Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙修武zh_TW
dc.contributor.advisorShiu-Wu Chauen
dc.contributor.author蔡博彥zh_TW
dc.contributor.authorPo-Yen Tsaien
dc.date.accessioned2024-08-15T17:16:56Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation“Annual Report 2023: Record year for windpower in 2023,” World Wind Energy Association, 2023.
Zheng, C. W., Xiao, Z. N., Peng, Y. H., Li, C. Y., and Du, Z. B., “Rezoning Global Offshore Wind Energy Resources,” Renewable Energy, vol. 129, pp. 1-11, 2018.
Chang, P. C., Yang, R. Y., and Lai, C. M., “Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan,” Energies, vol. 8, no. 3, pp. 1685-1700, 2015.
“The Taiwan Wind Energy Assessment Manual,” Green Energy and Environment Research Laboratories ITRI, 2011.
Hsu, I. J., Ivanov, G., Ma, K. T., Huang, Z. Z., Wu, H. T., Huang, Y. T., and Chou, M., “Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines,” presented at the 41st International Conference on Ocean, Offshore and Arctic Engineering, Hamburg, Germany, June, 2022.
Bilgili, M., Yasar, A., and Simsek, E., “Offshore Wind Power Development in Europe and Its Ccomparison with Onshore Counterpart,” Renewable and Sustainable Energy Reviews, vol. 15, no. 2, pp. 905-915, 2011.
Nikolaos, N., “Deep Water Offshore Wind Technologies”, Master’s thesis, Dept. Mechanical Engineering, University of Strathclyde, Glasgow, Scotland, 2004.
Barltrop, N., “Multiple Unit Floating Offshore Wind Farm (MUFOW),” Wind Engineering, pp. 183-188, 1993.
Henderson, A. R. and Patel, M. H., “Floating Offshore Wind Energy,” 20th BWEA Conference, London, UK, 1998.
Tong, K. C., “Technical and Economic Aspects of a Floating Offshore Wind Farm,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 74, pp. 399-410, 1998.
Castro-Santos, L. and Diaz-Casas, V., Eds. Floating Offshore Wind Farms. Berlin/Heidelberg, Germany, 2016.
Lee, Y. J., Ho, C. Y., Huang, Z. Z., and Wang, Y. C., “Improvements on the Output of a Spar-Type Floating Wind Turbine Influenced by Wave-Induced Oscillation,” Journal of Taiwan Society of Naval Architects and Marine Engineers, vol. 34, no. 2, pp. 55-62, 2015.
Huang, Z. Z., “Dynamic Response of Floating Offshore Wind Turbine,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2013.
Wang, Y. C., “Motion Characteristics and Power Evaluation on Floating Offshore Wind Turbine,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2011.
Li, B., Liu, K., Yan, G., and Ou, J., “Hydrodynamic Comparison of a Semi-Submersible, TLP, and Spar: Numerical Study in the South China Sea Environment,” Journal of Marine Science and Application, vol. 10, no. 3, pp. 306-314, 2011.
Jonkman, J., Butterfield, S., Musial, W., and Scott, G., “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Lab, Golden, CO, USA, NREL/TP-500-38060, 2009.
Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Hansen, M. H., Blasques, J. P. A. A., Gaunaa, M., and Natarajan, A., “The DTU 10-MW Reference Wind Turbine,” Dept. Wind Energy, Technical University of Denmark, 2013.
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen, C., and Viselli, A., “Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine,” National Renewable Energy Lab, Golden, CO, USA, NREL/TP-5000-75698, 2020.
Chen, C. Y., “Comparative Study on Semi-Submersible Floating Platforms for Offshore Wind in Taiwan Strait,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2020.
Hong, J. J., “Performance Prediction of a Disk-Type Semi-Submersible Floating Platform in Taiwan Strait,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022.
Kou, C. L., “Comparative Study of Three Semi-Submersible Platform Designs on Normal Operating Performance of 13.2 MW Floating Wind Turbine in the Hsinchu Offshore Area,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022.
Tong, H. Y., “Normal Operating Performance Study of a 15 MW Floating Wind Turbine System Using Semi-Submersible TaidaFloat Platform in the Hsinchu Offshore Area,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2022.
Cai, Y. S., “Normal Operating and Extreme Condition Performance Study of 15MW Floating Wind Turbine System Using Semi-Submersible Taida Floating Platform with 3×2 and 3×3 Mooring Design in the Hsinchu Offshore Area,” Master’s thesis, Dept. Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan, 2023.
Coupled Analysis of Floating Wind Turbines, DNVGL-RP-0286, DNV GL, Olso, Norway, 2019.
