請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94336完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁啟惠 | zh_TW |
| dc.contributor.advisor | Chi-Huey Wong | en |
| dc.contributor.author | 黃彥霖 | zh_TW |
| dc.contributor.author | Yen-Lin Huang | en |
| dc.date.accessioned | 2024-08-15T16:53:08Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | (1) Key Facts About Influenza (Flu). U.S. Centers for Disease Control and Prevention, https://www.cdc.gov/flu/about/keyfacts.htm (accessed 2024 2024 June 28).
(2) Clinical Signs & Symptoms of Influenza. U.S. Department of Health & Human Services, 2021. https://www.cdc.gov/flu/professionals/acip/clinical.htm#print (accessed June 27, 2024. (3) Short, K. R.; Kedzierska, K.; van de Sandt, C. E. Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Front Cell Infect Microbiol 2018, 8, 343. DOI: 10.3389/fcimb.2018.00343 From NLM Medline. (4) Krammer, F.; Smith, G. J. D.; Fouchier, R. A. M.; Peiris, M.; Kedzierska, K.; Doherty, P. C.; Palese, P.; Shaw, M. L.; Treanor, J.; Webster, R. G.; et al. Influenza. Nat Rev Dis Primers 2018, 4 (1), 3. DOI: 10.1038/s41572-018-0002-y From NLM Medline. (5) Palese, P. Influenza: old and new threats. Nat Med 2004, 10 (12 Suppl), S82-87. DOI: 10.1038/nm1141 From NLM Medline. (6) Perdue, M. L.; Nguyen, T. The WHO research agenda for influenza: two years later. Bull World Health Organ 2012, 90 (4), 246. DOI: 10.2471/BLT.11.090175 From NLM Medline. (7) WHO Preferred Product Characteristics for Next-Generation Influenza Vaccines. World Health Organization, 2017. https://iris.who.int/bitstream/handle/10665/258767/9789241512466-eng.pdf?sequence=1 (accessed. (8) Influenza season 2019–2020: early situation assessment. World Health Organization,2019.https://www.ecdc.europa.eu/sites/default/files/documents/influenza-situation-assessment-18-December-2019.pdf (accessed 2024 May, 13). (9) US Flu VE Data for 2019-2020. U.S. Centers for Disease Control and Prevention, December 22, 2020. https://www.cdc.gov/flu/vaccines-work/2019-2020.html (accessed 2024 May 13). (10) Noda, T. Native morphology of influenza virions. Front Microbiol 2011, 2, 269. DOI: 10.3389/fmicb.2011.00269 From NLM PubMed-not-MEDLINE. (11) Suzanne Clancy, P. D. Genetics of the Influenza Virus. Nature Education 1(1):83 2008. (12) S, B. Orthomyxoviruses. University of Texas Medical Branch at Galveston, 1996. https://www.ncbi.nlm.nih.gov/books/NBK8611/ (accessed 2023 August 18). (13) Dadonaite, B.; Gilbertson, B.; Knight, M. L.; Trifkovic, S.; Rockman, S.; Laederach, A.; Brown, L. E.; Fodor, E.; Bauer, D. L. V. The structure of the influenza A virus genome. Nature Microbiology 2019, 4 (11), 1781-1789. DOI: 10.1038/s41564-019-0513-7. (14) Hao, W.; Wang, L.; Li, S. Roles of the Non-Structural Proteins of Influenza A Virus. Pathogens 2020, 9 (10). DOI: 10.3390/pathogens9100812 From NLM PubMed-not-MEDLINE. (15) Peiris., J. S. M. Avian influenza viruses in humans. Revue scientifique et technique (International Office of Epizootics) 2009, 28 (21), pp.161-173. (16) Bouvier, N. M., & Palese, P. . The biology of influenza viruses. Vaccine 2008. DOI: 10.1016/j.vaccine.2008.07.039. (17) Shi, W.; Lei, F.; Zhu, C.; Sievers, F.; Higgins, D. G. A complete analysis of HA and NA genes of influenza A viruses. PLoS One 2010, 5 (12), e14454. DOI: 10.1371/journal.pone.0014454 From NLM Medline. (18) Zhao, C.; Pu, J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses 2022, 14 (10). DOI: 10.3390/v14102141 From NLM Medline. (19) Dedola, S.; Ahmadipour, S.; de Andrade, P.; Baker, A. N.; Boshra, A. N.; Chessa, S.; Gibson, M. I.; Hernando, P. J.; Ivanova, I. M.; Lloyd, J. E.; et al. Sialic acids in infection and their potential use in detection and protection against pathogens. RSC Chem Biol 2024, 5 (3), 167-188. DOI: 10.1039/d3cb00155e From NLM PubMed-not-MEDLINE. (20) Ayora-Talavera, G. Sialic acid receptors: focus on their role in influenza infection. Journal of Receptor, Ligand and Channel Research 2018, Volume 10, 1-11. DOI: 10.2147/jrlcr.S140624. (21) Aganovic, A. pH-dependent endocytosis mechanisms for influenza A and SARS-coronavirus. Front Microbiol 2023, 14, 1190463. DOI: 10.3389/fmicb.2023.1190463 From NLM PubMed-not-MEDLINE. (22) AKIHIKO YOSHIMURA, K. K., 1 KAZUNORI KAWASAKI,1 SHOHEI; YAMASHINA, T. M. Infectious Cell Entry Mechanism of Influenza Virus. JOURNAL OF VIROLOGY 1981, p. 284-293. DOI: 10.1128/jvi.43.1.284-293.1982. (23) Lakadamyali, M.; Rust, M. J.; Zhuang, X. Endocytosis of influenza viruses. Microbes Infect 2004, 6 (10), 929-936. DOI: 10.1016/j.micinf.2004.05.002 From NLM Medline. (24) Mair, C. M.; Ludwig, K.; Herrmann, A.; Sieben, C. Receptor binding and pH stability - how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta 2014, 1838 (4), 1153-1168. DOI: 10.1016/j.bbamem.2013.10.004 From NLM Medline. (25) Brandenburg, B.; Koudstaal, W.; Goudsmit, J.; Klaren, V.; Tang, C.; Bujny, M. V.; Korse, H. J.; Kwaks, T.; Otterstrom, J. J.; Juraszek, J.; et al. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS One 2013, 8 (12), e80034. DOI: 10.1371/journal.pone.0080034 From NLM Medline. (26) Matrosovich, M.; Herrler, G.; Klenk, H. D. Sialic Acid Receptors of Viruses. Top Curr Chem 2015, 367, 1-28. DOI: 10.1007/128_2013_466 From NLM Medline. (27) Gupta, D.; Mohan, S. Influenza vaccine: a review on current scenario and future prospects. J Genet Eng Biotechnol 2023, 21 (1), 154. DOI: 10.1186/s43141-023-00581-y From NLM PubMed-not-MEDLINE. (28) Lazniewski, M.; Dawson, W. K.; Szczepinska, T.; Plewczynski, D. The structural variability of the influenza A hemagglutinin receptor-binding site. Brief Funct Genomics 2018, 17 (6), 415-427. DOI: 10.1093/bfgp/elx042 From NLM Medline. (29) Boyoglu-Barnum, S.; Hutchinson, G. B.; Boyington, J. C.; Moin, S. M.; Gillespie, R. A.; Tsybovsky, Y.; Stephens, T.; Vaile, J. R.; Lederhofer, J.; Corbett, K. S.; et al. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat Commun 2020, 11 (1), 791. DOI: 10.1038/s41467-020-14579-4 From NLM Medline. (30) Fei, Y.; Sun, Y. S.; Li, Y.; Yu, H.; Lau, K.; Landry, J. P.; Luo, Z.; Baumgarth, N.; Chen, X.; Zhu, X. Characterization of Receptor Binding Profiles of Influenza A Viruses Using An Ellipsometry-Based Label-Free Glycan Microarray Assay Platform. Biomolecules 2015, 5 (3), 1480-1498. DOI: 10.3390/biom5031480 From NLM Medline. (31) Xu, R.; McBride, R.; Nycholat, C. M.; Paulson, J. C.; Wilson, I. A. Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol 2012, 86 (2), 982-990. DOI: 10.1128/JVI.06322-11 From NLM Medline. (32) Liang, C. H.; Wu, C. Y. Glycan array: a powerful tool for glycomics studies. Expert Rev Proteomics 2009, 6 (6), 631-645. DOI: 10.1586/epr.09.82 From NLM Medline. (33) Liang, C. H.; Wang, S. K.; Lin, C. W.; Wang, C. C.; Wong, C. H.; Wu, C. Y. Effects of neighboring glycans on antibody-carbohydrate interaction. Angew Chem Int Ed Engl 2011, 50 (7), 1608-1612. DOI: 10.1002/anie.201003482 From NLM Medline. (34) Ruprecht, C.; Geissner, A.; Seeberger, P. H.; Pfrengle, F. Practical considerations for printing high-density glycan microarrays to study weak carbohydrate-protein interactions. Carbohydr Res 2019, 481, 31-35. DOI: 10.1016/j.carres.2019.06.006 From NLM Medline. (35) Stevens, J.; Blixt, O.; Glaser, L.; Taubenberger, J. K.; Palese, P.; Paulson, J. C.; Wilson, I. A. Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 2006, 355 (5), 1143-1155. DOI: 10.1016/j.jmb.2005.11.002 From NLM Medline. (36) Chen, J. R.; Yu, Y. H.; Tseng, Y. C.; Chiang, W. L.; Chiang, M. F.; Ko, Y. A.; Chiu, Y. K.; Ma, H. H.; Wu, C. Y.; Jan, J. T.; et al. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A 2014, 111 (7), 2476-2481. DOI: 10.1073/pnas.1323954111 From NLM Medline. (37) Canales, A.; Sastre, J.; Orduna, J. M.; Spruit, C. M.; Perez-Castells, J.; Dominguez, G.; Bouwman, K. M.; van der Woude, R.; Canada, F. J.; Nycholat, C. M.; et al. Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans. JACS Au 2023, 3 (3), 868-878. DOI: 10.1021/jacsau.2c00664 From NLM PubMed-not-MEDLINE. (38) Hsin-Yu Liao, C.-H. H., Shih-Chi Wang, Chi-Hui Liang,; Hsin-Yung Yen, C.-Y. S., Chien-Hung Chen, Jia-Tsrong Jan,; Chien-Tai Ren, C.-H. C., Ting-Jen R. Cheng, Chung-Yi Wu, and; Wong, C.-H. Differential Receptor Binding Affinities of Influenza Hemagglutinins on Glycan Arrays. Journal of the American Chemical Society 2010. (39) Xie, Y.; Sheng, Y.; Li, Q.; Ju, S.; Reyes, J.; Lebrilla, C. B. Determination of the glycoprotein specificity of lectins on cell membranes through oxidative proteomics. Chem Sci 2020, 11 (35), 9501-9512. DOI: 10.1039/d0sc04199h From NLM PubMed-not-MEDLINE. (40) Bojar, D.; Meche, L.; Meng, G.; Eng, W.; Smith, D. F.; Cummings, R. D.; Mahal, L. K. A Useful Guide to Lectin Binding: Machine-Learning Directed Annotation of 57 Unique Lectin Specificities. ACS Chem Biol 2022, 17 (11), 2993-3012. DOI: 10.1021/acschembio.1c00689 From NLM Medline. (41) Gao, Z.; Chen, S.; Du, J.; Wu, Z.; Ge, W.; Gao, S.; Zhou, Z.; Yang, X.; Xing, Y.; Shi, M.; et al. Quantitative analysis of fucosylated glycoproteins by immobilized lectin-affinity fluorescent labeling. RSC Adv 2023, 