainty source perspective. arXiv preprint arXiv:2302.13425. [28] Jospin, L. V., Laga, H., Boussaid, F., Buntine, W., & Bennamoun, M. (2022). Hands-on Bayesian neural networks—A tutorial for deep learning users. IEEE Computational Intelligence Magazine, 17(2), 29-48. [29] Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Discussion and review on evolving data streams and concept drift adapting. Evolving systems, 9, 1-23. [30] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [31] Koenker, R., & Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33-50. [32] Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30. [33] Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE transactions on knowledge and data engineering, 31(12), 2346-2363. [34] Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model predic- tions. Advances in neural information processing systems, 30. [35] Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., ... & Snoek, J. (2019). Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. Advances in neural information processing systems, 32. [36] Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100-115. [37] Pearce, T., Brintrup, A., Zaki, M., & Neely, A. (2018, July). High-quality prediction intervals for deep learning: A distribution-free, ensembled approach. In International conference on machine learning (pp. 4075-4084). PMLR. [38] Porteus, E. L. (2008). The newsvendor problem. Building intuition: Insights from basic operations management models and principles, 115-134. [39] Pratama, M., Za'in, C., Ashfahani, A., Ong, Y. S., & Ding, W. (2019, November). Automatic construction of multi-layer perceptron network from streaming examples. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (pp. 1171-1180). [40] Raab, C., Heusinger, M., & Schleif, F. M. (2020). Reactive soft prototype computing for concept drift streams. Neurocomputing, 416, 340-351. [41] Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(3). [42] Sluijterman, L., Cator, E., & Heskes, T. (2024). Optimal training of mean variance estimation neural networks. Neurocomputing, 127929. [43] Souza, V. M., dos Reis, D. M., Maletzke, A. G., & Batista, G. E. (2020). Challenges in benchmarking stream learning algorithms with real-world data. Data Mining and Knowledge Discovery, 34(6), 1805-1858. [44] Sun, Y., Pfahringer, B., Gomes, H. M., & Bifet, A. (2022). SOKNL: A novel way of integrating K-nearest neighbours with adaptive random forest regression for data streams. Data Mining and Knowledge Discovery, 36(5), 2006-2032. [45] Sun, Y., Pfahringer, B., Murilo Gomes, H., & Bifet, A. (2024, April). Adaptive Prediction Interval for Data Stream Regression. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 130-141). Singapore: Springer Nature Singapore. [46] Vanschoren, J., Van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: networked science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2), 49-60. [47] Vito,Saverio. (2016). Air Quality. UCI Machine Learning Repository. https://doi.org/10.24432/C59K5F. [48] Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press. [49] Xu, C., & Xie, Y. (2023, July). Sequential predictive conformal inference for time series. In International Conference on Machine Learning (pp. 38707-38727). PMLR. [50] Yang, C. I., & Li, Y. P. (2023). Explainable uncertainty quantifications for deep learning-based molecular property prediction. Journal of Cheminformatics, 15(1), 13. [51] Yeo, I. K., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954-959. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94458 | - |
dc.description.abstract | 隨著深度學習技術的普及,其在多個領域中得到廣泛應用。然而在許多實際場景中,模型的精確程度需要被嚴格控制,尤其是在智慧製造、自動駕駛、醫療等對誤差容忍度較低的應用中。一旦模型預測出現錯誤,將可能造成嚴重損失,因此,將每次預測的不確定性量化成為一個重要的挑戰,期望模型在預測目標值的同時,也能告訴使用者模型對預測值有多少信心,藉以提高模型預測的可靠性。
本研究提出了一種基於深度集成模型的飄移偵測與預測區間估計之線上學習架構(DEAPI)。該架構使用深度集成模型對資料不確定性與資模型不確定性進行量化,並行成預測區間,其不僅預測反應變數的分佈,還能持續進行線上學習。透過模型的預測分佈與實際值的差距,本研究提出了一個新的飄移偵測器,用以檢測區間估計與實際結果是否相符。同時,將飄移偵測結果回饋給模型更新機制,使學習率和優化器參數能在線上自動調整,提升模型適應新概念的效率。實驗結果表明,DEAPI能給予品質更好的預測區間估計,只要給予深度學習模型少許離線資料進行預訓練後再啟動線上學習,其在線上學習的表現就可以與當前主流的線上學習模型相當。 總體而言,本研究提出的學習架構能在資料流中不斷學習並進行預測區間的估計,同時也可以檢測不同種類的飄移是否發生來警告使用者,並讓模型學習可以更好的適應到新的概念中,最終可以幫助使用者在不確定性中做出更好的決策。 | zh_TW |
dc.description.abstract | With the widespread adoption of deep learning technology, it has found extensive applications across various fields. However, in many practical scenarios, the precision of models needs to be strictly controlled, especially in applications such as smart manufacturing, autonomous driving, and healthcare, where the tolerance for errors is low. If the model predictions are inaccurate, it can lead to severe consequences. Therefore, quantifying the uncertainty of each prediction has become a significant challenge. It is hoped that while predicting the target values, the model can also convey the confidence level of these predictions to the users, thereby enhancing the reliability of the model’s predictions.
