請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94346完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | zh_TW |
| dc.contributor.advisor | Jaw-Lin Wang | en |
| dc.contributor.author | 林子平 | zh_TW |
| dc.contributor.author | Zi-Ping Lin | en |
| dc.date.accessioned | 2024-08-15T16:57:12Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | 1. Zhou, Z., et al., Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. Int J Mol Sci, 2023. 24(3).
2. Rothenberg, J.B., et al., The Role of Low-Intensity Pulsed Ultrasound on Cartilage Healing in Knee Osteoarthritis: A Review. PM&R, 2017. 9(12): p. 1268-1277. 3. Uddin, S.M.Z., et al., Low-Intensity Continuous Ultrasound Therapies—A Systematic Review of Current State-of-the-Art and Future Perspectives. J Clin Med, 2021. 10(12). 4. Xia, P., et al., Low-Intensity Pulsed Ultrasound Treatment at an Early Osteoarthritis Stage Protects Rabbit Cartilage From Damage via the Integrin/Focal Adhesion Kinase/Mitogen-Activated Protein Kinase Signaling Pathway. J Ultrasound Med, 2015. 34(11): p. 1991-9. 5. Korstjens, C.M., et al., Low-intensity pulsed ultrasound affects human articular chondrocytes in vitro. Med Biol Eng Comput, 2008. 46(12): p. 1263-70. 6. Palanisamy, P., et al., Low-Intensity Pulsed Ultrasound Stimulation for Bone Fractures Healing: A Review. J Ultrasound Med, 2022. 41(3): p. 547-563. 7. Shamos, M.H. and L.S. Lavine, Piezoelectricity as a Fundamental Property of Biological Tissues. Nature, 1967. 213(5073): p. 267-269. 8. Lim, J., et al., Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochem Biophys Rep, 2022. 30: p. 101265. 9. ter Haar, G., Therapeutic ultrasound. European Journal of Ultrasound, 1999. 9(1): p. 3-9. 10. Quadri, S.A., et al., High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus, 2018. 44(2): p. E16. 11. Uddin, S.M., et al., Chondro-protective effects of low intensity pulsed ultrasound. Osteoarthritis Cartilage, 2016. 24(11): p. 1989-1998. 12. Jang, K.W., et al., Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway. Ultrasound Med Biol, 2014. 40(6): p. 1177-86. 13. Naito, K., et al., Low-intensity pulsed ultrasound (LIPUS) increases the articular cartilage type II collagen in a rat osteoarthritis model. J Orthop Res, 2010. 28(3): p. 361-9. 14. Gurkan, I., et al., Modification of osteoarthritis in the guinea pig with pulsed low-intensity ultrasound treatment. Osteoarthritis Cartilage, 2010. 18(5): p. 724-33. 15. Zhou, X.-Y., et al., Effects of Low-Intensity Pulsed Ultrasound on Knee Osteoarthritis: A Meta-Analysis of Randomized Clinical Trials. BioMed Research International, 2018. 2018(1): p. 7469197. 16. Noriega, S., et al., Intermittent applications of continuous ultrasound on the viability, proliferation, morphology, and matrix production of chondrocytes in 3D matrices. Tissue Eng, 2007. 13(3): p. 611-8. 17. Sahu, N., et al., Continuous Low-Intensity Ultrasound Promotes Native-to-Native Cartilage Integration. Tissue Eng Part A, 2019. 25(21-22): p. 1538-1549. 18. Meng, Y., K. Hynynen, and N. Lipsman, Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nature Reviews Neurology, 2021. 17(1): p. 7-22. 19. Papadopoulos, E.S. and R. Mani, The Role of Ultrasound Therapy in the Management of Musculoskeletal Soft Tissue Pain. Int J Low Extrem Wounds, 2020. 19(4): p. 350-358. 20. Baker, K.G., V.J. Robertson, and F.A. Duck, A Review of Therapeutic Ultrasound: Biophysical Effects. Physical Therapy, 2001. 81(7): p. 1351-1358. 