13 (10), 6676-6687. DOI: 10.1039/d3ra00072a From NLM PubMed-not-MEDLINE. (42) David Schwefel, C. M., Johannes G. Beck, Sonja Seeberger, Kay Diederichs, Heiko M. Moller, Wolfram Welte, and Valentin Wittmann. Structural Basis of Multivalent Binding to Wheat GermAgglutinin. Journal of the American Chemical Society 2010. (43) Slamova, K.; Cerveny, J.; Meszaros, Z.; Friede, T.; Vrbata, D.; Kren, V.; Bojarova, P. Oligosaccharide Ligands of Galectin-4 and Its Subunits: Multivalency Scores Highly. Molecules 2023, 28 (10). DOI: 10.3390/molecules28104039 From NLM Medline. (44) Cao, H.; Antonopoulos, A.; Henderson, S.; Wassall, H.; Brewin, J.; Masson, A.; Shepherd, J.; Konieczny, G.; Patel, B.; Williams, M. L.; et al. Red blood cell mannoses as phagocytic ligands mediating both sickle cell anaemia and malaria resistance. Nat Commun 2021, 12 (1), 1792. DOI: 10.1038/s41467-021-21814-z From NLM Medline. (45) Broszeit, F.; van Beek, R. J.; Unione, L.; Bestebroer, T. M.; Chapla, D.; Yang, J. Y.; Moremen, K. W.; Herfst, S.; Fouchier, R. A. M.; de Vries, R. P.; et al. Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nat Commun 2021, 12 (1), 5449. DOI: 10.1038/s41467-021-25713-1 From NLM Medline. (46) Nemanichvili, N.; Tomris, I.; Turner, H. L.; McBride, R.; Grant, O. C.; van der Woude, R.; Aldosari, M. H.; Pieters, R. J.; Woods, R. J.; Paulson, J. C.; et al. Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. J Mol Biol 2019, 431 (4), 842-856. DOI: 10.1016/j.jmb.2018.12.014 From NLM Medline. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94336 | - |
| dc.description.abstract | 流感病毒是一種致病性強的呼吸道病毒,主要分為A、B、C三種類型,其中A型流感病毒尤具高度變異性,易引發大規模流行。大多數人感染後僅出現輕微症状,並通常能自行康復,但對於新生兒、老年人和慢性病患者,流感病毒可能引發嚴重併發症,如肺炎等,甚至導致死亡。在感染宿主細胞的過程中,流感病毒表面的血凝素(Hemagglutinin, HA)扮演關鍵角色。HA蛋白與宿主細胞表面的糖結合,這一特性對病毒感染及疫苗研發至關重要。糖微陣列是一種高通量的生物分析技術,能夠在單一實驗中同時測量多種糖與蛋白質之間的相互作用。本研究利用實驗室自製的糖微陣列模擬宿主細胞表面的糖結構,研究不同糖結構對HA蛋白結合的影響,以探討流感病毒HA蛋白與不同糖類之間的結合專一性,從而為流感疫苗的設計提供更多資訊。我們調查了14種H1N1、3種H5N1、2種B型和1種H3N2的HA蛋白。結果顯示,部分H1N1 HA蛋白會與Poly-LacNAc且末端具有α2,6鍵結的Neu5Ac的糖結合。其中,H1N1 A/Beijing/262/1995的HA蛋白能識別α2,3和α2,6鍵結的Neu5Ac。而H5N1 A/Vietnam/1194/2004(禽流感病毒)基於其結構特性,對末端具有α2,3聯結的糖具有強結合力。然而,其他株的HA蛋白在不同實驗條件下,在糖微陣列上未顯示任何結合。除了改變實驗條件,我們也透過紅血球凝集實驗檢查HA蛋白的活性,以及透過七種凝集素再次確認糖微陣列的可行性。 | zh_TW |
| dc.description.abstract | Influenza viruses, particularly type A, are highly pathogenic and prone to causing global pandemics. While most cases are mild, the virus can cause severe symptoms like pneumonia and even death, especially in infants, the elderly, and those with chronic illnesses. The hemagglutinin (HA) glycoprotein on the virus surface binds to glycans on host cells, playing a crucial role in infection and vaccine development. In this study, I used a glycan microarray with 182 different glycans to mimic host cell glycan structures and investigate HA protein binding. This helped explore the binding specificity between various influenza virus HA proteins and glycans, providing insights for vaccine design. I examined HA proteins from different strains and subtypes (14 H1N1, 3 H5N1, 2 influenza B, and 1 H3N2). Results showed that some H1N1 HA proteins bind to glycans with LacNAc repeats and α2,6-linked Neu5Ac, and H1N1 A/Beijing/262/1995 could recognize Neu5Ac with both α2,3 and α2,6 linkages. The H5N1 A/Vietnam/1194/2004 HA protein exhibited strong binding affinity to α2,3-linked glycans due to its structural characteristics. However, other HA proteins did not show any binding under various experimental conditions. In addition to modify the experimental conditions, we also examined the activity of the HA protein through HA assays, and confirmed the feasibility of the glycan microarray using seven different lectins. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:53:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:53:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
Chinese abstract ii Abstract iii Table of content iv Figures vi List of Tables vii List of Abbreviations viii 1.Introduction 1 2.Material and Method 6 2.1 Materials 6 2.2 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 6 2.3 Hemagglutination assay (HA assay) 7 2.4 Glycan microarray production 7 2.5 Glycan Microarray Binding of Lectin 7 2.6 Glycan Microarray Binding of HA protein 8 2.6.1 Mouse Anti-His Ab Sequential 8 2.6.2 Mouse Anti-His Ab Precomplexation 9 2.6.3 Mouse Anti-His Ab Precomplexation with Additional Fluorescent Secondary Ab 9 2.6.4 Anti HA Ab sequential 10 3. Results 11 Part I Characterization of HA protein 11 I.1 SDS PAGE of HA protein 11 I.2 Hemagglutination assay (HA assay) 11 Part II HA proteins binding patterns on glycan microarray 12 II.1 Key glycans in HA protein studies 12 II.2 HA binding patterns on glycan microarray 13 II.3 Comparison of HA protein binding using different antibodies on glycan microarray 14 II.4 Additional fluorescent secondary antibody detection 15 II.5 Comparison of HA Protein Monomer and Trimer Binding on Glycan Microarray 15 Part III Lectin binding specificity on glycan microarray 16 III.1 Lectin binding specificity on glycan microarray 16 III.2 Array quality control with lectins 20 4. Discussion 21 5. Reference 26 6. Figures 32 7. Appendices 45 | - |
| dc.language.iso | en | - |
| dc.subject | 血凝素 | zh_TW |
| dc.subject | 流行性感冒病毒 | zh_TW |
| dc.subject | 免疫 | zh_TW |
| dc.subject | 凝集素 | zh_TW |
| dc.subject | 糖微陣列 | zh_TW |
| dc.subject | Glycan microarray | en |
| dc.subject | Lectin | en |
| dc.subject | Immunity | en |
| dc.subject | Hemagglutinin | en |
| dc.subject | Influenza virus | en |
| dc.title | 透過聚醣陣列探討A型流感血凝素與糖的結合專一性 | zh_TW |
| dc.title | Glycan Microarray Analysis of Influenza A Hemagglutinins Reveals Receptor Binding Specificities | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林國儀;馬徹 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-I Lin ;Che Ma | en |
| dc.subject.keyword | 流行性感冒病毒,血凝素,糖微陣列,凝集素,免疫, | zh_TW |
| dc.subject.keyword | Influenza virus,Hemagglutinin,Glycan microarray,Lectin,Immunity, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202403230 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
