Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁健芳zh_TW
dc.contributor.advisorChien-Fang Dingen
dc.contributor.author劉邦彬zh_TW
dc.contributor.authorPong-Ping Liuen
dc.date.accessioned2024-08-15T17:24:39Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1]H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, and B. Duncan, "IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045," Diabetes research and clinical practice, vol. 183, p. 109119, 2022.
[2]T. Ramon-Marquez, A. M. Sesay, P. Panjan, A. L. Medina-Castillo, A. Fernandez-Gutierrez, and J. F. Fernandez-Sanchez, "A microfluidic device with integrated coaxial nanofibre membranes for optical determination of glucose," Sensors and Actuators B: Chemical, vol. 250, pp. 156-161, 2017.
[3]Y. Hu, H. Cheng, X. Zhao, J. Wu, F. Muhammad, S. Lin, and J. He, "Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues," ACS nano, vol. 11, no. 6, pp. 5558-5566, 2017.
[4]L. Johnston, G. Wang, K. Hu, C. Qian, and G. Liu, "Advances in biosensors for continuous glucose monitoring towards wearables," Frontiers in bioengineering and biotechnology, vol. 9, p. 733810, 2021.
[5]A. Das, "基於實驗, 理論和有限元素法增加雷射誘導前向轉移於金屬積層製造之附著力與電特性," 2023.
[6]A. Das, A. Ghosh, S. Chattopadhyaya, and C.-F. Ding, "A review on critical challenges in additive manufacturing via laser-induced forward transfer," Optics & Laser Technology, vol. 168, p. 109893, 2024.
[7]A. J. Birnbaum, H. Kim, N. A. Charipar, and A. Piqué, "Laser printing of multi-layered polymer/metal heterostructures for electronic and MEMS devices," Applied Physics A, vol. 99, pp. 711-716, 2010.
[8]C. Boutopoulos, E. Touloupakis, I. Pezzotti, M. T. Giardi, and I. Zergioti, "Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor," Applied Physics Letters, vol. 98, no. 9, 2011.
[9]P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, "Preparation of functional DNA microarrays through laser-induced forward transfer," Applied physics letters, vol. 85, no. 9, pp. 1639-1641, 2004.
[10]B. Thomas, A. P. Alloncle, P. Delaporte, M. Sentis, S. Sanaur, M. Barret, and P. Collot, "Experimental investigations of laser-induced forward transfer process of organic thin films," Applied Surface Science, vol. 254, no. 4, pp. 1206-1210, 2007.
[11]I. Zergioti, A. Karaiskou, D. Papazoglou, C. Fotakis, M. Kapsetaki, and D. Kafetzopoulos, "Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials," Applied Surface Science, vol. 247, no. 1-4, pp. 584-589, 2005.
[12]A. Doraiswamy, R. J. Narayan, T. Lippert, A.Wokaun, M. Nagel, B. Hopp, and M. Dinescu, "Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer," Applied Surface Science, vol. 252, no. 13, pp. 4743-4747, 2006.
[13]Y.-j. Huang, X.-z. Xie, J.-q. Cui, and J.-y. Long, "Fabrication of high-performance copper circuits using laser-induced forward transfer with large receiving gaps based on beam modulation technology," Journal of Manufacturing Processes, vol. 87, pp. 54-64, 2023.
[14]J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, "Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment," Optical Materials Express, vol. 3, no. 6, pp. 747-754, 2013.
[15]F. Guillemot, A. Souquet, S. Catros, B. Guilotin, J. Lopez, M.Faucon, B. Pippenger, and R. Bareille, "High-throughput laser printing of cells and biomaterials for tissue engineering," Acta biomaterialia, vol. 6, no. 7, pp. 2494-2500, 2010.
[16]A. Kalaitzis, M. Makrygianni, I. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, "Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies," Applied Surface Science, vol. 465, pp. 136-142, 2019.
[17]M. Feinaeugle, P. Gregorčič, D. Heath, B. Mills, and R. Eason, "Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films," Applied surface science, vol. 396, pp. 1231-1238, 2017.
[18]S. Papazoglou and I. Zergioti, "Laser Induced Forward Transfer (LIFT) of nano-micro patterns for sensor applications," Microelectronic Engineering, vol. 182, pp. 25-34, 2017.