21. Fyfe, M.C. and M.I. Bullock, Therapeutic Ultrasound: Some Historical Background and Development in Knowledge of its Effect on Healing. Australian Journal of Physiotherapy, 1985. 31(6): p. 220-224. 22. Trolier-McKinstry, S., Crystal Chemistry of Piezoelectric Materials, in Piezoelectric and Acoustic Materials for Transducer Applications, A. Safari and E.K. Akdoğan, Editors. 2008, Springer US: Boston, MA. p. 39-56. 23. Bhagabati, P. and M. Rahaman, 11 - Structure-property relationship in polymer-graphene composites, in Polymer Nanocomposites Containing Graphene, M. Rahaman, et al., Editors. 2022, Woodhead Publishing. p. 299-315. 24. Fukada, E. and I. Yasuda, On the Piezoelectric Effect of Bone. Journal of the Physical Society of Japan, 1957. 12(10): p. 1158-1162. 25. Fukada, E. and I. Yasuda, Piezoelectric Effects in Collagen. Japanese Journal of Applied Physics, 1964. 3(2): p. 117. 26. Lee, B.Y., et al., Virus-based piezoelectric energy generation. Nature Nanotechnology, 2012. 7(6): p. 351-356. 27. Guerin, S., et al., Control of piezoelectricity in amino acids by supramolecular packing. Nature Materials, 2018. 17(2): p. 180-186. 28. Zheng, T., et al., Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B, 2020. 8(45): p. 10221-10256. 29. Kwon, J. and H. Cho, Piezoelectric Heterogeneity in Collagen Type I Fibrils Quantitatively Characterized by Piezoresponse Force Microscopy. ACS Biomater Sci Eng, 2020. 6(12): p. 6680-6689. 30. Chu, Y.-C., et al., Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. The Journal of the Acoustical Society of America, 2020. 148(1): p. EL58-EL64. 31. Ricotti, L., et al., Ultrasound Stimulation of Piezoelectric Nanocomposite Hydrogels Boosts Chondrogenic Differentiation in Vitro, in Both a Normal and Inflammatory Milieu. ACS Nano, 2024. 18(3): p. 2047-2065. 32. Chen, H., et al., Molecular Mechanisms of Chondrocyte Proliferation and Differentiation. Front Cell Dev Biol, 2021. 9: p. 664168. 33. Rédini, F., Structure et régulation de l'expression des protéoglycanes du cartilage articulaire. Pathologie Biologie, 2001. 49(4): p. 364-375. 34. Dodds, G.S., Row formation and other types of arrangement of cartilage cells in endochondral ossification. The Anatomical Record, 1930. 46(4): p. 385-399. 35. Yuan, X., R. Serra, and S. Yang, Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton. Annals of the New York Academy of Sciences, 2014. 1335. 36. McGlashan, S.R., et al., Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol, 2007. 26(4): p. 234-46. 37. Subramanian, A., G. Budhiraja, and N. Sahu, Chondrocyte primary cilium is mechanosensitive and responds to low-intensity-ultrasound by altering its length and orientation. Int J Biochem Cell Biol, 2017. 91(Pt A): p. 60-64. 38. Urban, J.P.G., THE CHONDROCYTE: A CELL UNDER PRESSURE. Rheumatology, 1994. 33(10): p. 901-908. 39. Heng, B.C., et al., The bioelectrical properties of bone tissue. Animal Model Exp Med, 2023. 6(2): p. 120-130. 40. Wu, Q.-q. and Q. Chen, Mechanoregulation of Chondrocyte Proliferation, Maturation, and Hypertrophy: Ion-Channel Dependent Transduction of Matrix Deformation Signals. Experimental Cell Research, 2000. 256(2): p. 383-391. 41. Barrett-Jolley, R., et al., The emerging chondrocyte channelome. Front Physiol, 2010. 1: p. 135. 42. Li, X., et al., Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel. Journal of Bone and Mineral Metabolism, 2014. 32(4): p. 367-377. 43. Mancilla, E.E., et al., L-type calcium channels in growth plate chondrocytes participate in endochondral ossification. J Cell Biochem, 2007. 101(2): p. 389-98. 