請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94362完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫在弘 | zh_TW |
| dc.contributor.advisor | Tzai-Hung Wen | en |
| dc.contributor.author | 游孟純 | zh_TW |
| dc.contributor.author | Meng-Chun You | en |
| dc.date.accessioned | 2024-08-15T17:03:07Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Agrawal, K. P., Garg, S., Sharma, S., and Patel, P. (2016). Development and validation of optics based spatio-temporal clustering technique. Information Sciences, 369:388–401.
Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. (1999). Optics: ordering points to identify the clustering structure. SIGMOD Rec., 28(2):49–60. Baker, R. D. (1996). Testing for space-time clusters of unknown size. Journal of Applied Statistics, 23(5):543–554. doi: 10.1080/02664769624080. Birant, D. and Kut, A. (2007). St-dbscan: An algorithm for clustering spatial–temporal data. Data Knowledge Engineering, 60(1):208–221. Brunsdon, C., Corcoran, J., and Higgs, G. (2007). Visualising space and time in crime patterns: A comparison of methods. Computers, Environment and Urban Systems, 31(1):52–75. Diggle, P., Chetwynd, A., Häggkvist, R., and Morris, S. (1995). Second-order analysis of space-time clustering. Statistical Methods in Medical Research, 4(2):124–136. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, page 226–231. AAAI Press. Izakian, H., Pedrycz, W., and Jamal, I. (2013). Clustering spatiotemporal data: An augmented fuzzy c-means. IEEE Transactions on Fuzzy Systems, 21(5):855–868. Jacquez, G. M. (1996). A k nearest neighbour test for space–time interaction. Statistics in Medicine, 15(18):1935–1949. Kim, Y. S., Hae, Y., and Intaek (2012). Spatio-temporal gaussian mixture model for background modeling. In 2012 IEEE International Symposium on Multimedia, pages 360–363. Knox, E. G. and Bartlett, M. S. (1964). The detection of space-time interactions. Journal of the Royal Statistical Society. Series C (Applied Statistics), 13(1):25–30. Kuo, F.-Y., Wen, T.-H., and Sabel, C. E. (2018). Characterizing diffusion dynamics of disease clustering: A modified space–time dbscan (mst-dbscan) algorithm. Annals of the American Association of Geographers, 108(4):1168–1186. Lamb, D. S., Downs, J., and Reader, S. (2020). Space-time hierarchical clustering for identifying clusters in spatiotemporal point data. ISPRS International Journal of Geo-Information, 9(2):85. Levin, S. A. (1992). The problem of pattern and scale in ecology: The robert h. macarthur award lecture. Ecology, 73(6):1943–1967. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA. Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2_Part_1):209–220. Nakaya, T. and Yano, K. (2010). Visualising crime clusters in a space-time cube: An exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Transactions in GIS, 14(3):223–239. O’sullivan, D. and Unwin, D. (2003). Geographic information analysis. John Wiley Sons. Rhys, H. (2020). Machine Learning with R, the tidyverse, and mlr. Simon and Schuster. Silverman, B. W. (2018). Density estimation for statistics and data analysis. Routledge. Song, J., Wen, R., and Yan, W. (2018). Identification of traffic accident clusters using kulldorff's space-time scan statistics. In 2018 IEEE International Conference on Big Data (Big Data), pages 3162–3167. Stauffer, C. and Grimson, W. E. L. (1999). Adaptive background mixture models for real-time tracking. In Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), volume 2, pages 246–252 Vol. 2. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301):236–244. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94362 | - |
| dc.description.abstract | 點事件之時空群聚代表事件之發生熱區,過去之時空群聚演算法僅能識別出密度值高於特定閾值之群聚範圍,無法識別出具備密度差異與階層性之時空群聚結構。本研究基於 OPTICS 演算法,發展 HST-OPTICS 演算法,此演算法可以用來識別點事件階層性時空群聚之密度斷層,進而獲取完整之時空群聚結構。密度斷層發生在具有密度明顯差異的時空邊界,邊界內的範圍可識別為群聚範圍,範圍內的時空密度與範圍外的時空度具有極劇差異。所得之時空群聚除了具排除雜訊點、總群聚數非經給定、群聚範圍明確以及形狀任意之特性,由群聚結構亦可識別出過去演算法無法得知的密度差異與群聚階層關係。本研究發展 HST-OPTICS 演算法時,放寬 OPTICS 演算法中陡度的定義,彈性地查找密度斷層範圍並進一步切分出時空群聚結構,並模擬群聚數、階層關係不同之多組群聚結構,以驗證演算法可以找出過去時空群聚演算法無法有效識別之階層性時空群聚結構。研究結果表示,HST-OPTICS 可以有效識別出重疊且具有高低密度差異之群聚結構、多個群聚隸屬於同一群聚的階層性時空群聚結構,以及時空群聚範圍變動且具備階層性關係的時空群聚結構。未來研究可以善用此演算法於各領域之實務應用中,探討合適之參數設定方式,並著重階層性時空群聚驗證指標設計以及演算法效能提高。 | zh_TW |
| dc.description.abstract | The HST-OPTICS algorithm improves upon previous spatio-temporal clustering methods by identifying density faults in hierarchical clusters. This approach reveals complete clustering structures, including density differences and hierarchical relationships previously undetectable. The algorithm relaxes the OPTICS steepness definition, allowing for flexible identification of density fault ranges. It can detect overlapping clusters with varying density, hierarchical structures where multiple clusters belong to one cluster, and clustering structures with varying spatial ranges. HST-OPTICS produces clusters with noise exclusion, an undefined total count, clear boundaries, and arbitrary shapes. Simulations have verified its effectiveness in identifying complex hierarchical spatio-temporal clustering structures. Future work could explore practical applications, the design of verification metrics, and efficiency improvements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:03:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T17:03:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 章節介紹 3 第二章 文獻回顧 5 2.1 時空群聚演算法 5 2.2 時空鄰近定義 6 2.3 基於密度之時空群聚演算法 8 2.4 綜合評析 9 2.4.1 密度各異群聚識別問題 9 2.4.2 階層性時空群聚識別問題 10 2.4.3 密度斷層識別彈性問題 11 第三章 研究方法 12 3.1 研究流程 12 3.2 基於密度之群聚演算法 12 3.2.1 DBSCAN 13 3.2.2 OPTICS 14 3.3 研提演算法 15 3.3.1 時空可及圖 16 3.3.2 時空密度斷層與群聚識別 20 3.4 演算法成效驗證 21 3.4.1 模擬資料驗證 22 3.4.2 密度斷層敏感度分析 25 第四章 研究結果 27 4.1 時空群聚結果比較 27 4.2 密度斷層敏感度分析結果 30 第五章討論 31 5.1 時空群聚結構與密度斷層 31 5.2 參數設定 31 第六章結論 34 參考文獻 36 附錄 A — 模擬資料生成規則 39 A.1 模擬群聚分布範圍與密度 39 附錄 B — 群聚查找相關圖表 40 B.1 HST-OPTICS 敏感度分析參數設定 40 B.2 HST-OPTICS 可及圖 42 B.3 HST-OPTICS 群聚圖 46 B.4 HST-OPTICS 群聚結構圖 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 階層群聚 | zh_TW |
| dc.subject | OPTICS | zh_TW |
| dc.subject | 空間分析 | zh_TW |
| dc.subject | 時空群聚演算法 | zh_TW |
| dc.subject | 密度斷層 | zh_TW |
| dc.subject | spatio-temporal clustering algorithm | en |
| dc.subject | density faults | en |
| dc.subject | hierarchical cluster | en |
| dc.subject | spatial analysis | en |
| dc.subject | OPTICS | en |
| dc.title | 以 OPTICS 演算法識別階層性密度差異的時空群聚結構 | zh_TW |
| dc.title | An OPTICS-based Algorithm for Identifying Spatio-Temporal Density Faults in Hierarchical Clustering Structures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡政安;余清祥 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-An Tsai;Ching-Syang Yue | en |
| dc.subject.keyword | 時空群聚演算法,階層群聚,密度斷層,OPTICS,空間分析, | zh_TW |
| dc.subject.keyword | spatio-temporal clustering algorithm,hierarchical cluster,density faults,OPTICS,spatial analysis, | en |
| dc.relation.page | 50 | - |
| dc.identifier.doi | 10.6342/NTU202400655 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
