請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94371
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 詹穎雯 | zh_TW |
dc.contributor.advisor | Yin-Wen Chan | en |
dc.contributor.author | 劉瀚仁 | zh_TW |
dc.contributor.author | Han-Ren Liu | en |
dc.date.accessioned | 2024-08-15T17:07:05Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | [1] A.Bentur,“Microstructure Interfacial Effects and Micromechanics of Cementitious Composites", Advances In Cementitious Material, Ceramic Transaction, Vol.16(1990).
[2] Bao Jian Zhan, Dong Xing Xuan, Chi Sun Poon, Cai Jun Shi, “Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates”, Cement and Concrete Composites, 2016 [3] Bao Jian Zhan, Chi Sun Poon, Cai Jun Shi, “Materials characteristics affecting CO2 curing of concrete blocks containing recycled aggregates”, Cement and Concrete Composites, 2016 [4] Bao Jian Zhan, Dong Xing Xuan, Chi Sun Poon, Cai Jun Shi, “Mechanism for rapid hardening of cement pastes under coupled CO2-water curing regime”, Cement and Concrete Composites, 2019 [5] C. J. Goodbrake, J. F. Young, “Reaction of Beta-Dicalcium Silicate and Tricalcium Silicate with Carbon Dioxide and Water Vapor”, Journal of the American Ceramic Society, (1979) 168-171. [6] Chaofeng Liang, Bihao Pan, Zhiming Ma, Zhihai He, Zhenhua Duan, “Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review”, Cement and Concrete Composites, 2020 [7] Caijun Shi, Fuqiang He, Yanzhong Wu, “Effect of pre-conditioning on CO2 curing of lightweight concrete blocks mixtures”, Construction and Building Materials, 2012 [8] Duo Zhang, Zaid Ghouleh, Yixin Shao, “Review on carbonation curing of cement-based materials”, Journal of CO2 Utilization, 2017 [9] Duo Zhang, S.M.ASCE, Xinhua Cai, and Yixin Shao, “Carbonation Curing of Precast Fly Ash Concrete”, Cement and Concrete Composites, 2016 [10] DEL VISO, J. R.; CARMONA, J. R.; RUIZ, G. Shape and size effects on the compressive strength of high-strength concrete. Cement and Concrete Research, 2008, 38.3: 386-395. [11] Hilal El-Hassan , Yixin Shao, “Early carbonation curing of concrete masonry units with Portland limestone cement”, Cement and Concrete Composites, 2015 [12] Ishida, T. and Maekawa, “Modeling of PH Profile in Pore Water Based on Mass Transport and Chemical Equilibrium Theory”, Proc. JSCE 648: 203–215, 2000 [13] J. J. Beaudoin, T. Sato, “Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials”, Advances in Cement Research Volume 23 Issue 1, Canada, 2011 [14] Jeffrey W.Bullard, Hamlin M.Jennings, Richard A.Livingston, AndreNonat , George W.Scherer , Jeffrey S.Schweitzer, Karen L.Scrivener, Jeffrey J.Thomas, “Mechanisms of cement hydration”, Cement and Concrete Research, 2011 [15] LIU, Zhuo; MENG, Weina. Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: A review. Journal of CO2 Utilization, 2021, 44: 101428. [16] Lee Han-Seung, Xiao-Yong Wang, “Evaluation of compressive strength development and carbonation depth of high volume slag-blended concrete”, Hanyang University, Korea, 2016 [17] M. F. Bertos, S.J.R. Simons , C.D. Hills , P.J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2, Journal of Hazardous Materials”, B112 (2004) 193-205. [18] M. Thiery, P. Dangla, P. Belin, G. Habert, N. Roussel, “Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials”, Cem. Concr. Res. 46, 2013 [19] M.A. Sorochkin, A.F. Shchurov, I.A. Safonov, “Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland cement”, J. Appl. Chem. USSR 48 (1975) 1211–1217 [20] Metha,P.,P.J.M.Monterio,”ConcreteStructure,Propertiesand Materials”,Prentice-Hall inc.,Englewood-Cliffs,N.J.,1996. [21] Min Liu, Shuxian Hong, Yanshuai Wang, Jinrui Zhang, Dongshuai Hou, Biqin Dong, “Compositions and microstructures of hardened cement paste with carbonation curing and further water curing”, Construction and Building Materials, 2021 [22] O.Buyukozturk,A.H.Nilson and F.O.Slate, “Stress-Strain Response and Fracture of a Concrete Model in Biaxial Loading", ACI J., Vol.68, (1971). [23] Pingping He, Caijun Shi, Zhenjun Tu, Chi Sun Poon, Jiake Zhang, “Effect of further water curing on compressive strength and microstructure of CO2-cured concrete”, Cement and Concrete Composites, 2016 [24] PAN, Xiaoying, et al. Effects of CO2 surface treatment on strength and permeability of one-day-aged cement mortar. Construction and Building Materials, 2017, 154: 1087-1095. [25] PAN, Xiaoying, et al. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cement and Concrete Composites, 2019, 99: 89-99. [26] Shu-Yuan Pan, E.E. Chang, Pen-Chi Chiang, “CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications”, Taiwan, NTU, Environmental Engineering, 2012 [27] S.M.Monteagudo,”The degree of assessment of blended cement pastes by differential thermal and thermogravimetric analysis”,2014 [28] Sormeh Kashef-Haghighi, Yixin Shao, Subhasis Ghoshal, “Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing”, McGill University, Canada, 2015 [29] Sormeh Kashef-Haghighi, Yixin Shao, Subhasis Ghoshal, “Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing”, Cement and Concrete Research, 2015 [30] Tiefeng Chen, Xiaojian Gao, “Effect of carbonation curing regime on strength and microstructure of Portland cement paste”, Journal of CO2 Utilization, 2019 [31] Tiefeng Che and Xiaojian Gao, “Use of Carbonation Curing to Improve Mechanical Strength and Durability of Pervious Concrete ”, Cement and Concrete Composites, 2020 [32] Vahid Rostami, Yixin Shao, Andrew J.Boyd, ZhenHe, “Microstructure of cement paste subject to early carbonation curing”, Cement and Concrete Composites, 2012 [33] Xin Qian, Jialai Wang, Yi Fang, Liang Wang, ”Carbon dioxide as an admixture for better performance of OPC-based concrete”, Journal of CO2 Utilization, 2018 [34] XUAN, Dongxing; ZHAN, Baojian; POON, Chi Sun. A maturity approach to estimate compressive strength development of CO2-cured concrete blocks. Cement and Concrete Composites, 2018, 85: 153-160. [35] Xiangping Xian,Duo Zhong,Han Lin,Yixin Shao, “Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance”, Cement and Concrete Composites, 2022 [36] Y. Shao, H. El-Hassan, “CO2 Utilization in Concrete”, Third international Conference on Sustainable, Construction Material and Technologies, 2010. [37] Y. Shao, M. S. Mirza, X.Wu , CO2 Sequestration using calciumsilicate Silicate concrete, Canadian Journal of Civil Engineering, 33 (2006) 776-784. [38] ZABIHI, Niloufar; EREN, Özgür. Compressive strength conversion factors of concrete as affected by specimen shape and size. Research journal of applied sciences, engineering and technology, 2014, 7.20: 4251-4257. [39] Zehua Li, YinWang, Hong Yao, Shiying Lin , “Novel CO2 sorbent: Ca(OH)2 with high strength”, Fuel Processing Technology, 2015 [40] ZHANG, Duo; LI, Victor C.; ELLIS, Brian R. Optimal pre-hydration age for CO2 sequestration through portland cement carbonation. ACS Sustainable Chemistry & Engineering, 2018, 6.12: 15976-15981. [41] 史才軍、王吉云、涂貞軍、王德輝,「二氧化碳養護混凝土技術進展」,材料導報A:綜述篇,第31卷,第3期,第134-138頁,2017年。 [42] 史才軍、何平平、涂貞軍、曹張,「預養護二氧化碳養護混凝土過程及微觀結構的影響」,矽酸鹽學報,第42卷,第8期,第996-1104頁,2014年。 [43] 史才軍、鄒廣炎、何富強,「二氧化碳養護混凝土的動力學研究」,矽酸鹽學報,第38卷,第7期,第1179-1184頁,2010年。 [44] 行政院公共工程委員會,「公共工程高爐石混凝土使用手冊」。 [45] 李明君, 王勇智, 高士軒, 蘇育民, & 黃子源. (2019). 二氧化碳養護對混凝土性質影響之研究. 中國土木水利工程學刊, 31(3), 263-271。 [46] 李修齊,「高強度混凝土水中磨耗性質之機理探討」,碩士論文,國立臺灣大學土木工程研究所,1997。 [47] 周理、呂昌忠、王怡林、姚金花、王瑜,「述評超臨界溫度氣體在多孔固體上的物理吸附」,天津大學化學工程研究所高壓吸附研究室,化學進展,第11卷第3期,1999。 [48] 林建宏,「爐石混凝土水中磨耗性質研究」,碩士論文,國立台灣大學土木工程研究所,2004。 [49] 湯為窯,「高強度混凝土水中磨耗性質與早期收縮行為之研究」,碩士論文,國立台灣大學土木工程研究所,1997。 [50] 趙文成,「高等混凝土」,講義,交通大學,1997,新竹。 [51] 馬迪祥,「新拌混凝土碳封存技術之初步研究」,碩士論文,台灣大學,2020。 [52] 趙伯融,「新拌混凝土碳封存及碳化養護之研究」,碩士論文,台灣大學,2021。 [53] 吳承禹,「增進混凝土碳封存之研究」,碩士論文,台灣大學,2022。 [54] 陳彥輔,「混凝土碳封存尺寸效應之研究」,碩士論文,台灣大學,2023。 [55] 礱龍山,「高強度波索蘭混凝土之基本工程性質研究」,碩士論文,國立交通大學土木工程研究所,1991。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94371 | - |
dc.description.abstract | 二氧化碳(CO₂)是導致全球氣候變化的主要溫室氣體之一,其排放主要來自於燃燒化石燃料(如煤炭、石油和天然氣)以及森林砍伐等人類活動。過去幾十年,全球二氧化碳排放量不斷增加,導致溫室氣體濃度上升。為應對氣候變化,許多國家和國際組織已開始採取措施減少二氧化碳排放,如推廣可再生能源、提高能源效率和發展碳捕集與封存技術等。
針對碳封存技術,混凝土中的一些成分能與二氧化碳反應生成碳酸鈣,這種碳封存方法既能減少大氣中的二氧化碳,又能提高混凝土的耐久性。許多學者正在研究如何在不影響混凝土性能的情況下最大限度地提高其碳封存能力,這可能成為未來具有發展性的碳封存技術之一。 本研究封存二氧化碳的方式主要為碳化養護,其中針對與”水”最相關的三個碳化養護參數作探討,因碳化養護中二氧化碳是利用試體內蒸散之水分形成的孔隙進入,因此與水相關的碳化養護參數分別為水灰比、模內水化時間、預處理時間,在這三者的參數搭配下,進行碳化養護流程後,對其二氧化碳吸收量、28天抗壓強度、碳化深度分析,比較以上參數對碳化養護之混凝土的影響。 關鍵詞:全球暖化、碳化養護參數、碳封存、水泥砂漿、混凝土 | zh_TW |
dc.description.abstract | Carbon dioxide (CO₂) is one of the main greenhouse gases contributing to global climate change. Its emissions primarily come from the burning of fossil fuels (such as coal, oil, and natural gas) and deforestation. Over the past few decades, global CO₂ emissions have continuously increased, leading to higher concentrations of greenhouse gases. To address climate change, many countries and international organizations have begun to take measures to reduce CO₂ emissions, such as promoting renewable energy, improving energy efficiency, and developing carbon capture and storage technologies.