[19]G. Hennig, T. Baldermann, C. Nussbaum, M. Rossier, A. Brockelt, L. Schuler, and G. Hochstein, "Lasersonic® LIFT Process for Large Area Digital Printing," Journal of Laser Micro/Nanoengineering, vol. 7, no. 3, 2012.
[20]T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, "Experimental investigation of laser induced forward transfer process of metal thin films," Applied surface science, vol. 186, no. 1-4, pp. 221-226, 2002.
[21]P. Delaporte and A.-P. Alloncle, "Laser-induced forward transfer: A high resolution additive manufacturing technology," Optics & Laser Technology, vol. 78, pp. 33-41, 2016.
[22]M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, and G.-w. Römer, "Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films," AddItive manufacturing, vol. 24, pp. 391-399, 2018.
[23]P. Papakonstantinou, N. Vainos, and C. Fotakis, "Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films," Applied surface science, vol. 151, no. 3-4, pp. 159-170, 1999.
[24]W. Liu, K. Zhu, C. Wang, Z. Zheng, R. An, W. Zhang, M. Zhu, Z. Wen, X. Wang, Y. Liu, and Y. Tain, "Laser induced forward transfer of brittle Cu3Sn thin film," Journal of Manufacturing Processes, vol. 60, pp. 48-53, 2020.
[25]M. Zenou, A. Sa’Ar, and Z. Kotler, "Laser jetting of femto-liter metal droplets for high resolution 3D printed structures," Scientific reports, vol. 5, no. 1, p. 17265, 2015.
[26]D. P. Banks, C. Grivas, I. Zergioti, and W. E. Robert, "Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor," Optics Express, vol. 16, no. 5, pp. 3249-3254, 2008.
[27]S. Bera, A. Sabbah, J. Yarbrough, C. Allen, B. Winters, C. G. Durfee, and J. A. Squier, "Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films," Applied optics, vol. 46, no. 21, pp. 4650-4659, 2007.
[28]I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, "A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr," Applied Surface Science, vol. 208, pp. 177-180, 2003.
[29]L. Rapp, C. Constantinescu, Y. Larmande, A. K. Diallo, C. Videlot-Ackermann, P. Delaporte, and A. P. Alloncle, "Functional multilayered capacitor pixels printed by picosecond laser-induced forward transfer using a smart beam shaping technique," Sensors and Actuators A: Physical, vol. 224, pp. 111-118, 2015.
[30]R. Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, "Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy," The Journal of Physical Chemistry C, vol. 114, no. 12, pp. 5617-5636, 2010.
[31]S. Winter, M. Zenou, and Z. Kotler, "Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell," Journal of Physics D: Applied Physics, vol. 49, no. 16, p. 165310, 2016.
[32]A. Levy, G. Bernstein, S. Winter, S. Cohen, O. Ermak, I. Peled, Z. Kotler, and Y. Gelbstein, "Hybrid structural electronics printing by novel dry film stereolithography and laser induced forward transfer," Nano Select, vol. 2, no. 5, pp. 979-991, 2021.
[33]C. Sammartino, S. Sedghani Cohen, Z. Kotler, and N. Eliaz, "Direct writing of high‐resolution, high‐quality pure metal patterns on smooth transparent substrates by laser‐induced forward transfer followed by a novel laser treatment," Advanced Engineering Materials, vol. 23, no. 9, p. 2100245, 2021.
[34]A. Erdem, E. Yildiz, H. Senturk, and M. Maral, "Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis," Journal of Pharmaceutical and Biomedical Analysis, p. 115385, 2023.
[35]H. H. Hamzah, S. A. Shafiee, A. Abdalla, and B. A. Patel, "3D printable conductive materials for the fabrication of electrochemical sensors: A mini review," Electrochemistry Communications, vol. 96, pp. 27-31, 2018.
[36]J. Muñoz and M. Pumera, "3D-printed biosensors for electrochemical and optical applications," TrAC Trends in Analytical Chemistry, vol. 128, p. 115933, 2020.
[37]M. Xiang, J. Wu, T. Lu, W. Lin, M. Quan, H. Ye, S. Dong, and Z. Yang, "Ni-MOFs grown on carbonized loofah sponge for electrochemical glucose detection: Effects of different carboxylic acid ligands and reaction temperatures on electrochemical performance," Journal of the Taiwan Institute of Chemical Engineers, vol. 155, p. 105269, 2024.
