請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | zh_TW |
| dc.contributor.advisor | Chih-Ting Lin | en |
| dc.contributor.author | 賴昱尚 | zh_TW |
| dc.contributor.author | Yu-Shang Lai | en |
| dc.date.accessioned | 2024-08-15T17:32:09Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Jiang, L. J., Rubin, B. J., Morsey, J. D., Hu, H. T., & Elfadel, A. (2006, October). Novel capacitance extraction method using direct boundary integral equation method and hierarchical approach. In 2006 IEEE Electrical Performane of Electronic Packaging (pp. 331-334). IEEE.
Yu, W., Zhang, B., Zhang, C., Wang, H., & Daniel, L. (2016, March). Utilizing macromodels in floating random walk based capacitance extraction. In 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 1225-1230). IEEE. Chia-Chen Hu, EPRIMA:Equivalence Principle Inductance Macromodeling Algorithm, July, 2023 Cheng, A. H. D., & Cheng, D. T. (2005). Heritage and early history of the boundary element method. Engineering analysis with boundary elements, 29(3), 268-302. Tausch, J., & White, J. (1999). Capacitance extraction of 3-D conductor systems in dielectric media with high-permittivity ratios. IEEE transactions on microwave theory and techniques, 47(1), 18-26. Schelkunoff, S. A. (1936). Some equivalence theorems of electromagnetics and their application to radiation problems. The Bell System Technical Journal, 15(1), 92-112. Balanis, C. A. (2012). Advanced engineering electromagnetics. John Wiley & Sons. Weng Cho Chew, “Lecture 31 Equivalence Theorems, Huygens Principle” pp.303-312, available in https://engineering.purdue.edu/wcchew/ece604f20/Lecture%20Notes/Lect31.pdf Harrington, R. F. (1967). Matrix methods for field problems. Proceedings of the IEEE, 55(2), 136-149. Wolfram Research, Inc., Wolfram Alpha Notebook Edition, Champaign, IL (2024) EFY, “Complex linear network to Thevenin's equivalent network”, available in https://electronicsforyou.in/verification-of-thevenins-theorem/. Yang, D., Yu, W., Guo, Y., & Liang, W. (2021, November). CNN-Cap: Effective convolutional neural network based capacitance models for full-chip parasitic extraction. In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD) (pp. 1-9). IEEE. Olson, C. F. (1995). Parallel algorithms for hierarchical clustering. Parallel computing, 21(8), 1313-1325. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94441 | - |
| dc.description.abstract | 隨著科技的快速發展,積體電路(IC)設計領域中的晶片持續微型化且複雜性增加,使封裝結構也變得更加精密且多層次化,為現代電子設備帶來性能、功耗、體積等多方面的優勢,也推動了半導體行業的進步和發展。
然而,這些進步也加強了對精確電氣分析的需求,特別是在寄生電容提取方面。準確建模這些寄生效應對於確保信號完整性及優化整體電路性能至關重要。此外,隨著矽智財的重要性日益突出,防止非法複製和利用已成為一個關鍵問題。因此,開發同時解決多層寄生電容提取技術和矽智財保護需求的方法具有重大意義。 為了解決這些挑戰,本研究利用邊界元素法,並提出使用電磁學中的等效原理,對各層進行宏觀建模,並利用分層寄生提取技術來獲取電容。該算法不僅能夠準確計算複雜結構中的電容值,還能通過將原始佈局轉換為等效封閉曲面上的假想電荷,以取代其影響,有效的保護內部資訊。通過一系列測試和應用該算法,結果顯示我們的方法在電容提取上,在精度方面有卓越的表現,同時在計算效率和矽智財保護方面也具有顯著優勢。 | zh_TW |
| dc.description.abstract | With rapid advancements in technology, the continuous miniaturization and increasing complexity of chips in the field of integrated circuit (IC) design have also made packaging structures more intricate and multilayered. These advancements provide significant advantages in performance, power consumption, and size for modern electronic devices, driving progress and development in the semiconductor industry.
However, these advancements also heighten the need for precise electrical analysis, particularly in the extraction of parasitic capacitance. Accurate modeling of these parasitic effects is crucial for ensuring signal integrity and optimizing overall circuit performance. Additionally, with the growing importance of silicon intellectual property (IP), preventing illegal copying and exploitation has become a critical issue. Therefore, developing methodologies that address both the technical challenges of multilayer parasitic capacitance extraction and the need for silicon IP protection is of paramount importance. To address these challenges, this study utilizes the boundary element method (BEM), and proposes using the equivalence principle in electromagnetics to perform macromodeling for each layer, utilizing hierarchical parasitic extraction techniques to obtain capacitance. This algorithm not only accurately calculates capacitance in complex structures but also protects internal information by transforming the original layout into equivalent imaginary charges on a closed surface. Through a series of tests and applications of this algorithm, the results demonstrate that our method excels in accuracy for capacitance extraction, and offers significant advantages in computational efficiency and silicon IP protection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:32:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:32:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background information 2 1.3 Thesis Organization 5 Chapter 2 Relevant Theory and Method 6 2.1 Capacitance Extraction 6 2.2 Equivalence Principle and Huygens Principle in Electromagnetics 8 2.3 Uniqueness Theorem 10 2.4 Green’s Third Identity 12 Chapter 3 Boundary Element Method 15 3.1 Discretize Conductors 15 3.2 Discretize Green’s Third Identity 18 3.3 Phenomenon Discussion 21 3.4 Matrix Analysis 23 3.5 Singularity 25 3.6 Special Case: Thin Plate 30 Chapter 4 Extracting Capacitance Using Single Equivalent Surface 33 4.1 Elastance Matrix Equation 34 4.2 Obtaining Elastance and Bias Matrix From Lower Conductors 35 4.3 Obtaining Elastance and Bias Matrix From Upper Conductors 38 4.4 Combining Both Equivalent Problems 40 4.5 Phenomenon Discussion 41 Chapter 5 Extracting Capacitance Using Huygens Box Solving Hierarchical Problems 43 5.1 Solving Inside-Out Problems 44 5.2 Solving Top Level Problem 50 5.3 Solving Outside-In Problems 52 5.4 Phenomenon Discussion 54 Chapter 6 Experiment Results 55 6.1 Two-Level Hierarchical Structures 55 6.2 Three-Level Hierarchical Structures 62 6.3 Conclusion 67 Chapter 7 Discussion and Future Work 69 Reference 71 Appendix A — Introduction 73 A.1 Algorithm 73 A.2 Flow Chart 74 | - |
| dc.language.iso | en | - |
| dc.subject | 等效原理 | zh_TW |
| dc.subject | 寄生萃取 | zh_TW |
| dc.subject | 邊界元素法 | zh_TW |
| dc.subject | 電容 | zh_TW |
| dc.subject | 階層式 | zh_TW |
| dc.subject | Parasitic extraction | en |
| dc.subject | equivalence principle | en |
| dc.subject | BEM | en |
| dc.subject | capacitance | en |
| dc.subject | hierarchical | en |
| dc.title | 應用等效原理和格林第三恆等式的分層電容宏觀建模 | zh_TW |
| dc.title | Hierarchical Capacitance Macromodeling Using Equivalence Principle and Green’s Third Identity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳中平 | zh_TW |
| dc.contributor.coadvisor | Chung-Ping Chen | en |
| dc.contributor.oralexamcommittee | 鄭士康;蔡坤諭 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh-Kang Jeng;Kuen-Yu Tsai | en |
| dc.subject.keyword | 寄生萃取,等效原理,階層式,電容,邊界元素法, | zh_TW |
| dc.subject.keyword | Parasitic extraction,equivalence principle,hierarchical,capacitance,BEM, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202403223 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