Regarding carbon capture and storage, certain components in concrete can react with CO₂ to form calcium carbonate. This method of carbon sequestration not only reduces CO₂ in the atmosphere but also enhances the durability of concrete. Many researchers are studying how to maximize the carbon sequestration capacity of concrete without compromising its performance, making this a potentially promising carbon capture technology for the future. This study primarily utilizes carbonation curing to sequester carbon dioxide, focusing on the three carbonation curing parameters most related to "water." During carbonation curing, carbon dioxide enters through the pores formed by the evaporation of water within the specimen. Therefore, the water-related carbonation curing parameters are the water-cement ratio, in-mold hydration time, and preconditioning time. Under the combination of these three parameters, after the carbonation curing process, the study analyzes the carbon dioxide absorption, 28-day compressive strength, and carbonation depth to compare the effects of these parameters on the concrete subjected to carbonation curing. Keywords:global warning、carbonation curing parameters、carbon capture and storage、mortar、concrete | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:07:04Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T17:07:05Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 viii 表目錄 xiii 第一章、 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程圖 3 第二章、 文獻回顧 4 2.1 二氧化碳捕捉與封存技術(CCS) 4 2.1.1 碳補捉 4 2.1.2 碳運輸 6 2.1.3 碳封存 6 2.1.4 混凝土碳化反應機制 8 2.2 二氧化碳養護介紹 14 2.2.1 二氧化碳養護流程 14 2.2.1.1模內初期水化 15 2.2.1.2預處理 15 2.2.1.3碳化養護 16 2.2.1.4後養護 18 2.2.2 二氧化碳養護參數 18 2.2.2.1配比(水灰比) 18 2.2.2.2模內水化時間 20 2.2.2.3預處理時間 22 2.2.2.4碳化濃度 24 2.2.2.5碳化壓力 26 2.2.2.6碳化溫度 27 2.2.2.7碳化養護時間 30 2.2.2.8後養護齡期 32 2.2.3 二氧化碳吸收量分析方法 33 2.3 二氧化碳養護混凝土之微觀性質 36 2.3.1 熱重分析法(TGA/DTG) 36 2.3.2 X射線繞射(XRD) 38 2.3.3 壓汞法(MIP) 40 2.3.4 掃描式電子顯微鏡SEM 44 第三章、 實驗設計與分析方法 47 3.1 實驗內容與架構 47 3.2 試驗材料 48 3.3 試驗儀器 52 3.4 試體拌合與澆置 57 3.4.1 水泥砂漿拌合與澆置 57 3.4.2 混凝土拌合與澆置 57 3.5 試驗參數 58 3.6 實驗設計 60 3.6.1 水泥砂漿於不同水灰比下模內水化與預處理時間對碳化養護之影響試驗 61 3.6.1.1抗壓強度試驗 61 3.6.1.2碳化深度試驗 63 3.6.2 混凝土於不同水灰比下模內水化與預處理時間對碳化養護之影響試驗 63 3.6.2.1抗壓強度試驗 63 3.7 實驗分析方法 64 3.7.1 二氧化碳吸收量及碳化度 64 3.7.2 抗壓強度試驗 65 3.7.3 碳化深度試驗 66 第四章、 試驗結果分析與討論 67 4.1 水泥砂漿於不同水灰比下模內水化與預處理時間對碳化養護之影響試驗結果 67 4.1.1 水灰比0.4 67 4.1.2 水灰比0.5 76 4.1.3 水灰比0.6 84 4.2 水泥砂漿碳化深度試驗結果 91 4.2.1 模內水化時間5小時 92 4.2.2 模內水化11小時 95 4.2.3 模內水化24小時 98 4.3 混凝土於不同水灰比下模內水化與預處理時間對碳化養護之影響試驗結果 101 4.3.1 水灰比0.4 101 4.3.2 水灰比0.5 107 4.3.3 水灰比0.6 111 第五章、 結論與建議 117 5.1 結論 117 5.2 建議 120 第六章、 參考文獻 122 | - |
dc.language.iso | zh_TW | - |
dc.title | 不同模內水化程度及預處理時間對混凝土碳封存之影響 | zh_TW |
dc.title | Study on the Effect of In-mold Hydration and Pre-conditiong Time on Concrete Carbon Sequestration | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖文正;胡瑋秀;楊仲家 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Cheng Liao;Wei-Hsiu Hu;Chung-Chia Yang | en |
dc.subject.keyword | 全球暖化,碳化養護參數,碳封存,水泥砂漿,混凝土, | zh_TW |
dc.subject.keyword | global warning,carbonation curing parameters,carbon capture and storage,mortar,concrete, | en |
dc.relation.page | 125 | - |
dc.identifier.doi | 10.6342/NTU202402870 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 6.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。