This study proposes an online learning framework for drift detection and prediction interval estimation based on deep ensemble models (DEAPI). This framework uses deep ensemble models to quantify both data uncertainty and model uncertainty, forming prediction intervals. It not only predicts the distribution of the response variables but also continuously learns from data stream. By analyzing the discrepancy between the predicted distribution of the model and the actual values, a novel drift detector is introduced to check if the interval estimates align with the actual outcomes. Additionally, the results of the drift detection are fed back to the model update mechanism, enabling automatic adjustment of learning rates and optimizer parameters online, which improves the model’s efficiency in adapting to new concepts. Experimental results demonstrate that DEAPI provides higher quality prediction interval estimates. Once the deep learning model is given a small amount of offline data for pre-training before starting online learning, its online learning performance can be comparable to the current mainstream online learning models. Overall, the learning framework proposed in this study can continuously learn from data streams and estimate prediction intervals. It can also detect different types of drift to alert users, enabling the model to better adapt to new concepts. Ultimately, this helps users make better decisions amidst uncertainty. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:10:22Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:10:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目次 IV 圖次 VI 表次 VII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機及目的 2 1.3 論文架構 3 第二章 文獻探討 4 2.1 線上學習與概念飄移 4 2.1.1 概念飄移的種類 5 2.1.2 飄移偵測器 6 2.1.3 線上學習方法 8 2.2 迴歸問題的不確定性量化 10 2.2.1 迴歸任務中的不確定性量化 11 2.2.2 資料流下的不確定性量化 13 第三章 基於深度集成模型之線上學習架構 16 3.1 Z分數飄移偵測器 19 3.2 模型狀態識別 22 3.3 模型學習機制 24 3.4 警示替換機制 26 3.5 可解釋性推論 26 第四章 案例研討 27 4.1 案例一:合成資料集 27 4.1.1 資料集介紹 27 4.1.2 飄移偵測器 29 4.1.3 模型更新機制比較 36 4.2 案例二:公開資料集 41 4.2.1 資料集介紹 41 4.2.2 資料前處理及實驗方法 41 4.2.3 實驗結果 42 4.3 案例三:化學蝕刻資料集 44 4.3.1 資料集介紹 44 4.3.2 資料前處理及實驗方法 44 4.3.3 實驗結果 45 第五章 結論與建議 47 5.1 研究結論 47 5.2 未來展望 48 參考文獻 49 附錄 55 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於深度集成模型的飄移偵測與預測區間估計之線上學習架構 | zh_TW |
dc.title | Deep Ensemble-based Online Learning Framework for Drift Detection and Prediction Interval Estimation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳亮嘉;何昭慶 | zh_TW |
dc.contributor.oralexamcommittee | Liang-Chia Chen;Chao-Ching Ho | en |
dc.subject.keyword | 線上學習,不確定性量化,資料不確定性,模型不確定性,區間估計,概念飄移,深度集成模型, | zh_TW |
dc.subject.keyword | online learning,uncertainty quantification,data uncertainty,model uncertainty,prediction interval,concept drift detection,deep ensembles, | en |
dc.relation.page | 58 | - |
dc.identifier.doi | 10.6342/NTU202404090 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
dc.date.embargo-lift | 2029-08-09 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.55 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。