[38]A. E. Cass, G. Francis, G. D. Hill, H. A. O. Aston, and W. J. Higgins, "Ferrocene-mediated enzyme electrode for amperometric determination of glucose," Analytical chemistry, vol. 56, no. 4, pp. 667-671, 1984.
[39]A. Heller, "Electrical wiring of redox enzymes," Accounts of Chemical Research, vol. 23, no. 5, pp. 128-134, 1990.
[40]C. He, M. Asif, Q. Liu, F. Xiao, H. Liu, and B. Y. Xia, "Noble metal construction for electrochemical nonenzymatic glucose detection," Advanced Materials Technologies, vol. 8, no. 1, p. 2200272, 2023.
[41]G. A. Naikoo, T. Awan, H. Salim, F. Arshad, I. U. Hassan, M. Z. Pedram, and W. Ahmed, "Fourth‐generation glucose sensors composed of copper nanostructures for diabetes management: A critical review," Bioengineering & Translational Medicine, vol. 7, no. 1, p. e10248, 2022.
[42]J. Chen, C. Liu, Y.-T. Huang, H. Lee, and S.-P. Feng, "Study of the growth mechanisms of nanoporous Ag flowers for non-enzymatic glucose detection," Nanotechnology, vol. 29, no. 50, p. 505501, 2018.
[43]G. X. Zhong, W. Zhang, Y. Sun, Y. Wei, Y. Lei, H. Peng, A. Liu, Y. Chen, and X. Lin, "A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode," Sensors and Actuators B: Chemical, vol. 212, pp. 72-77, 2015.
[44]M. Zhang, Y. Liu, J. Wang, and J. Tang, "Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose," Microchimica Acta, vol. 186, pp. 1-8, 2019.
[45]T. Unmüssig, A. Weltin, S. Urban, P. Daubinger, G. A. Urban, and J. Kieninger, "Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures," Journal of Electroanalytical Chemistry, vol. 816, pp. 215-222, 2018.
[46]J. Wang, D. Zhao, and C. Xu, "Nonenzymatic electrochemical sensor for glucose based on nanoporous platinum-gold alloy," Journal of Nanoscience and Nanotechnology, vol. 16, no. 7, pp. 7145-7150, 2016.
[47]J. Yang, X. Liang, L. Cui, H. Liu, J. Xie, and W. Liu, "A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects," Biosensors and Bioelectronics, vol. 80, pp. 171-174, 2016.
[48]K. Sathitaphiwan, N. Auewetchanichkul, T. Kaewparadai, S. Limwathanagura, S. Wanotayan, and P. Pungetmongkol, "Sweat glucose sensor with SPCE modified by CuO nanorods," IEEE Sensors Letters, 2024.
[49]A. Tarlani, M. Fallah, B. Lotfi, A. Khazraei, S. Golsanamlou, J. Muzart, and M. Mirza-Aghayan, "New ZnO nanostructures as non-enzymatic glucose biosensors," Biosensors and Bioelectronics, vol. 67, pp. 601-607, 2015.
[50]F. Cao, S. Guo, H. Ma, D. Shan, S. Yang, and J. Gong, "Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance," Biosensors and Bioelectronics, vol. 26, no. 5, pp. 2756-2760, 2011.
[51]M. Wei, Y. Qiao, H. Zhao, J. Liang, T. Li, Y. Luo, S. Lu, X. Shi, W. Lu, and X. Sun, "Electrochemical non-enzymatic glucose sensors: Recent progress and perspectives," Chemical communications, vol. 56, no. 93, pp. 14553-14569, 2020.
[52]J. Liu, J. Shen, S. Ji, Q. Zhang, and W. Zhao, "Research progress of electrode materials for non-enzymatic glucose electrochemical sensors," Sensors & Diagnostics, vol. 2, no. 1, pp. 36-45, 2023.
[53]D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira, E. Fortunato, and R. Martins, "Synthesis, design, and morphology of metal oxide nanostructures," Metal Oxide Nanostructures, pp. 21-57, 2019.