Harnessing offshore mooring experience and anchoring technology for the floating renewable energy systems, Vryhof Anchors B.V., 2020. [Online] Available:https://www.kivi.nl/uploads/media/5ae711f5178c0/SOZKIVI%20- lecture%20-%20Anchoring%20Technologies%20for%20FOWT%20by%20
Vry- of%20Anchors.pdf
Ikhennicheu, M., Lynch, M., Doole, S., Borisade, F., Matha, D., Dominguez, J. L., Vicente, R. D., Habekost, T., Ramirez, L., Potestio, S., Molins, C., and Trubat, P., Review of the State of the Art of Mooring and Anchoring Designs, Technical Challenges and Identification of Relevant DLCs, CoreWind Project, Barcelona, Spain, Tech. Rep. 815083, 2020.
Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. E., ... & Viselli, A., “Definition of the IEA Wind 15 Megawatt Offshore Reference Wind Turbine,” National Renewable Energy Lab., Golden, CO, USA, Tech. Rep. TP-5000-75698, 2020.
Haskind, M. D., “The Oscillation of a Ship in Still Water,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, vol. 1, pp. 23-34, 1946.
Haskind, M. D., “The Hydrodynamic Theory of Ship Oscillations in Rolling and Pitching,” Prikl. Mat. Mekh, vol. 10, pp. 33-66, 1946.
Wehausen, J. V. and Laitone, E. V., “Surface Waves in Fluid Dynamics III,” Handbuch der Physik, vol. 9, no. 3, pp. 446-778, 1960.
Simcenter STAR-CCM+ User Guide, ver. 2206, Siemens, Berlin, Germany, 2023.
Boussinesq, J., "Essai sur la Théorie des Eaux Courantes," Mémoires Présentés par Divers Savants à l'Académie des Sciences, vol. 23, no. 1, pp. 1-680, 1877.
Hirt, C. W. and B. D. Nichols, “Volume of Fluid Method for the Dynamics of Free Surface,” Journal of Computational Physics, vol. 39, pp. 201-225, 1981.
Goldstein, S., “On the Vortex Theory of Screw Propellers,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 123, no. 792, pp. 440-465, 1929.
Hansen, M. H., Hansen, A., Larsen, T. J., Øye, S., Sørensen, P., and Fuglsang, P., “Control Design for a Pitch-Regulated, Variable Speed Wind Turbine,” Risø National Laboratory, Roskilde, Danmark, RISØ-R-1500(EN), 2005.
OrcaFlex Documentation Version 11.4a, Orcina, UK, 2023.
Chen, T. L., Lee, C. I., Lin, T, Y., “Experiment on Hydrodynamic properties of Semi-Submersible Floating Platform,” presented at the 36th SNAME, Kaohsiung, 2024.
“Data Bouy Observation Data Annual Report 2011-2020,” Central Weather Bureau, 2011-2020.
Chuang, T. C., Yang, W. H., and Yang, R. Y., “Experimental and Numerical Study of a Barge-Type FOWT Platform under Wind and Wave Load,” Ocean Engineering, vol. 230, pp. 109015, 2021.
Baniotopoulos, C., Borri, C. and Stathopoulos, T. Environmental wind engineering and design of wind energy structures. Springer Science & Business Media, 2011.
Ghafari, H. and Dardel, M., “Parametric study of catenary mooring system on the dynamic response of the semi-submersible platform,” Ocean Engineering, vol. 153, no. 3, pp. 319-332, 2018.
“World Meteorological Organization Manual on Codes Volume I.1 Annex II to the WMO Technical Regulations Part A – Alphanumeric Codes” edition, section E, pp. 379, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94399-
dc.description.abstract本研究探討在新竹外海地區使用半潛式臺大浮台、IEA 15-MW離岸風機以及3×3型式繫纜佈置之浮式風機系統的運轉性能及年平均發電功率。先以Ansys Aqwa和STAR-CCM+預測了水動力特性,再使用OrcaFlex預測繫纜受力及風機的空氣動力,最後通過運動方程式求解浮式風機系統的運動響應及發電功率。本研究假設波向與風向相同,使用了勢流方法及兩種黏性流方法預測水動力,計算在一般海況及極端條件下條件下的風機系統性能;對統計新竹外海長期的波況機率分佈,比較勢流與黏性流方法預測的下的水動力特性以及使用固定風速和API風譜的風機系統性能。模擬結果顯示,浮台的運動在使用單點黏性流方法下皆有低估的結果,並發現運動的大小與該海況的波能量尖峰處的阻尼大小相關。在極端海況下,使用全域黏性流方法的最大位移為8.293 m;最大纜繩張力為6.519 MN。在長期的情況下,使用API風譜的運動響應及繫纜張力最大值一般高於使用固定風速。在使用API風譜與全域黏性流方法的情況下,年平均容量因子可達0.512,與理論值相差1.8%。zh_TW
