請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94384完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳哲夫 | zh_TW |
| dc.contributor.advisor | Jeffrey D. Ward | en |
| dc.contributor.author | 許秉祐 | zh_TW |
| dc.contributor.author | PING-YU HSU | en |
| dc.date.accessioned | 2024-08-15T17:12:02Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] Yeo, Y.-K.; Kwon, T.-I.; Lee, K. H. An energy effective PID tuning method for the control of polybutadiene latex reactor based on closed-loop identification. Korean Journal of Chemical Engineering 2004, 21 (5), 935-941. DOI: 10.1007/BF02705574.
[2] Condon, F. E. "Influence of temperature of polymerization on the structural composition of emulsion polymers of butadiene." Journal of Polymer Science 11.2 (1953): 139-149. [3] Pires, N. M., Coutinho, F. M., & Costa, M. A. (2004). Synthesis and characterization of high cis-polybutadiene: influence of monomer concentration and reaction temperature. European polymer journal, 40(11), 2599-2603. [4] Meehan, E., Variation of Monomer Pressure with Degree of Conversion in Emulsion Polymerization of Butadiene and of Butadiene--Styrene. Journal of the American Chemical Society, 71(2), 628-633, 1949 [5] Washington, I. D. (2008). Dynamic modelling of emulsion polymerization for the continuous production of nitrile rubber (Master's thesis, University of Waterloo). [6] Soroush, M., & Kravaris, C. (1992). Nonlinear control of a batch polymerization reactor: an experimental study. AIChE journal, 38(9), 1429-1448. [7] Takamatsu, T., Shioya, S., Okada, Y., & Uchiyama, M. (1987). Application of an Adaptive Controller to Molecular Weight Distribution Control in a Batch Polymerization Process. IFAC Proceedings Volumes, 20(5), 227-232. [8] Chylla, R. W., & Haase, D. R. (1993). Temperature control of semibatch polymerization reactors. Computers & Chemical Engineering, 17(3), 257-264. [9] Soroush, M., & Kravaris, C. (1992). Nonlinear control of a batch polymerization reactor: an experimental study. AIChE journal, 38(9), 1429-1448. [10] Chern, C. S. (2006). Emulsion polymerization mechanisms and kinetics. Progress in polymer science, 31(5), 443-486. [11] Harkins, W. D. (1945). A general theory of the reaction loci in emulsion polymerization. The Journal of chemical physics, 13(9), 381-382. [12] Harkins, W. D. (1946). A general theory of the reaction loci in emulsion polymerization. II. The Journal of Chemical Physics, 14(1), 47. [13] Harkins, W. D. (1947). A general theory of the mechanism of emulsion polymerization1. Journal of the American Chemical Society, 69(6), 1428-1444. [14] Smith, W. V., & Ewart, R. H. (1948). Kinetics of emulsion polymerization. The journal of chemical physics, 16(6), 592-599. [15] Smith, W. V. (1948). The kinetics of styrene emulsion polymerization1a. Journal of the American Chemical Society, 70(11), 3695-3702. [16] Smith, W. V. (1949). Chain initiation in styrene emulsion polymerization. Journal of the American Chemical Society, 71(12), 4077-4082. [17] Fitch, R. M., & Tsai, C. H. (1971). Particle formation in polymer colloids, III: Prediction of the number of particles by a homogeneous nucleation theory. In Polymer Colloids: Proceedings of an American Chemical Society Symposium on Polymer Colloids held in Chicago, Illinois, September 13–18, 1970 (pp. 73-102). Boston, MA: Springer US. [18] Fitch, R. M., & Tsai, C. H. (1969, January). Homogeneous nucleation of polymer colloids. In Proceedings of the National Academy of Sciences of the United States of America (Vol. 64, No. 4, p. 1424). 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418: NATL ACAD SCIENCES. [19] Fitch, R. M. (1973). The homogeneous nucleation of polymer colloids. British polymer journal, 5(6), 467-483. [20] Vega, J. R., Gugliotta, L. M., Bielsa, R. O., Brandolini, M. C., & Meira, G. R. (1997). Emulsion copolymerization of acrylonitrile and butadiene. Mathematical model of an industrial reactor. Industrial & engineering chemistry research, 36(4), 1238-1246. [21] Sacks, M. E., Lee, S. I., & Biesenberger, J. A. (1973). Effect of temperature variations on molecular weight distributions: batch, chain addition polymerizations. Chemical Engineering Science, 28(1), 241-257. [22] Masterson, P. M. (1977). The time-optimal control of a batch polymerization system (Doctoral dissertation, University of Colorado at Boulder). [23] Chen, S. A., & Jeng, W. F. (1978). Minimum end time policies for batchwise radical chain polymerization. Chemical Engineering Science, 33(6), 735-743. [24] Wu, G. Z. A., Denton, L. A., & Laurence, R. L. (1982). Batch polymerization of styrene‐optimal temperature histories. Polymer Engineering & Science, 22(1), 1-8. [25] API RP520, Sizing, Selection, and Installation of Pressure-Relieving Devices in Refineries, American Petroleum Institution, 2000 [26] Juba, M. R., & Hamer, J. W. (1986). Progress and challenges in batch process control. proceedings of the CPC III, CHACE. [27] MacGregor, J. F. (1988). Control of polymerization reactors. In Dynamics and Control of Chemical Reactors and Distillation Columns (pp. 31-35). Pergamon. [28] Wang, K., Rippon, L., Chen, J., Song, Z., & Gopaluni, R. B. (2019). Data-driven dynamic modeling and online monitoring for multiphase and multimode batch processes with uneven batch durations. Industrial & Engineering Chemistry Research, 58(30), 13628-13641. [29] Gao, J., & Penlidis, A. (2002). Mathematical modeling and computer simulator/database for emulsion polymerizations. Progress in polymer science, 27(3), 403-535. [30] Broadhead, T. O. (1984). Dynamic modelling of the emulsion copolymerization of styrene/butadiene (Doctoral dissertation). [31] Gao, J., & Penlidis, A. (2002). Mathematical modeling and computer simulator/database for emulsion polymerizations. Progress in polymer science, 27(3), 403-535. [32] Broadhead, T. O., Hamielec, A. E., & MacGregor, J. F. (1985). Dynamic modelling of the batch, semi‐batch and continuous production of styrene/butadiene copolymers by emulsion polymerization. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 10(S19851), 105-128. [33] Penlidis, A. (1986). Polymer reactor design, optimization and control in latex production technology (Doctoral dissertation). [34] Hu, K. H., Kao, C. S., & Duh, Y. S. (2008). Studies on the runaway reaction of ABS polymerization process. Journal of hazardous materials, 159(1), 25-34. [35] Weerts, P. A., Van der Loos, J. L., & German, A. L. (1991). Emulsion polymerization of butadiene, 3. Kinetic effects of stirring conditions and monomer/water ratio. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 192(9), 1993-2008. [36] Haar, L., & Gallagher, J. S. (1978). Thermodynamic properties of ammonia. Journal of Physical and Chemical Reference Data, 7(3), 635-792. [37] Ilie, A., Girip, A., Calotă, R., & Călin, A. (2022). Investigation on the Ammonia Boiling Heat Transfer Coefficient in Plate Heat Exchangers. Energies, 15(4), 1503. [38] Heat Exchanger Design Handbook, 1986, by C. F. Beaton. [39] Dimitratos, J., Georgakis, C., El-Aasser, M. S., & Klein, A. (1989). Dynamic modeling and state estimation for an emulsion copolymerization reactor. Computers & chemical engineering, 13(1-2), 21-33. [40] McCabe, Warren L. (Warren Lee), 1899-1982. (2001). Unit operations of chemical engineering. Boston :McGraw Hill. [41] Xiao, M., Tang, L., Zhang, X., Lun, I. Y. F., & Yuan, Y. (2018). A review on recent development of cooling technologies for concentrated photovoltaics (CPV) systems. Energies, 11(12), 3416. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94384 | - |
| dc.description.abstract | 聚丁二烯乳膠 (PBL) 是丙烯腈-丁二烯-苯乙烯共聚物 (ABS) 的共聚合過程中至關重要的組成部分,ABS 是一種廣泛使用的工業聚合物。然而,PBL 乳化聚合存在一些挑戰。除了本身反應的高放熱與單一操作批次間之黏度上升所造成的熱交換器熱傳效率降低之外,隨著操作批次次數的增加,熱交換器上所累積之聚合物結垢。這些因素都會導致潛在的溫度控制高超越比,進而導致不同批次之間的最終產品質量不一致。
為了解決這些問題,工程師通常會訴諸於人工調整控制器参数與製程變數。然而,這種方法由於操作人員經驗的差異而缺乏一致性,導致生產力和產品質量不可預測。 本研究針對於聚丁二烯乳化聚合批次製程相關的挑戰進行探討。通過開發能夠捕捉實際工廠動態的數學模型,進而優化製程生產力與控制策略並保持不同批次之間的一致產品質量。 | zh_TW |
| dc.description.abstract | Polybutadiene Latex (PBL) is a crucial component in the copolymerization process for Acrylonitrile Butadiene Styrene (ABS), a widely used industrial polymer. However, the control of PBL emulsion polymerization reactors are particularly difficult due to the multiphase nature of emulsion systems and the complicated nonlinear process dynamics[39].
To address these issues, engineers often resort to manual adjustments of process parameters. However, this approach suffers from inconsistencies due to variations in individual operating experience, leading to unpredictable productivity and product quality. This research addresses the challenges associated with polybutadiene emulsion polymerization, including exothermic reactions, increasing viscosity within each batch operation, and polymeric fouling accumulates on heat exchangers across batches. These factors contribute to potential temperature control overshoots, resulting in inconsistent final product quality across different batches. By developing a mathematical model that captures real-plant dynamics, the research seeks to optimize productivity, control strategy and maintain consistent product quality across batches. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:12:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:12:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Process Description 1 1.3 Research Objectives 3 Chapter 2 Literature Review 4 2.1 Reaction Temperature Effect on PBL 4 2.2 Reactor pressure of PBL production 4 2.3 General Features of Emulsion Polymerization 5 Chapter 3 Process Model Development 7 3.1 Modeling of Reactor Temperature Trajectory 7 3.2 Modeling of Heat Exchange Tubes 8 3.3 Modeling of the Reactor Pressure 10 3.4 Modeling of the Polymeric Fouling on Heat Exchange Tubes 12 3.5 Modeling of the Reaction Mechanism 15 3.6 Summary of the Model Assumptions 18 Chapter 4 Model testing 21 4.1 Three Stages Heating Process 21 4.2 Noise-Free Model 23 4.3 Sensitivity Analysis of the Process Noise 26 Chapter 5 Process optimization 34 5.1 Optimal Temperature Profile 34 5.1.1 Three-Stage Heating Progress 38 5.1.2 Two-Stage Heating Progress 39 5.2 Optimal Controller Tuning Parameters 40 Chapter 6 Concluding Remarks and Future Works 48 6.1 Concluding Remarks 48 6.2 Future Works 49 REFERENCE 51 APPENDICES 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 乳化聚合反應 | zh_TW |
| dc.subject | 批次反應器 | zh_TW |
| dc.subject | 溫度控制 | zh_TW |
| dc.subject | 動態建模 | zh_TW |
| dc.subject | 聚丁二烯乳膠 | zh_TW |
| dc.subject | polybutadiene latex | en |
| dc.subject | dynamic modeling | en |
| dc.subject | temperature control | en |
| dc.subject | emulsion polymerization | en |
| dc.subject | batch reactor | en |
| dc.title | 聚丁二烯批次製程之動態建模以及溫度控制 | zh_TW |
| dc.title | Dynamic Modeling and Temperature Control of PBL Emulsion Polymerization Batch Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李豪業;余柏毅;陳誠亮 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Yeh Lee;Bor-Yih Yu;Cheng-Liang Chen | en |
| dc.subject.keyword | 批次反應器,乳化聚合反應,聚丁二烯乳膠,動態建模,溫度控制, | zh_TW |
| dc.subject.keyword | batch reactor,emulsion polymerization,polybutadiene latex,dynamic modeling,temperature control, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202402858 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 2.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