[54]M. M. Alam and M. M. Howlader, "Nonenzymatic electrochemical sensors via Cu native oxides (CuNOx) for sweat glucose monitoring," Sensing and Bio-Sensing Research, vol. 34, p. 100453, 2021.
[55]X. Liu, W. Yang, L. Chen, and J. Jia, "Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose," Microchimica Acta, vol. 183, pp. 2369-2375, 2016.
[56]S. Liu, J. Tian, L. Wang, X. Qin, Y. Zhang, Y. Luo, A. M. Asiri, A. O. Ai-Youbi, and X. Sun, "A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection," Catalysis Science & Technology, vol. 2, no. 4, pp. 813-817, 2012.
[57]E. Reitz, W. Jia, M. Gentile, Y. Wang, and Y. Lei, "CuO nanospheres based nonenzymatic glucose sensor," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 20, no. 22, pp. 2482-2486, 2008.
[58]L. Wang, J. Fu, H. Hou, and Y. Song, "A facile strategy to prepare Cu2O/Cu electrode as a sensitive enzyme-free glucose sensor," International Journal of Electrochemical Science, vol. 7, no. 12, pp. 12587-12600, 2012.
[59]A. R. Amirsoleimani, H. Siampour, S. Abbasian, G. B. Rad, A. Moshaii, and Z. Zaradshan, "Copper oxide nanocolumns for high-sensitive non-enzymatic glucose sensing," Sensing and Bio-Sensing Research, vol. 42, p. 100589, 2023.
[60]K. Tian, K. Baskaran, and A. Tiwari, "Nonenzymatic glucose sensing using metal oxides–comparison of CuO, Co3O4, and NiO," Vacuum, vol. 155, pp. 696-701, 2018.
[61]H.-H. Fan, W.-L. Weng, C.-Y. Lee, and C.-N. Liao, "Electrochemical cycling-induced spiky Cu x O/Cu nanowire array for glucose sensing," ACS omega, vol. 4, no. 7, pp. 12222-12229, 2019.
[62]J. Singh, A. K. Manna, and R. Soni, "Sunlight driven photocatalysis and non-enzymatic glucose sensing performance of cubic structured CuO thin films," Applied Surface Science, vol. 530, p. 147258, 2020.
[63]S. Laidoudi, M. R. Khelladi, L. Lamiri, O. Belgherbi, S. Boudour, C. Dehchar, and R. Boufnik, "Non-enzymatic glucose detection based on cuprous oxide thin film synthesized via electrochemical deposition," Applied Physics A, vol. 127, no. 3, p. 160, 2021.
[64]A. Inyang, G. Kibambo, M. Palmer, F. Cummings, M. Masikini, C. Sunday, and M. Chowdhury, "One step copper oxide (CuO) thin film deposition for non-enzymatic electrochemical glucose detection," Thin Solid Films, vol. 709, p. 138244, 2020.
[65]C. Jian-Lin, G. Liu, W. Feng, M. Bu, Z. Zhu, X. Gao, S. Huang, L. Deng, "Laser ablation enhancing the electrochemical sensing performance of copper foam toward glucose," Chinese Journal of Analytical Chemistry, vol. 49, no. 12, pp. 75-80, 2021.
[66]X. Zhou, W. Guo, Y. Yao, R. Peng, and P. Peng, "Flexible nonenzymatic glucose sensing with one‐step laser‐fabricated Cu2O/Cu porous structure," Advanced Engineering Materials, vol. 23, no. 6, p. 2100192, 2021.
[67]S. Wang, L. Jiang, J. Hu, Q. Wang, S. Zhan, and Y. Lu, "Dual-functional CuxO/Cu electrodes for supercapacitors and non-enzymatic glucose sensors fabricated by femtosecond laser enhanced thermal oxidation," Journal of Alloys and Compounds, vol. 815, p. 152105, 2020.
[68]S. Sedaghat, S. Nejati, L. Bermejo, Z. He, A. Alcaraz, A. Roth, Z. Li, V. G. Pol, H. Wang, and R. Rahimi, "Laser-induced atmospheric Cu x O formation on copper surface with enhanced electrochemical performance for non-enzymatic glucose sensing," Journal of Materials Chemistry C, vol. 9, no. 42, pp. 14997-15010, 2021.