dc.description.abstractThis study explores the operational performance and capacity factor of a semi-submersible TaidaFloat platform featuring an IEA 15-MW offshore wind turbine and a 3×3 mooring configuration in the Hsinchu offshore area. Hydrodynamic properties are predicted using Ansys Aqwa and STAR-CCM+, while OrcaFlex is employed to estimate mooring loads, predict wind turbine aerodynamics, and solve motion equations for evaluating motion response, power output, and dynamic responses of the mooring system and wind turbine. Assuming alignment between wave and wind directions, the potential flow method (P) and two viscous methods are utilized to calculate the hydrodynamic properties of the studied FOWT system for predicting its operational performance under common and extreme wave conditions. Statistical analysis is used to bluid the scatter diagram of long-term conditions off Hsinchu for comparing hydrodynamic properties using both potential and viscous methods under a constant wind speed and API spectrum. The simulations reveal that the motion response of the platform is underestimated with the sigle-point method, where the motion magnitude is related to damping at the wave spectral density peak under specific metocean conditions. Under the extreme condition, the maximum offset using the fully viscous method is 8.293 m, with the highest mooring line tension at 6.519 MN. For long-term conditions, maximum values of motion response and mooring line tension were generally higher with the API wind spectrum compared to a constant wind speed. Employing the API wind spectrum and the fully viscous method, the annual average capacity factor was found to be 0.512, differing by 1.8% from the theoretical value.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:16:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:16:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract I
摘要 II
Content IV
Nomenclature VI
List of Figures XII
List of Tables XIV
1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 4
2 Wind Turbine System Design 6
2.1 Floating Platform Design 6
2.2 Mooring Design 8
2.3 Wind Turbine Design 10
3 Numerical Methods 16
3.1 Numerical Framework 16
3.2 Potential Flow Modeling of Floating Body 18
3.3 Viscous Flow Modeling of Floating Body 25
3.3.1 Governing Equations 25
3.3.2 Turbulence Model 27
3.3.3 Volume of Fluid Method 29
3.3.4 Boundary Conditions 31
3.4 Modeling of Wind Turbine 34
3.4.1 Momentum Theory 34
3.4.2 Blade Element Theory 37
3.4.3 Blade Element Momentum Theory 39
3.4.4 Tip Loss Model 40
3.5 Modeling of Control System 41
3.6 Modeling of Mooring 45
4 Hydrodynamic Properties 47
4.1 Time Shifting Approach (TSA) 47
4.2 Hydrodynamic Properties Considering Viscous Effect 50
4.2.1 Single-Point Method 50
4.2.2 Fully Viscous Method 51
5 Validation 52
6 Metocean Data 55
6.1 Wave Conditions 55
6.2 Wind Conditions 58
7 Case Descriptions 61
8 Simulation Results 63
8.1 Hydrodynamic Properties 63
8.2 Load Response Amplitude Operator 70
8.3 Motion Response 72
8.3.1 Comparison of Motion Response among Methods 72
8.3.2 LTC Scenario 81
8.4 Power Performance 88
8.4.1 Comparison of Power Performance among Methods 88
8.4.2 LTC Scenario 90
8.5 Mooring Line Tension 95
8.5.1 Comparison of Mooring Line Tension among Methods 95
8.5.2 LTC Scenario 101
9 Conclusions 106
References 109
-
dc.language.isoen-
dc.subject浮式風機zh_TW
dc.subject半潛式浮台zh_TW
dc.subject運動響應zh_TW
dc.subject水動力特性zh_TW
dc.subject纜繩張力zh_TW
dc.subject容量因子zh_TW
dc.subject台灣海峽zh_TW
dc.subjectSemi-Submersibleen
dc.subjectTaiwan Straiten
dc.subjectCapacity Factoren
dc.subjectMooring Line Tensionen
dc.subjectHydrodynamic Propertiesen
dc.subjectMotion Responseen
dc.subjectFloating Offshore Wind Turbineen
dc.title15 MW半潛式浮式風機系統新竹外海場址性能預測zh_TW
dc.titlePerformance Prediction of a 15 MW Semi-Submersible Floating Wind Turbine System in the Hsinchu Offshore Areaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江茂雄;盧南佑;張博超;黃金城;許文陽zh_TW
dc.contributor.oralexamcommitteeMao-Hsiung Chiang;Nan-You Lu;Bor-Chau Chang;Chin-Cheng Huang;Wen-Yang Hsuen
dc.subject.keyword浮式風機,半潛式浮台,運動響應,水動力特性,纜繩張力,容量因子,台灣海峽,zh_TW
dc.subject.keywordFloating Offshore Wind Turbine,Semi-Submersible,Motion Response,Hydrodynamic Properties,Mooring Line Tension,Capacity Factor,Taiwan Strait,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202403052-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf12.48 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved