請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94381完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宇修 | zh_TW |
| dc.contributor.advisor | Yu-Hsiu Lee | en |
| dc.contributor.author | 秦煜翔 | zh_TW |
| dc.contributor.author | Yu-Hsiang Chin | en |
| dc.date.accessioned | 2024-08-15T17:11:01Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | Han Woong Yoo, Shingo Ito, and Georg Schitter. High speed laser scanning microscopy by iterative learning control of a galvanometer scanner. Control Engineering Practice, 50:12–21, 2016.
Li-Wei Shih and Cheng-Wei Chen. Model-free repetitive control design and implementation for dynamical galvanometer-based raster scanning. Control Engineering Practice, 122:105124, 2022. Shyh-Leh Chen, Sheng-Min Hsieh, and Thanh-Quan Ta. Iterative learning contouring control for five-axis machine tools and industrial robots. Mechatronics, 94:103030, 2023. Shyh-Leh Chen and Sheng-Min Hsieh. Iterative learning contouring control: Theory and application to biaxial systems. Mechatronics, 89:102932, 2023. Yu-Hsiu Lee, Sheng-Chieh Hsu, Tien-Yun Chi, Yan-Yi Du, Jwu-Sheng Hu, and Tsu-Chin Tsao. Industrial robot accurate trajectory generation by nested loop iterative learning control. Mechatronics, 74:102487, 2021. Leon Liangwu Yan, Nathan Banka, Parker Owan, Walter Tony Piaskowy, Joseph L Garbini, and Santosh Devasia. Mimo ilc using complex-kernel regression and application to precision sea robots. Automatica, 127:109550, 2021. Gaurav Parmar, Kira Barton, and Shorya Awtar. Large dynamic range nanopositioning using iterative learning control. Precision engineering, 38(1):48–56, 2014. [Jiangbo Liu, Bo Yan, and Qingze Zou. Optimal time-distributed fast fourier transform: Application to online iterative learning control—experimental high-speed nanopositioning example. Mechatronics, 41:114–124, 2017. Kam K Leang and Santosh Devasia. Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics, 16(3-4):141–158, 2006. Nastaran Nikooienejad, Mohammad Maroufi, and SO Reza Moheimani. Iterative learning control for video-rate atomic force microscopy. IEEE/ASME Transactions on Mechatronics, 26(4):2127–2138, 2020. Gunter Stein. Respect the unstable. IEEE Control systems magazine, 23(4):12–25, 2003. Suguru Arimoto, Sadao Kawamura, and Fumio Miyazaki. Bettering operation of robots by learning. Journal of Robotic systems, 1(2):123–140, 1984. Kyong-Soo Kim and Qingze Zou. A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems. IEEE/ASME Transactions on Mechatronics, 18(6):1767–1777, 2012. Robin de Rozario and Tom Oomen. Data-driven iterative inversion-based control: Achieving robustness through nonlinear learning. Automatica, 107:342–352, 2019. Zezhou Zhang and Qingze Zou. Optimal data-driven difference-inversion-based iterative control: High-speed nanopositioning tracking example. IEEE Transactions on Control Systems Technology, 31(1):144–154, 2022. Julius S Bendat and Allan G Piersol. Engineering applications of correlation and spectral analysis. New York, 1980. Suguru Arimoto. Learning control theory for robotic motion. International Journal of Adaptive Control and Signal Processing, 4(6):543–564, 1990. Abdelhamid Tayebi. Adaptive iterative learning control for robot manipulators. Automatica, 40(7):1195–1203, 2004. WBJ Hakvoort, Ronald GKM Aarts, Johannes van Dijk, and Jan B Jonker. A computationally efficient algorithm of iterative learning control for discrete-time linear time-varying systems. Automatica, 45(12):2925–2929, 2009. Jurgen van Zundert, Joost Bolder, Sjirk Koekebakker, and Tom Oomen. Resource-efficient ilc for lti/ltv systems through lq tracking and stable inversion: Enabling large feedforward tasks on a position-dependent printer. Mechatronics, 38:76–90,2016. Jurgen van Zundert and Tom Oomen. On inversion-based approaches for feedforward and ilc. Mechatronics, 50:282–291, 2018. Pieter Janssens, Goele Pipeleers, and Jan Swevers. A data-driven constrained norm-optimal iterative learning control framework for lti systems. IEEE Transactions on Control Systems Technology, 21(2):546–551, 2012. Cheng-Wei Chen, Sandeep Rai, and Tsu-Chin Tsao. Iterative learning of dynamic inverse filters for feedforward tracking control. IEEE/ASME Transactions on Mechatronics, 25(1):349–359, 2019. Anders Stenman, Fredrik Gustafsson, Daniel E Rivera, Lennart Ljung, and Tomas McKelvey. On adaptive smoothing of empirical transfer function estimates. Control Engineering Practice, 8(11):1309–1315, 2000. Douglas A Bristow, Marina Tharayil, and Andrew G Alleyne. A survey of iterative learning control. IEEE control systems magazine, 26(3):96–114, 2006. Robin De Rozario and Tom Oomen. Improving transient learning behavior in model-free inversion-based iterative control with application to a desktop printer. In 2018 IEEE 15th international workshop on advanced motion control (AMC), pages 455–460. IEEE, 2018. Szuchi Tien, Qingze Zou, and Santosh Devasia. Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed afm operation. IEEE Transactions on Control Systems Technology, 13(6):921–931, 2005. Wei Li and Jay H Lee. Frequency-domain closed-loop identification of multivariable systems for feedback control. AIChE journal, 42(10):2813–2827, 1996. Andreas Wetzig, Patrick Herwig, Jan Hauptmann, Robert Baumann, Peter Rauscher, Michael Schlosser, Thomas Pinder, and Christoph Leyens. Fast laser cutting of thin metal. Procedia Manufacturing, 29:369–374, 2019. Ming-Fei Chen, Yu-Pin Chen, Wen-Tse Hsiao, Shi-Yuan Wu, Chun-Wei Hu, and Zhi-Peng Gu. A scribing laser marking system using dsp controller. Optics and Lasers in Engineering, 46(5):410–418, 2008. Virgil-Florin Duma, Patrice Tankam, Jinxin Huang, Jungeun Won, and Jannick P Rolland. Optimization of galvanometer scanning for optical coherence tomography. Applied Optics, 54(17):5495–5507, 2015. Aaron Melman. Generalizations of gershgorin disks and polynomial zeros. Proceedings of the American Mathematical Society, 138(7):2349–2364, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94381 | - |
| dc.description.abstract | 由數據驅動的迭代學習控制可以通過消除參數系統表示中的擬合誤差,並實現了比基於模型的迭代學習控制更優秀的軌跡追蹤性能。在頻域中,目前現有的數據驅動方法以較低的成本獲取非參數化頻率響應函數並實現快速有效的學習。然而數據的品質對演算法的性能有著明顯的影響。另一個顯著的缺點是每當追蹤的軌跡改變時,即使在先前相同的頻率成分上已經進行過學習,學習過程仍然會被重置。此外將這些從單變數系統中的方法延伸到具有不可忽略耦合性的多變數系統並不直觀。因此本研究旨在通過採用頻譜分析(SPA)來解決由數據驅動的 ILC 中的上述挑戰。通過減輕量測雜訊的影響,SPA改善了由數據驅動的學習濾波器設計。並且使用迭代變化的學習增益可以實現快速且穩健的收斂表現。同時提出了在頻域中的轉移學習策略,其中先前設計好的學習濾波器在特定頻率中的資訊將被保留並用於加速後續任務的收斂速度。所提出的基於 SPA 的 ILC 演算法也可以擴展到多輸入多輸出(MIMO)框架,並透過複數矩陣分析確保其收斂。該方法在光學振鏡系統上得到了實驗驗證,展示了更好的軌跡追蹤性能、轉移學習功能以及對 MIMO 系統的適用性。 | zh_TW |
| dc.description.abstract | Data-driven iterative learning control (ILC) can achieve improved tracking performance over model-based ILC by eliminating fitting error from parametric system representations. Existing data-driven approaches in frequency domain take advantage of the affordability and speed associated with acquiring non-parametric frequency response function data for effective learning. However, the quality of data significantly influences the achievable performance. Additionally, a notable drawback is that learning is reset whenever the tracked trajectory changes, despite having learned similar frequency contents before. Extending these approaches to multivariate systems with non-negligible coupling is also not straightforward. This paper aims to address the aforementioned challenges in data-driven ILC by employing spectral analysis (SPA), which improves the learned data-driven inversion by mitigating the measurement noise. Fast and robust convergence is made possible through an iteration-varying learning gain. Also proposed is a transfer learning strategy in the frequency domain, wherein the inversion learned in specific frequency bin(s) will be preserved and utilized to expedite convergence in subsequent tasks. The presented ILC algorithm based on SPA naturally extends to the multi-input multi-output (MIMO) framework, and the convergence can be ensured by complex-valued matrix analysis. The methodology is experimentally validated on a galvanometer mirror steering system, showcasing enhanced performance, transfer learning capabilities, and applicability to MIMO systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:11:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:11:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures vii Denotation xi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature review 2 1.2.1 ILC 2 1.2.2 Model-based ILC 3 1.2.3 Data-driven ILC 4 Chapter 2 Preliminaries 7 2.1 Basics of Frequency-domain ILC 7 2.2 Model-free Iterative Inversion-based Control, MF-IIC 9 2.3 Non-linear Inversion-based ILC, NLIIC 11 Chapter 3 SISO Algorithm 13 3.1 Enhancing FRF Estimate in ILC through SPA 13 v doi:10.6342/NTU202402798 3.1.1 SPA Implementation 15 3.1.2 Convergence analysis 17 3.1.3 Uncertainty Estimation for SISO Systems 20 3.1.4 The challenge associated with directly inverting the estimated fre- quency response 22 3.2 Transfer learning strategy 24 Chapter 4 MIMO Algorithm 27 4.1 SPA Extension to FRM Estimate in ILC 27 4.1.1 MIMO System Identification Issue: 28 4.1.2 Convergence analysis 32 4.1.3 Uncertainty Estimation for MIMO Systems 36 4.2 Transfer Learning MIMO extension 37 Chapter 5 Results 41 5.1 System Overview 41 5.2 SISO Algorithm 43 5.2.1 Simulation Results 44 5.2.2 Experiment Results 47 5.3 MIMO Algorithm 52 5.3.1 Setup 53 5.3.2 Simulation Results 54 5.3.3 Experiment Results 56 Chapter 6 Conclusion 61 References 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 迭代學習控制 | zh_TW |
| dc.subject | 轉移學習 | zh_TW |
| dc.subject | 頻譜分析 | zh_TW |
| dc.subject | Transfer learning | en |
| dc.subject | Iterative learning control | en |
| dc.subject | Spectral analysis | en |
| dc.title | 具有轉移學習的數據驅動迭代學習控制 | zh_TW |
| dc.title | Data-Driven Frequency-Domain Iterative Learning Control with Transfer Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳政維;葉奕良 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Wei Chen;Yi-Liang Yeh | en |
| dc.subject.keyword | 迭代學習控制,頻譜分析,轉移學習, | zh_TW |
| dc.subject.keyword | Iterative learning control,Spectral analysis,Transfer learning, | en |
| dc.relation.page | 67 | - |
| dc.identifier.doi | 10.6342/NTU202402798 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