[69]E. R. Mamleyev, P. G. Weidler, A. Nefedov, D. V. Szabó, M. Islam, D. Mager, and J. G. Korvink, "Nano-and microstructured copper/copper oxide composites on laser-induced carbon for enzyme-free glucose sensors," ACS Applied Nano Materials, vol. 4, no. 12, pp. 13747-13760, 2021.
[70]A. Scandurra, M. Censabella, S. Boscarino, G. G. Condorelli, M. G. Grimaldi, and F. Ruffino, "Fabrication of Cu (II) oxide-hydroxide nanostructures onto graphene paper by laser and thermal processes for sensitive nano-electrochemical sensing of glucose," Nanotechnology, vol. 33, no. 4, p. 045501, 2021.
[71]Q. Gao, W. Zhang, C. Zhao, W. Yan, S. Han, Y. Li, Q. Liu, X. Li, and D. Liu, "Laser‐Engraved Boron‐Doped Diamond for Copper Catalyzed Non‐Enzymatic Glucose Sensing," Advanced Materials Interfaces, vol. 9, no. 13, p. 2200034, 2022.
[72]"Photonics Industries DX Air-cooled Series Nanosecond Lasers."
[73]A. S. Ali, "Application of nanomaterials in environmental improvement," Nanotechnology and the Environment, pp. 17-36, 2020.
[74]J. Wang, Electroanalytical techniques in clinical chemistry and laboratory medicine. John Wiley & Sons, 1988.
[75]Z. Zhao, Y. Huang, Z. Huang, H. Mei, Y. Xie, D. Long, F. Zhu, and W. Gong, "Nonenzymetic glucose sensitive device based on morchella shaped nickel-copper layered double hydroxide," Applied Surface Science, vol. 597, p. 153658, 2022.
[76]F. Cao, S. Guo, H. Ma, G. Yang, S. Yang, and J. Gong, "Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers," Talanta, vol. 86, pp. 214-220, 2011.
[77]G. Martinez-Saucedo, F. M. Cuevas-Muñiz, R. Sanchez-Fraga, I. Mejia, J. J. Alcantar-Peña, and I. R. Chavez-Urbiola, "Cellulose microfluidic pH boosting on copper oxide non-enzymatic glucose sensor strip for neutral pH samples," Talanta, vol. 253, p. 123926, 2023.
[78]D. Shrestha, K. Kang, T. Nayaju, P. M. Bacirhonde, B. Maharjan, C. H. Park, and C. S. Kim, "Co1. 22xNixO4/fMWCNTs-hybrid nanocomposite-based self-adhesive wearable non-enzymatic electrochemical sensor for continuous glucose monitoring in sweat," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 686, p. 133361, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94423-
dc.description.abstract雷射誘發材料轉移(Laser-induced forward transfer, LIFT)為一精密數位印刷技術,使用脈衝雷射將金屬或生物材料等薄膜(Donor)局部轉移至接收基板(Receiver)上以達到高精度及高分辨率之印刷效果。LIFT以非接觸加工的性質消除了噴嘴阻塞的風險並可自由設計轉印圖案,其快速製造的能力非常契合微型生物感測器的製造需求,不僅具備低成本的優點同時不降低其靈敏度。
近年來葡萄糖檢測在臨床診斷、食品工業之研究日益增多,在葡萄糖感測器的製造中,葡萄糖電化學氧化的催化劑至關重要,感測材料包括貴金屬(Au, Pt等)、金屬合金(PtPd、PtRu等)、金屬氧化物(ZnO, CuO, NiO 等)非酵素修飾的葡萄糖感測電極被大量研究。而銅基材料相比貴金屬擁有更高的靈敏度以及更低的成本,其金屬氧化物CuO、Cu2O更是對葡萄糖表現出出色的催化活性。傳統氧化銅薄膜的備製常使用化學氣相沉積(Chemical Vapor Deposition, CVD)、熱氧化或是磁控濺射等,但這些方法通常需要較長的處理時間且涉及繁雜化學過程。相較之下雷射誘發材料轉移能夠提供快速且可控的加工製造功能性微/奈米結構,能夠有效增加接觸表面積及提升電化學活性位點。
本研究首先利用雷射將固定在玻璃上之銅薄膜(1000 nm)分別轉移圖案於氧化銦錫(ITO)以及聚對苯二甲酸乙二酯(PET)基板上,其雷射參數如能量密度、供體受體間距、掃描速度及轉印環境皆會大幅影響印刷品質。考量轉移後的形貌、導電性及附著力後在不損害基板的情形下轉移尺寸5 mm × 10 mm圖案於基板上。轉移於ITO以及PET基板作為工作電極,並搭配商用的氯化銀參考電極 (Ag/AgCl)及輔助電極鉑(Pt)。透過場發射掃描式電子顯微鏡觀察轉移於不同基板上之薄膜形貌,並利用X-ray繞射儀觀察到轉印後所有基板皆產生了Cu2O成份。由於雷射誘發材料轉移製程於可撓性基板上之電性不甚理想,本研究也可在計時安培法電位優化的結果觀察到,不論電位為何,PET電極之靈敏度表現皆略低於ITO電極,但同時可以觀察到的是兩者在(0.003 mM – 0.4 mM)線性範圍下皆展現了優異的葡萄糖檢測性能。Cu2O/ITO電極之靈敏度約為1214.33 μAmM-1 cm-2,偵測極限為 1.2968 μM,其電流與葡萄糖濃度之線性關係為(R2 = 0.989),而Cu2O/PET電極其靈敏度約為 1188.14 μAmM-1 cm-2,偵測極限為 1.824 μM,其電流與葡萄糖濃度之線性關係為(R2 = 0.997),並且兩種電極在抗壞血酸(Ascorbic acid)、尿酸(Uric acid)、多巴胺(Dopamine)、氯化鈉(NaCl)等干擾物存在的情形下,仍對葡萄糖具有良好的選擇性。
zh_TW
dc.description.abstractLaser-induced forward transfer (LIFT) is a high-precision digital printing technique that utilizes pulsed lasers to transfer thin films (Donors) of metals or biomaterials onto a receiving substrate (Receiver) in order to achieve high-resolution printing results. LIFT is a non-contact technique that eliminates the risk of nozzle clogging and allows for the free design of transfer patterns. Its rapid manufacturing capability is well-suited for the fabrication of micro-biosensors, offering not only low-cost advantages but also maintaining high sensitivity.
In recent years, glucose detection has been a growing interest in both clinical diagnostics and food industry research. In the fabrication of glucose sensors, the role of catalysts for the electrochemical oxidation of glucose is of crucial importance. Sensing materials include noble metals (e.g., gold, platinum), metal alloys (e.g., platinum-palladium, platinum-rhodium), and metal oxides (e.g., zinc oxide, copper oxide, nickel oxide). Non-enzymatic modification of glucose sensing electrodes has been the subject of extensive study. Copper-based materials exhibit higher sensitivity and lower cost compared to noble metals, and their metal oxides, CuO and Cu2O, demonstrate excellent catalytic activity for glucose. The preparation of copper oxide thin films typically employs chemical vapour deposition (CVD), thermal oxidation, or magnetron sputtering. However, these methods typically require lengthy processing times and entail complex chemical processes. In contrast, laser-induced forward transfer (LIFT) offers a rapid and controllable method of fabricating functional micro/nano structures, which effectively increases the contact surface area and enhances electrochemical active sites.