44. Shao, Y., M. Alicknavitch, and M.C. Farach-Carson, Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (α1C) and T-type Cav3.2 (α1H) subunits during mouse bone development. Developmental Dynamics, 2005. 234(1): p. 54-62. 45. Matta, C., R. Zákány, and A. Mobasheri, Voltage-Dependent Calcium Channels in Chondrocytes: Roles in Health and Disease. Current Rheumatology Reports, 2015. 17(7): p. 43. 46. Chen, C.-C. and C.-W. Wong, Neurosensory mechanotransduction through acid-sensing ion channels. Journal of Cellular and Molecular Medicine, 2013. 17(3): p. 337-349. 47. Wang, X. and X. Li, Regulation of pain neurotransmitters and chondrocytes metabolism mediated by voltage-gated ion channels: A narrative review. Heliyon, 2023. 9(7): p. e17989. 48. Zhang, K., et al., Mechanosensory and mechanotransductive processes mediated by ion channels in articular chondrocytes: Potential therapeutic targets for osteoarthritis. Channels, 2021. 15(1): p. 339-359. 49. Izumi, M., et al., Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci, 2012. 19(1): p. 77. 50. Speed, C.A., Therapeutic ultrasound in soft tissue lesions. Rheumatology, 2001. 40(12): p. 1331-1336. 51. Tanaka, E., et al., Low-Intensity Pulsed Ultrasound in Dentofacial Tissue Engineering. Annals of Biomedical Engineering, 2015. 43(4): p. 871-886. 52. Harle, J., et al., Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound in Medicine & Biology, 2001. 27(4): p. 579-586. 53. Xu, M., et al., Review on experimental study and clinical application of low-intensity pulsed ultrasound in inflammation. Quant Imaging Med Surg, 2021. 11(1): p. 443-462. 54. Erggelet, C. and P. Vavken, Microfracture for the treatment of cartilage defects in the knee joint - A golden standard? J Clin Orthop Trauma, 2016. 7(3): p. 145-52. 55. Steadman, J.R., W.G. Rodkey, and K.K. Briggs, Microfracture: Its History and Experience of the Developing Surgeon. Cartilage, 2010. 1(2): p. 78-86. 56. Matsuoka, M., et al., An Articular Cartilage Repair Model in Common C57Bl/6 Mice. Tissue Eng Part C Methods, 2015. 21(8): p. 767-72. 57. Wilson, K., et al., Analysis of Association between Morphometric Parameters of Growth Plate and Bone Growth of Tibia in Mice and Humans. Cartilage, 2021. 13(2_suppl): p. 315s-325s. 58. Henríquez., R., et al., Effects of Underwater Lipus on the Morphohistology of the CF-1 Mice Growth Plate in Late Lactation Stage. Int. J. Morphol., 2017. 59. Abramovich, A., Effect of Ultrasound on the Tibia of the Young Rat. Journal of Dental Research, 1970. 49(5): p. 1182-1182. 60. Lyon, R., X.C. Liu, and J. Meier, The effects of therapeutic vs. high‐intensity ultrasound on the rabbit growth plate. Journal of Orthopaedic Research, 2003. 21(5): p. 865-871. 61. Barreto, A.A., et al., Efeitos do ultra-som terapêutico sobre o crescimento longitudinal do fêmur e da tíbia em ratos. Acta Ortopédica Brasileira, 2011. 19. 62. Baghdadi, S., et al., Effects of Therapeutic Ultrasound on Growth Plates: A Systematic Review. Pediatric Physical Therapy, 2022. 34(1): p. 2-8. 63. Clark, R.B., et al., Voltage-gated K+ currents in mouse articular chondrocytes regulate membrane potential. Channels (Austin), 2010. 4(3): p. 179-91. 64. Suzuki, Y., et al., K(+) and Ca(2+) Channels Regulate Ca(2+) Signaling in Chondrocytes: An Illustrated Review. Cells, 2020. 9(7). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94346 | - |
| dc.description.abstract | 壓電刺激可以誘導體外培養的軟骨細胞重新排列 (Lim et al., 2022)。本研究欲針對先前觀察到的現象做進一步探討。首先,壓電刺激是否也能影響小鼠關節軟骨細胞?其次,壓電刺激能否促進小鼠軟骨損傷的修復?第三,細胞分布是否與1 MHz或3 MHz超音波刺激形成的壓電場分布相關?最後,軟骨細胞是通過電壓門控離子通道還是酸敏感離子通道(ASIC3)調控壓電刺激?
在小鼠刺激實驗中,我們使用低強度脈衝超音波刺激關節軟骨產生壓電刺激;在細胞實驗中壓電刺激由實驗室開發的超音波刺激裝置mini-LIC產生。軟骨細胞取自崽鼠關節軟骨並種植在石英片上,使用低強度連續超音波在一天內進行四次壓電刺激,每次刺激5分鐘,刺激後一小時進行免疫螢光染色程序。為了研究刺激頻率對細胞分布的影響,本研究比較了1MHz和3MHz超音波刺激下的細胞分布。我們使用電壓門控鈣離子通道抑制劑和電壓門控鉀離子通道抑制劑,以及ASIC3+/+與ASIC3-/-崽鼠軟骨細胞進行通道測試實驗。 結果顯示,壓電刺激能夠誘導體內和體外培養之軟骨細胞分布改變,並加速關節軟骨損傷的恢復,且細胞分布間距與超音波頻率成反比,壓電刺激後初級纖毛方向改變,在抑制電壓門控鈣離子通道和電壓門控鉀離子通道後,壓電刺激對纖毛的影響受到抑制,而在ASIC3-/-的崽鼠軟骨細胞中仍然有觀察到壓電刺激對纖毛的改變。 壓電刺激同時改變纖毛方向與影響細胞分布,電壓門控鈣離子通道和電壓門控鉀離子通道參與調控纖毛的改變。本研究的發現可能對組織工程和再生醫學具有重要意義。 | zh_TW |
| dc.description.abstract | Piezoelectric stimulation can induce chondrocyte cell rearrangement (Lim et al., 2022). This study aims to answer several questions arising from these previous observations. First, can cell rearrangement also be observed in mouse articular cartilage upon piezoelectric stimulation? Second, does piezoelectric stimulation facilitate the repair of cartilage injury? Third, are cell distributions strictly correlated to the nodes of piezoelectrical field upon either 1 MHz or 3 MHz ultrasound stimulation? Finally, is the piezoelectric stimulation transduced by voltage-gated ion channels or acid-sensing ion channel (ASIC3)?
In vivo, we used low-intensity pulsed ultrasound (LIPUS) to generate piezoelectric stimulation in articular cartilage. In vitro, piezoelectric stimulation was provided by mini-LIC, an ultrasound stimulation chamber developed in the laboratory. The stimulation was low-intensity continuous ultrasound (LICUS) and last for 5 minutes. In the experiment, chondrocytes were isolated from the articular cartilage of mice and seeded on quartz coverslips. To investigate the differences influenced by the frequency of stimulation, we compared the distances between the cell distributions formed under 3MHz and 1MHz ultrasound stimulation. We tested ASIC3 by using knockout cells. We tested voltage-gated calcium channel (CaV3.2) and voltage-gated potassium channel (KV1.6) by using chemical inhibitors to block these channels. Results showed that the stimulation could influence cell distribution both in vivo and in vitro. It could also accelerate the recovery of injuries made in articular cartilage. We discovered that the distances between the cell distributions were inversely correlated with the ultrasound frequencies. The stimulation may be mediated by CaV3.2 and KV1.6, but not by ASIC3. Piezoelectric stimulation changes the orientation of cilia and cell distribution, which may impact on chondrocyte proliferation and regeneration. This process is possibly mediated via VGCC and KV. This finding may have implications for tissue engineering and regenerative medicine. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:57:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:57:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 I 致謝 II 摘要 III Abstract IV 發表著作 VI 第一章 緒論 1 1.1研究背景 1 1.2超音波簡介 1 1.3壓電效應簡介 4 1.4軟骨組織簡介 4 1.5軟骨細胞內離子通道簡介 5 1.6研究目的 7 第二章 材料與方法 9 2.1研究方法介紹 9 2.2小鼠膝軟骨刺激實驗 10 2.3小鼠膝軟骨損傷治療實驗 11 2.3.1小鼠膝軟骨損傷模型 11 2.3.2超音波治療方法 12 2.4小鼠生長板刺激實驗 13 2.5軟骨細胞刺激實驗 14 2.5.1軟骨細胞培養 14 2.5.2刺激裝置介紹 15 2.5.3刺激裝置聲強度量測 16 2.5.4刺激裝置電場模擬 17 2.5.5刺激裝置溫度量測 19 2.5.6實驗方法 20 2.5.7生物檢測法-免疫螢光染色 21 2.6通道測試實驗 24 2.6.1酸敏感離子通道測試 (Acid Sensing Ion Channel) 24 2.6.2電壓門控鈣離子通道測試 (Voltage-Gated Calcium Channel) 25 2.6.3電壓門控鉀離子通道測試 (Voltage-Gated Potassium Channel) 26 第三章 實驗結果 28 3.1小鼠膝軟骨刺激實驗結果 28 3.1.1小鼠膝軟骨細胞分布分析 28 3.1.2 ASIC3-/-小鼠膝軟骨細胞分布分析 30 3.1.3小鼠膝軟骨細胞數量分析 32 3.2小鼠膝軟骨損傷治療實驗結果 32 3.2.1小鼠膝軟骨損傷模型 32 3.2.2超音波治療結果 34 3.3小鼠生長板刺激實驗結果 34 3.3.1小鼠生長板刺激實驗組織切片結果 34 3.3.2小鼠生長板厚度分析 36 3.3.3小鼠生長板完整柱狀比例分析 38 3.3.4小鼠生長板整齊柱狀比例分析 39 3.3.5小鼠生長板細胞數量分析 39 3.4軟骨細胞刺激實驗 40 3.4.1軟骨細胞刺激實驗結果 40 3.4.2細胞分布間距分析 42 3.4.3初級纖毛出現率分析 43 3.4.4初級纖毛方向分析 45 3.5通道測試實驗 46 3.5.1酸敏感離子通道測試結果 46 3.5.2電壓門控鈣離子通道測試結果 49 3.5.3電壓門控鉀離子通道測試結果 51 第四章 討論 53 4.1小鼠膝軟骨損傷治療實驗討論 53 4.2小鼠生長板刺激實驗討論 53 4.3通道測試實驗討論 55 第五章 結論 56 5.1低強度超音波與壓電刺激對軟骨組織的影響 56 5.2 VGCC與KV調控壓電刺激對纖毛分布的影響 56 第六章 未來展望 58 6.1小鼠膝軟骨刺激實驗 58 6.2小鼠膝軟骨損傷治療實驗 58 6.3小鼠生長板刺激實驗 58 6.4通道測試實驗 59 第七章 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電刺激 | zh_TW |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | 關節軟骨 | zh_TW |
| dc.subject | 軟骨細胞 | zh_TW |
| dc.subject | 電壓門控鈣離子通道 | zh_TW |
| dc.subject | 電壓門控鉀離子通道 | zh_TW |
| dc.subject | 酸敏感離子通道 | zh_TW |
| dc.subject | low-intensity ultrasound | en |
| dc.subject | acid-sensing ion channel | en |
| dc.subject | voltage-gated potassium channel | en |
| dc.subject | voltage-gated calcium channel | en |
| dc.subject | chondrocyte | en |
| dc.subject | articular cartilage | en |
| dc.subject | piezoelectric stimulation | en |
| dc.title | 壓電刺激對軟骨組織及軟骨細胞極性的影響 | zh_TW |
| dc.title | Effects of Piezoelectric Stimulation on Articular Cartilage and Chondrocyte Cell Polarity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳志成;吳爵宏;趙本秀 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Cheng Chen;Chueh-Hung Wu;Pen-Hsiu Grace Chao | en |
| dc.subject.keyword | 壓電刺激,低強度超音波,關節軟骨,軟骨細胞,電壓門控鈣離子通道,電壓門控鉀離子通道,酸敏感離子通道, | zh_TW |
| dc.subject.keyword | piezoelectric stimulation,low-intensity ultrasound,articular cartilage,chondrocyte,voltage-gated calcium channel,voltage-gated potassium channel,acid-sensing ion channel, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202403418 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
