請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94313
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | zh_TW |
dc.contributor.advisor | Sih-Li Chen | en |
dc.contributor.author | 曾璟沂 | zh_TW |
dc.contributor.author | CHING-YI TSENG | en |
dc.date.accessioned | 2024-08-15T16:45:53Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-26 | - |
dc.identifier.citation | [1] 台灣電力公司 109年統計年報,台灣電力公司,2020
[2] 經濟部, 能源轉型白皮書, 2018 [3] 中華民國政部營建署, 營建統計資訊 [4] 經濟部, 溫室氣體減量管理推動辦公室 [5] Gaoyang Hou, Hessam Taherian, YingSong, WeiJiang, Diyi Chen, A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems, Renewable and Sustainable Energy Reviews, 154 (2022) 11830. [6] Bernard Dusseault, Philippe Pasquier, Usage of the net present value-at-risk to design ground-coupled heat pump systems under uncertain scenarios, Renewable Energy, 173 (2021) 953-971 [7] Matt S. Mitchell & Jeffrey D. Spitler " Open-loop direct surface water cooling and surface water heat pump systems—A review, " HVAC&R Research, 19:2, 125-140,2013. [8] Xiao Chen, Guoqiang Zhang, Jianguo Peng, Xuanjun Lin, Tingting Liu, The performance of an open-loop lake water heat pump system in south China, Applied Thermal Engineering, 26, (2006), 2255-2261 [9] GMI. Global market Insight. 2020, online.URL https://www.gminsights.com/industry-analysis/heat-pump-market. [10] Michael Chesser, Pádraig Lyons, Padraic O' Reilly, Paula Carrolla, Air source heat pump in-situ performance, Energy and Buildings 251, (2021) 111365 [11] P. Carroll, M. Chesser, P. Lyonsc, Air Source Heat Pumps field studies: A systematic literature review, Renewable and Sustainable Energy Reviews, 134, (2020), 110275 [12] Duffie, J.A., Beckman, W., 2013. Solar Engineering of Thermal Processes. 4 ed., John Wiley and Sons Ltd, Hoboken, NJ – USA [13] NGI. NGTS - Norwegian geo-test sites 2016. https://www.ngi.no/eng/Projects/NGTS-Norwegian-Geo-Test-Sites (accessed September 6, 2022) [14] 地中熱利用にあたってのガイドライン, Ministry of the Environment, Japan. [15] Jingyang Han, Minghui Cui, Junyi Chen, Wenjuan Lv, Analysis of thermal performance and economy of ground source heat pump system: a case study of the large building. Geothermics 89 (2021) 101929 [16] IQSdirectory.com, Shell and Tube Heat Exchangers. https://www.iqsdirectory.com/articles/heat-exchanger/shell-and-tube-heat-exchangers.html [17] 王啟川, "熱交換器設計," ed: 五南圖書出版有限公司, 2001 [18] Animesh Pal1, Kutub Uddin, Kyaw Thu, Bidyut Baran Saha, Environmental Assessment and Characteristics of Next Generation Refrigerants, Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, (2018) 58-66 [19] B.O. Bolaji, Z. Huan, Thermodynamic analysis of the performance of a vapour compression refrigeration system, working with R290 and R600a mixtures, Sharif University of Technology, (2013), 1720-1728 [20] 黎錦鵬, 多U型地埋管熱交換器應用於地源熱泵系統之分析, 臺灣大學機械工程學研究所學位論, 2019 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94313 | - |
dc.description.abstract | 本研究主要針對淺層溫能之利用與地源雙效熱泵之設計與開發,設計與開發符合淺層溫能該條件使用環境的雙效之熱泵,淺層溫能是指地下較淺處的地熱能源,通常溫度穩定不易改變之特性。因此,我們需要開發新型的熱泵系統,能夠高效利用這一淺層溫能,為建築供暖、供冷和熱水供應提供可靠的解決方案。
本研究熱泵相較傳統熱泵不同之處為新增一針對淺層溫能使用之熱交換器於熱泵之中,可以經由切換冷媒來達到不同模式控制之目的,並藉由間接熱交換與直接熱交換兩種方式來進行取熱與散熱並相互比較其效能,再由實際測試改善熱泵設計,進而發展出較穩定之機種。由研究結果顯示,第一代淺層地下溫能之雙效熱泵的問題主要在於切換模式時冷媒分布不均,研究提出了改善方案,並新增了自動控制電磁閥,提升了使用者便利性。第一代淺層地下溫能之雙效熱泵,在製冷模式下,間接散熱製冷COP為5.64,直接散熱製冷COP為6,在製熱模式下,間接取熱COP為3.7,直接取熱製熱COP為4.47。第二代熱泵改善後性能進一步提升,在製冷模式下,直接散熱製冷COP達到6.63。在製熱的模式下,直接取熱製熱COP達到4.81。 第二代淺層地下溫能之雙效熱泵在製冷和製熱模式下都有更高的性能表現,並且改進了切換模式時的問題,使得熱泵系統更加高效、穩定和方便使用。 | zh_TW |
dc.description.abstract | This research focuses on the utilization of shallow geothermal energy and the design and development of a ground source heat pump (GSHP) that is suitable for shallow geothermal environments. Shallow geothermal energy refers to the geothermal energy source found at relatively shallow depths underground, known for its stable temperature characteristics. Therefore, a novel heat pump system needs to be developed to efficiently harness this shallow geothermal energy and provide a reliable solution for building heating, cooling, and hot water supply.
In this study, a new heat pump system is developed, which includes a heat exchanger specifically designed for utilizing shallow geothermal energy. Different operating modes can be achieved by switching the refrigerant, and the performance of the system is compared between indirect heat exchange and direct heat exchange methods for heating and cooling. Based on practical testing and analysis, the heat pump design is improved to develop a more stable and efficient system. The first-generation shallow geothermal heat pump encountered issues related to uneven refrigerant distribution during mode switching. To address this problem, a solution is proposed, which includes the addition of automatic control electromagnetic valves to enhance user convenience. The first-generation shallow geothermal heat pump achieved a coefficient of performance (COP) of 5.64 for indirect heat exchange cooling, and a COP of 6 for direct heat exchange cooling. In heating mode, it obtained a COP of 3.7 for indirect heat exchange, and a COP of 4.47 for direct heat exchange. With the improvements made in the second-generation heat pump, the COP further increased, reaching 6.63 for direct heat exchange cooling and 4.81 for direct heat exchange heating. The second-generation shallow geothermal heat pump demonstrates higher performance in both cooling and heating modes. Additionally, the issues related to mode switching have been addressed, resulting in a more efficient, stable, and user-friendly heat pump system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:45:53Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:45:53Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目次 IV 表次 VI 圖次 VII 第1章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.3 研究動機 4 1.4 文獻回顧 5 1.4.1 空氣源熱泵(ASHP)與地源熱泵(GSHP) 5 1.4.2 間接取熱/散熱-地源熱泵 7 1.4.3 淺層溫能 10 1.4.4 雙效熱泵 12 第2章 理論基礎與實驗建立 13 2.1 淺層地下溫能之熱交換器與雙效熱泵 13 2.1.1 U TYPE淺層地下溫能熱交換器 13 2.2 雙效熱泵heat pump原理 17 第3章 第一代淺層溫能雙效熱泵實驗研究方法與討論 21 3.1 淺層地下水溫能結合地源熱泵系統性能測試與研究 21 3.1.1 第一代淺層溫能之雙效熱泵設計及周邊設備 21 3.2 雙效模式 25 3.3 淺層溫能散熱模式(製冰水模式) 27 3.3.1 U type heat exchanger製冷之間接散熱模式 27 3.3.2 U type ground source heat exchanger性能分析 28 3.3.3 U type ground source heat exchanger間接製冷模式實驗 30 3.3.4 淺層溫能直接散熱製冷模式 33 3.3.5 模擬冷卻水塔[20] 37 3.4 淺層溫能製熱模式(製熱散冷) 38 3.4.1 淺層溫能U type heat exchanger間接製熱模式[20] 39 3.4.2 淺層溫能直接製熱模式(製熱水) 41 3.5 第一代淺層溫能雙效熱泵總結 45 第4章 第二代淺層溫能之雙效熱泵性能分析 47 4.1 第二代淺層溫能之雙效熱泵系統設計 47 4.2 第二代淺層溫能雙效熱泵系統雙效模式 48 4.3 第二代淺層溫能雙效熱泵系統製冷模式 50 4.4 第二代淺層溫能雙效熱泵系統製熱模式 52 4.5 淺層溫能之雙效熱泵總結 55 第5章 結論 57 第6章 文獻回顧 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用淺層溫能之雙效熱泵性能之研究與設計 | zh_TW |
dc.title | Performance investigation of a double effect heat pump using shallow geothermal energy | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 陳志豪;江沅晉;王榮昌;馬述聖;李文興 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Hao Chen;Yuan-Jin Jian;Rong-Chang Wang;Su-Sheng Ma;Wen-Shing Lee | en |
dc.subject.keyword | 地源雙效熱泵,淺層溫能,節能, | zh_TW |
dc.subject.keyword | Ground Source Heat Pump,Shallow Geothermal Energy,Energy Conservation, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU202402138 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-28 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。