In this study, laser-induced forward transfer (LIFT) was employed to transfer copper thin films (1000 nm) deposited on glass substrates onto both PET and ITO substrates. The quality of the printed material is significantly influenced by the laser parameters, including energy density (J/cm²), donor-receiver gap (µm), scanning speed (mm/s), and the transfer environment. Consequently, in order to ensure the morphology, conductivity, and adhesion of the transferred patterns were not compromised, 5 mm × 10 mm patterns were transferred onto the substrates without damaging them. The transferred patterns on ITO and PET substrates served as working electrodes, paired with a commercial silver/silver chloride reference electrode (Ag/AgCl) and a platinum (Pt) auxiliary electrode. The morphology of the transferred patterns on different substrates was initially examined using field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD) analysis revealed the formation of Cu₂O in both cases. While the LIFT process yielded less than optimal results on flexible substrates, chronoamperometry optimisation results indicated that, regardless of the potential, the sensitivity of the PET electrode was slightly lower than that of the ITO electrode. Nevertheless, both electrodes demonstrated excellent glucose detection capabilities within a linear range of 0.003 mM to 0.4 mM. The sensitivity of the Cu2O/ITO electrode was 1214.33 μAmM⁻¹ cm⁻² (R² = 0.989), with a limit of detection (LOD) of 1.2968 μM. For the Cu2O/PET electrode, the sensitivity was 1188.14 μAmM⁻¹ cm⁻² (R² = 0.997), with a LOD of 1.824 μM. Moreover, both electrodes exhibited excellent selectivity for glucose in the presence of potential interferents, including ascorbic acid (AA), uric acid (UA), dopamine (DA), and sodium chloride (NaCl). These tests were instrumental in elucidating the characteristics of the working electrodes and providing substantial evidence in support of their application in glucose detection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:24:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:24:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 3
第二章 文獻回顧 4
2.1 雷射誘發材料轉移(Laser-induced forward transfer) 5
2.1.1 雷射誘發前向轉移原理 5
2.1.2 雷射參數 6
2.1.2.1 能量密度(Fluence) 7
2.1.2.2 供體受體之接收間距(Spacing) 7
2.1.2.3 供體薄膜厚度(Thickness) 8
2.1.2.4 脈衝特性(Pulse characteristics) 10
2.2 LIFT製程優化 10
2.2.1 衝擊波(Shockwave) 11
2.2.2 轉移層的黏附力與形貌 13
2.3 生物感測器與製造 15
2.3.1 葡萄糖感測器 16
2.3.2 葡萄糖感測器發展 17
2.3.3 非酵素葡萄糖感測器 19
2.3.4 氧化銅非酵素葡萄糖感測器 20
2.3.4.1 氧化銅電極感測機制 20
2.3.4.2 氧化銅電極製造與表面特性 21
第三章 研究方法 26
3.1 實驗流程 26
3.2 雷射源 27
3.3 氧化銅工作電極製備 28
3.4 實驗分析儀器 29
3.4.1 掃描式電子顯微鏡(Scanning electron microscope, SEM)與能量散射X射線譜(Energy-dispersive X-ray spectroscope, EDS) 30
3.4.2 X-ray繞射儀(X-ray diffractometer, XRD) 32
3.5 電化學分析 33
3.5.1 三電極系統 33
3.5.2 循環伏安法(Cyclic voltammetry, CV) 35
3.5.3 計時安培法(Chronoamperometry, CA) 36
3.5.4 實驗藥品與材料 37
第四章 結果與討論 38
4.1 材料表面特性 38
4.2 電化學分析 43
4.2.1 Cu2O/ITO電極與Cu2O/PET電極之CV量測 45
4.2.2 工作電極操作電位最佳化 48
4.2.3 葡萄糖濃度之感測 53
4.2.4 干擾物測試 57
4.2.5 穩定性測試 58
第五章 結論與未來展望 60
5.1 結論 60
5.2 未來展望 61
參考文獻 63
-
dc.language.isozh_TW-
dc.subject可撓性基板zh_TW
dc.subject非酶式葡萄糖感測器zh_TW
dc.subject氧化銅薄膜電極zh_TW
dc.subject積層製造zh_TW
dc.subject雷射誘發前向轉移zh_TW
dc.subject生物感測器zh_TW
dc.subjectflexible substratesen
dc.subjectLaser-Induced Forward Transferen
dc.subjectadditive manufacturingen
dc.subjectbiosensoren
dc.subjectnon-enzymatic glucose sensoren
dc.subjectcopper oxide thin film electrodesen
dc.title雷射誘發材料轉移於非酶式低濃度葡萄糖檢測之研究zh_TW
dc.titleA Non-enzymatic Low Concentration Glucose Detection Sensor Fabricated by Laser-induced Forward Transferen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳林祈;謝博全;廖英志zh_TW
dc.contributor.oralexamcommitteeLin-Chi Chen;Bo-Chuan Hsieh;Ying-Chih Liaoen
dc.subject.keyword雷射誘發前向轉移,積層製造,生物感測器,非酶式葡萄糖感測器,氧化銅薄膜電極,可撓性基板,zh_TW
dc.subject.keywordLaser-Induced Forward Transfer,additive manufacturing,biosensor,non-enzymatic glucose sensor,copper oxide thin film electrodes,flexible substrates,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202403448-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2029-08-05-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved