Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳泓熹zh_TW
dc.contributor.advisorSteven Wuen
dc.contributor.author吳昱漢zh_TW
dc.contributor.authorYu-Han Wuen
dc.date.accessioned2024-08-15T16:53:47Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationAghaei, M., Gandelli, A., Grimaccia, F., Leva, S., & Zich, R. E. (2015, June). IR real-time analyses for PV system monitoring by digital image processing techniques. In 2015 international conference on event-based control, communication, and signal processing (ebccsp), 1-6
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical image analysis using convolutional neural networks: A review. Journal of Medical Systems, 42(11), 226. https://doi.org/10.1007/s10916-018-1088-1
Arteta, C., Lempitsky, V., Noble, J. A., & Zisserman, A. (2016). Detecting overlapping instances in microscopy images using extremal region trees. Medical Image Analysis, 27, 3-16. https://doi.org/https://doi.org/10.1016/j.media.2015.03.002
Atzberger, C. (2013). Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sensing, 5(2), 949-981
Aziz, I. A., Ismail, M. J., Haron, N. S., & Mehat, M. (2008, August). Remote monitoring using sensor in greenhouse agriculture. In 2008 international symposium on information technology Vol. 4, 1-8
Bao, P., Lei, Z., & Xiaolin, W. (2005). Canny edge detection enhancement by scale multiplication. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1485-1490. https://doi.org/10.1109/TPAMI.2005.173
Chandel, R., & Gupta, G. (2013). Image filtering algorithms and techniques: A review. International Journal of Advanced Research in Computer Science and Software Engineering, 3(10).
D’Urso, P., De Giovanni, L., & Massari, R. (2021). Trimmed fuzzy clustering of financial time series based on dynamic time warping. Annals of Operations Research, 299(1), 1379-1395. https://doi.org/10.1007/s10479-019-03284-1
Dai, W., Na, J., Huang, N., Hu, G., Yang, X., Tang, G., Xiong, L., & Li, F. (2020). Integrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images. International Journal of Geographical Information Science, 34(3), 484-503. https://doi.org/10.1080/13658816.2019.1650363
Deng, G., & Cahill, L. W. (1993, October). An adaptive Gaussian filter for noise reduction and edge detection. In 1993 IEEE conference record nuclear science symposium and medical imaging conference, 1615-1619
Devkota, B., Alsadoon, A., Prasad, P. W. C., Singh, A. K., & Elchouemi, A. (2018). Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction. Procedia Computer Science, 125, 115-123. https://doi.org/https://doi.org/10.1016/j.procs.2017.12.017
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2). Springer.
Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2004, September). Effect of leaf area on tomato yield. In International Conference on Sustainable Greenhouse Systems-Greensys2004 691, 43-50.
Hocenski, Z., Vasilic, S., & Hocenski, V. (2006, November). Improved canny edge detector in ceramic tiles defect detection. In IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, 3328-3331
Islam, S. T., Masud, M. A., Rahaman, M. A. U., & Rabbi, M. M. H. (2019, December). Plant leaf disease detection using mean value of pixels and canny edge detector. In 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), 1-6
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van der Laak, J. A. W. M., van Ginneken, B., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88. https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
Jeong, Y. S., Kim, S. J., & Jeong, M. K. (2008). Automatic identification of defect patterns in semiconductor wafer maps using spatial correlogram and dynamic time warping. IEEE Transactions on Semiconductor manufacturing, 21(4), 625-637.
Lowe, A., Harrison, N., & French, A. P. (2017). Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13(1), 80. https://doi.org/10.1186/s13007-017-0233-z
Ortiz, A., & Oliver, G. (2006). On the use of the overlapping area matrix for image segmentation evaluation: A survey and new performance measures. Pattern Recognition Letters, 27(16), 1916-1926. https://doi.org/https://doi.org/10.1016/j.patrec.2006.05.002
Parthasarathy, G., Ramanathan, L., Anitha, K., & Justindhas, Y. (2019). Predicting source and age of brain tumor using canny edge detection algorithm and threshold technique. Asian Pacific journal of cancer prevention: APJCP, 20(5), 1409.
