請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94299
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育任 | zh_TW |
dc.contributor.advisor | Yuh-Renn Wu | en |
dc.contributor.author | 陳名盛 | zh_TW |
dc.contributor.author | Ming-Sheng Chen | en |
dc.date.accessioned | 2024-08-15T16:41:24Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of modern physics, vol. 74, no. 1, p. 145, 2002.
C. H. Bennett, G. Brassard, et al., “Proceedings of the ieee international conference on computers, systems and signal processing,” 1984. M. Mehic, M. Niemiec, H. Siljak, and M. Voznak, “Error Reconciliation in Quantum Key Distribution Protocols.,” 2020. C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized privacy amplification,” IEEE Transactions on Information theory, vol. 41, no. 6, pp. 1915–1923, 1995. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distri bution,” Physical review letters, vol. 89, no. 3, p. 037902, 2002. M. Martinelli, “A universal compensator for polarization changes induced by bire fringence on a retracing beam,” Optics Communications, vol. 72, no. 6, pp. 341–344, 1989. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““plug and play"systems for quantum cryptography,” Applied physics letters, vol. 70, no. 7, pp. 793–795, 1997. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New Journal of Physics, vol. 12, no. 11, p. 113026, 2010. N. Lütkenhaus, “Security against individual attacks for realistic quantum key distri bution,” Physical Review A, vol. 61, no. 5, p. 052304, 2000. R. Renner and S. Wolf, “Simple and tight bounds for information reconciliation and privacy amplification,” in International conference on the theory and application of cryptology and information security, pp. 199–216, Springer, 2005. I. Csiszár and J. Korner, “Broadcast channels with confidential messages,” IEEE transactions on information theory, vol. 24, no. 3, pp. 339–348, 1978. P. W. Shor and J. Preskill, “Simple proof of security of the BB84 quantum key dis tribution protocol,” Physical review letters, vol. 85, no. 2, p. 441, 2000. K. Wen, K. Tamaki, and Y. Yamamoto, “Unconditional security of single-photon differential phase shift quantum key distribution,” Physical review letters, vol. 103, no. 17, p. 170503, 2009. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure com munication,” Physical review letters, vol. 91, no. 5, p. 057901, 2003. X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, “Practical decoy state for quantum key distri bution,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 72, no. 1, p. 012326, 2005. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Physical review letters, vol. 94, no. 23, p. 230504, 2005. C. C. W. Lim, M. Curty, N. Walenta, F. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Physical Review A, vol. 89, no. 2, p. 022307, 2014. L. O. Mailloux, J. D. Morris, M. R. Grimaila, D. D. Hodson, D. R. Jacques, J. M. Colombi, C. V. Mclaughlin, and J. A. Holes, “A modeling framework for studying quantum key distribution system implementation nonidealities,” IEEE Access, vol. 3, pp. 110–130, 2015. G.-J. Fan-Yuan, W. Chen, F.-Y. Lu, Z.-Q. Yin, S. Wang, G.-C. Guo, and Z.-F. Han, “A universal simulating framework for quantum key distribution systems,” Science China Information Sciences, vol. 63, pp. 1–15, 2020. A. Sethia and A. Banerjee, “A MATLAB-based modelling and simulation package for DPS-QKD,” Journal of Modern Optics, vol. 69, no. 7, pp. 392–402, 2022. T. Honjo, T. Inoue, and K. Inoue, “Influence of light source linewidth in differential phase-shift quantum key distribution systems,” Optics Communications, vol. 284, no. 24, pp. 5856–5859, 2011. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Z. Yuan, and A. J. Shields, “A quantum access network,” Nature, vol. 501, no. 7465, pp. 69–72, 2013. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94299 | - |
dc.description.abstract | 不同機制被提出來提升量子密鑰分發系統的表現,同時伴隨著不同對竊聽者資訊量假設的安全證明。在我們的量子密鑰分發裡,我們建立差分相移和相位編碼BB84的模組以及分光攻擊和攔截回送攻擊的竊聽模組去看竊聽下系統表現和三方資訊量關係。相位編碼BB84雖然碼率只有差分相移量子密鑰分發的一半,但其更高的安全閥值使其更適合長距離傳輸,同時也更能對抗分光攻擊和攔截回送攻擊。此外我們發現在無錯誤因素的差分相移量子密鑰分發系統在攔截回送攻擊下最高的洩漏資訊是0.15比特。此外,我們建立誘騙態模組並去使用這兩種竊聽攻擊去分析多光子訊號的洩漏資訊量。在攔截回送攻擊下取得的資訊量跟使用誘騙態的量子密鑰分發系統的訊號態平均光子數較無關聯。相反地,可藉由分光攻擊從高平均光子數的訊號態取得更多資訊。竊聽者可在平均光子數越大情況下取得超過0.15比特。整體來說,此研究著重透過量子密鑰分發模擬器去看不同機制下受到不同竊聽攻擊的系統表現和三方資訊量,並進而探討系統安全性。 | zh_TW |
dc.description.abstract | Various of protocols are proposed for better quantum key distribution (QKD) performance accompanied various assumption on the eavesdropper's information in the corresponding security proof. In our QKD simulator, differential-phase-shift QKD (DPS-QKD) and phase-encoding BB84 (PEBB84) were built while photon-number-splitting (PNS) and intercept-and-resend (IAR) attacks are also built to see the system performance and tripartite relation under eavesdropping. Compared with DPS-QKD, PEBB84 can transmit longer distance with its higher security threshold while its key rate is only half of the DPS-QKD. PEBB84 is also resistant to PNS attack and IAR attack. In addition, we found the maximum leakage of information, 0.15 bit, within security threshold by applying IAR attack in an error-free DPS-QKD. Furthermore, we built decoy method module and apply these two hacking strategy to analyze the leaking information for the multi-photon signals. The information acquired from the IAR attack are less correlated to the signal mean photon number (MPN) in DPS-QKD using decoy method. In contrast, the higher signal MPN leaks more information by using PNS attack. By using PNS attack, eavesdropper can acquire more information than 0.15 bit as the MPN gets higher. Overall, this study focused on the system performance and tripartite information for different protocols under eavesdropping by using the QKD simulator and discuss the system security in advance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:41:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:41:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements i 摘要 ii Abstract iii Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Introduction of Quantum Communication . . . . . . . . . . . . . . . 1 1.1.1 General procedure of QKD . . . . . . . . . . . . . . . . . . . 3 1.1.2 Differential-phase-shift QKD and Phase-encoding BB84 . . . 5 1.1.3 Plug-and-Play protocol . . . . . . . . . . . . . . . . . . . . . 7 1.2 Security of QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Hacking Strategy . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.3 Binary Shannon Entropy and Information of Eavesdropper . . 11 1.2.4 Security Criterion . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.5 Decoy Method . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 2 Methodology 17 2.1 Monte-Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Discrete Event simulation . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Modularized Hacking Strategy Structure . . . . . . . . . . . . . . . . 19 Chapter 3 Data Results 22 3.1 Comparing DPS-QKD and PEBB84 . . . . . . . . . . . . . . . . . . 22 3.2 Comparing PNS and IAR . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 DPS-QKD under PNS attack . . . . . . . . . . . . . . . . . . 27 3.2.2 DPS-QKD under IAR attack . . . . . . . . . . . . . . . . . . 31 3.2.3 PEBB84 under PNS attack . . . . . . . . . . . . . . . . . . . 35 3.2.4 PEBB84 under IAR attack . . . . . . . . . . . . . . . . . . . 38 3.3 DPS-QKD with decoy method under IAR attack and PNS attack . . . 40 3.3.1 DPS-QKD with decoy method under IAR attack . . . . . . . 43 3.3.2 DPS-QKD with decoy method under PNS attack . . . . . . . 46 Chapter 4 Conclusion 51 References 54 vi | - |
dc.language.iso | en | - |
dc.title | 模擬量子密鑰分發在竊聽下的表現 | zh_TW |
dc.title | Simulation of Quantum Key Distribution Behavior Under Eavesdropping | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林恭如;巫朝陽 | zh_TW |
dc.contributor.oralexamcommittee | Gong-Ru Lin;Jau-Yang Wu | en |
dc.subject.keyword | 量子密鑰分發,誘騙態,分光攻擊,攔截回送攻擊, | zh_TW |
dc.subject.keyword | QKD,Decoy Method,PNS,Intercept-and-Resend, | en |
dc.relation.page | 56 | - |
dc.identifier.doi | 10.6342/NTU202403954 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 2.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。