Sahoo, P. K., Soltani, S., & Wong, A. K. C. (1988). A survey of thresholding techniques. Computer Vision, Graphics, and Image Processing, 41(2), 233-260. https://doi.org/https://doi.org/10.1016/0734-189X(88)90022-9
Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1), 43-49. https://doi.org/10.1109/TASSP.1978.1163055
Salvador, S., & Chan, P. (2007). Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 11(5), 561-580.
Tmušić, G., Manfreda, S., Aasen, H., James, M. R., Gonçalves, G., Ben-Dor, E., Brook, A., Polinova, M., Arranz, J. J., Mészáros, J., Zhuang, R., Johansen, K., Malbeteau, Y., de Lima, I. P., Davids, C., Herban, S., & McCabe, M. F. (2020). Current practices in UAS-based environmental monitoring. Remote Sensing, 12(6), 1001.
Vakanski, A., Mantegh, I., Irish, A., & Janabi-Sharifi, F. (2012). Trajectory learning for robot programming by demonstration using hidden markov model and Dynamic Time Warping. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(4), 1039-1052. https://doi.org/10.1109/TSMCB.2012.2185694
Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y. X., Chang, Y. F., & Xiang, Q. L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. 2007 IEEE International Symposium on Signal Processing and Information Technology, 11-16.
Xin, G., Ke, C., & Xiaoguang, H. (2012, July). An improved Canny edge detection algorithm for color image. In IEEE 10th International Conference on Industrial Informatics pp. 113–117.
Yu, X., Wang, Z., Wang, Y., & Zhang, C. (2021). Edge detection of agricultural products based on morphologically improved canny algorithm. Mathematical Problems in Engineering, 2021(1), 6664970.
Zaborowicz, M., Boniecki, P., Koszela, K., Przybylak, A., & Przybył, J. (2017). Application of neural image analysis in evaluating the quality of greenhouse tomatoes.Scientia Horticulturae, 218, 222-229. https://doi.org/https://doi.org/10.1016/j.scienta.2017.02.001
Zelitch, I. (1982). The close relationship between net photosynthesis and crop yield. Bioscience, 32(10), 796-802.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94338-
dc.description.abstract隨著科技的進步,影像分析技術在農業領域受到了廣泛的關注。許多農業專家和研究人員認識到,利用影像可以更有效率的監測田間作物的生長情況,觀察植株外觀、或是反射回來的光波都可以有效的獲取田間資訊、即時去進行適當的措施從而提高作物產量。然而,有些影像是從上向下拍攝的,如果作物密度大或葉片較大,下層葉片很容易被遮蔽,這使得專家難以準確評估下層葉片的生長狀況。為了解決這個問題,本研究開發了一個工作流程來估算葉片重疊面積,使用OpenCV影像處理工具進行影像前處理、影像分割和物體輪廓偵測。通過計算葉片輪廓的梯度值,瞭解葉片輪廓變化的特性,例如曲率和邊界形狀的變化。並使用DTW(Dynamic Time Warping)動態時間校正演算法計算不同葉片梯度之間的相似距離,利用影像中的輪廓梯度訊息,將部分葉片對應回最相似的單一葉片位置,進而推估被遮蔽葉片的面積。隨後,應用統計分析方法來驗證推估出的葉片面積是否與真實值相似。根據統計分析結果,將得到的數據利用對數轉,換得到該方法利用平均數所得到的整體MAPE平均值為6.39%,平均歸一化均方根誤差(NRMSE)為0.10%。在刪除極端值後,平均MAPE降低到4.60%,平均NRMSE降低到0.06%。這些結果表明,刪除極端值提高了葉面積估算的準確性。此方法不僅可以讓農業專家和農民更好地了解田間植物的生長狀況,從而做出更精確的管理決策,未來可將這一方法應用於各種物體和場景,例如環境監測和自然資源管理。通過影像分析技術,我們可以更準確地瞭解不同場景中物體的分佈和特徵,從而制定更有效的管理策略和決策。zh_TW
dc.description.abstractAs technology advances, image analysis techniques have gained widespread attention in agriculture. Many agricultural experts and researchers have recognized that using images can more accurately and efficiently monitor the growth of field crops, thereby increasing crop yields. However, because these images are taken from a top-down perspective, if crop density is high or the leaves are large, the lower leaves are easily overlapped, making it difficult for experts to assess the growth status of the lower leaves accurately. To address this issue, this study developed a workflow to estimate the overlap area of the leaves using a dataset containing both single and overlapping images. This workflow employs OpenCV for image preprocessing, including object edge detection, image segmentation, and object contour detection. By calculating the gradient values of leaf contours, the workflow captures the changes in leaf contour and boundary shape variations. The similarity between contour profiles is calculated for all images in the dataset using the Dynamic Time Warping (DTW) algorithm. This process identifies a contour fragment that closely matches the overlapping leaves and subsequently estimates the overlapped area. Statistical analysis methods are then applied to verify whether the estimated leaf area is similar to the true value. According to the statistical analysis results, the log-transformed Mean Absolute Percentage Error (MAPE) and Normalized Root Mean Square Error (NRMSE) values are as follows: The log mean MAPE for the original performance is 6.39%, and the log mean NRMSE is 0.10%. After removing extreme values, the log mean MAPE decreases to 4.60%, and the log mean NRMSE decreases to 0.06%. These results indicate that removing extreme values improves the accuracy of leaf area estimation.This method allows agricultural experts and farmers to understand the growth status of field plants better, thereby making more precise management decisions. We hope it can also be applied to various objects and scenarios in the future, such as environmental monitoring and natural resource management. Through image analysis techniques, we can more accurately understand the distribution and characteristics of objects in different scenarios, thereby formulating more effective management strategies and decisions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:53:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:53:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment i
摘要 ii
Abstract iii
Table of Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Image Analysis 1
1.2 Preprocesses in Image Analysis 2
1.2.1 Noise Removal: Filtering Techniques 3
1.2.2 Threshold Segmentation 3
1.2.3 Edge Detection 4
1.2.4 Morphological Processing 4
1.3 Previous Research on Overlapping Image 5
1.4 Dynamic Time Warping Algorithm 6
1.5 Research Motivation 8
Chapter 2 Materials and Methods 9
2.1 Leaf Dataset 9
2.2 Image Feature Extraction 13
2.2.1 Leaf Rotating 13
2.2.2 Contour Detection 13
2.2.3 Gradient Calculation 14
2.3 Leaf Area Estimate Process 16
2.3.1 Stage 1: Construct the Reference Set and Overlapping Set by Calculating Gradients for All Leaf Images 16
2.3.2 Stage 2: Estimate the Covered Area for the Overlapping Leaves: Estimate the Missing Area for the Overlapping Leaves 17
2.4 Statistical Analysis and Validation 22
Chapter 3 Result 28
3.1 Result of Preprocessing Image 28
3.1.1 The Image Presented After Denoise and Segmentation 28
3.1.2 Contour and Gradient Calculation 29
3.2 Intermediate Results of the Workflow Process 33
3.2.1 Identify the Boundary Points of the Overlapping Image 33
3.2.2 Gradient Value Corresponds to the Most Similar Partial Results 35
3.2.3 Gradient Corresponds to Contour Points 39
3.3 Results of Statistical Analysis 40
3.3.1 Overlapping Area Estimated Results for One Overlapped Leaf 41
3.3.2 Evaluating the Estimation Performance for Overlapping Leaf Scenarios 43
3.3.3 Consolidated Overlapping Area Predictions 49
Chapter 4 Discussion 54
4.1 Challenges of Computation Time and Object Shape 54
4.2 Impact of Window and Move Parameters on Gradient Calculation and Estimation Accuracy 55
4.3 Limitations in Current Dataset and Key Points Identification 56
4.4 Impact of Radius Parameter on Estimation Accuracy 59
4.5 Analysis of Estimation Results 60
Chapter 5 Conclusion 62
5.1 Future Work 63
References 65
Appendices 68
-
dc.language.isoen-
dc.title輪廓線估計法之探索: 以葉面積預測為例zh_TW
dc.titleExploring the Estimation of Contour Line: Using Leaf Area Prediction as an Exampleen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉力瑜;蔡政安;蔡元卿zh_TW
dc.contributor.oralexamcommitteeLi-Yu Liu;Chen-Aa Tsai;Yuan-Ching Tsaien
dc.subject.keyword影像分析,邊緣偵測,統計分析,作物監測,梯度計算,輪廓識別,動態時間規劃,zh_TW
dc.subject.keywordImage Analysis,Edge Detection,Statistical Analysis,Crop Monitoring,Gradient Calculation,Contour Recognition,Dynamic Time Warping,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202402724-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved