Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94294
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任zh_TW
dc.contributor.advisorYuh-Renn Wuen
dc.contributor.author邱允平zh_TW
dc.contributor.authorYun-Ping Chiuen
dc.date.accessioned2024-08-15T16:39:58Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] A. Pezeshki, H. Shokouh, S. Hossein, P. J. Jeon, I. Shackery, J. S. Kim, I.-K. Oh, S. C. Jun, H. Kim, and S. Im, “Static and dynamic performance of complementary inverters based on nanosheet α-MoTe2 p-channel and MoS2 n-channel transistors,”ACS Nano, vol. 10, pp. 1118–1125, 2016.
[2] D. S. Sholl and J. A. Steckel, Density functional theory: a practical introduction. John Wiley & Sons, 2022.
[3] Y.-P. Chiu, H.-W. Huang, and Y.-R. Wu, “Utilizing the janus mosse surface polarization in designing complementary metal-oxide-semiconductor field-effect transistors,” Physical Review Applied,vol. 21, no. 4, p. 044046, 2024.
[4] H.-C. Pai and Y.-R. Wu, “Investigating the high field transport properties of Janus WSSe and MoSSe by DFT analysis and Monte Carlo simulations,” J. Appl. Phys., vol. 131, no. 14, p. 144303, 2022.
[5] M. Ye, D. Zhang, and Y. K. Yap, “Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides,” Electronics, vol. 6, no. 2, p. 43, 2017.
[6] A. Chaves, J. G. Azadani, H. Alsalman, D. R. da Costa, R. Frisenda, A. J. Chaves,S. H. Song, Y. D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F. M. Peeters, Z. Liu,C. L. Hinkle, S.-H. Oh, P. D. Ye, S. J. Koester, Y. H. Lee, P. Avouris, X. Wang, and T. Low, “Bandgap engineering of two-dimensional semiconductor materials,” npj 2D Mater. Appl., vol. 4, p. 29, 2020.
[7] M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,”Nano Letters, vol. 13, no. 8, pp. 3664–3670, 2013.
[8] X. Li and H. Zhu, “Two-dimensional MoS2: Properties, preparation, and applications,” Journal of Materiomics, vol. 1, no. 1, pp. 33–44, 2015.
[9] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[10] M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,” Nat. Rev. Mater., vol. 1, p. 16052, 2016.
[11] F.-X. R. Chen, N. Kawakami, C.-T. Lee, P.-Y. Shih, Z.-C. Wu, Y.-C. Yang, H.-W. Tu, W.-B. Jian, C. Hu, and C.-L. Lin, “Visualizing correlation between carrier mobility and defect density in MoS2 FET,” Appl. Phys. Lett., vol. 121, no. 15, p. 151601, 2022.
[12] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, pp. 147–150, 2011.
[13] M. I. Serna, S. H. Yoo, S. Moreno, Y. Xi, J. P. Oviedo, H. Choi, H. N. Alshareef, M. J. Kim, M. Minary-Jolandan, and M. A. Quevedo-Lopez, “Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control,” ACS Nano, vol. 10, no. 6, pp. 6054–6061, 2016.
[14] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, et al., “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano, vol. 7, no. 10, pp. 8963–8971, 2013.
[15] C. M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino, “Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films,” Appl. Phys. Lett., vol. 105, no. 8, p. 083112, 2014.
[16] D. Ovchinnikov, A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, “Electrical transport properties of single-layer WS2,” ACS Nano, vol. 10, pp. 8174–8181, 2014.
[17] J. Choi, H. Zhang, and J. H. Choi, “Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photo induced charge transfer,” ACS Nano, vol. 10, no. 1, pp. 1671–1680, 2016.
[18] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, “Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures,” ACS Nano, vol. 7, no. 9, pp. 7931–7936, 2013.
[19] K. C. Kwon, J. H. Baek, K. Hong, S. Y. Kim, and H. W. Jang, “Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing,” Nano-Micro Letters, vol. 14, no. 1, p. 58, 2022.
[20] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J. C. Lee, and D. Akinwande, “Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides,” Nano letters, vol. 18, no. 1, pp. 434–441, 2018.
[21] Y.-C. Chen, Y.-T. Chao, E. Chen, C.-H. Wu, and Y.-R. Wu, “Studies of two-dimensional material resistive random-access memory by kinetic monte carlo simulations,” Phys. Rev. Mater., vol. 7, p. 094001, 2023.
[22] J. Zhang, T. Ji, H. Jin, Z. Wang, M. Zhao, D. He, G. Luo, and B. Mao, “Mild liquid-phase exfoliation of transition metal dichalcogenide nanosheets for hydrogen evolution,” ACS Applied Nano Materials, vol. 5, no. 6, pp. 8020–8028, 2022.
[23] Y. Li, G. Kuang, Z. Jiao, L. Yao, and R. Duan, “Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides,” Materials Research Express, vol. 9, no. 12, p. 122001, 2022.
[24] E. Pollmann, L. Madauß, S. Schumacher, U. Kumar, F. Heuvel, C. vom Ende, S. Yilmaz, S. Güngörmüs, and M. Schleberger, “Apparent differences between single layer molybdenum disulphide fabricated via chemical vapour deposition and exfoliation,”Nanotechnology, vol. 31, no. 50, p. 505604, 2020.
[25] R. H. Zha, P. Delparastan, T. D. Fink, J. Bauer, T. Scheibel, and P. B. Messersmith,“Universal nanothin silk coatings via controlled spidroin self-assembly,” Biomater. Sci., vol. 7, pp. 683–695, 2019.
[26] M. K. Bayazit, L. Xiong, C. Jiang, S. J. A. Moniz, E. White, M. S. P. Shaffer, and J. Tang, “Defect-free single-layer graphene by 10 s microwave solid exfoliation and its application for catalytic water splitting,” ACS Applied Materials & Interfaces, vol. 13, no. 24, pp. 28600–28609, 2021.
[27] L. Chen, Z. Cheng, S. He, X. Zhang, K. Deng, D. Zong, Z. Wu, and M. Xia, “Large-area single-crystal tmd growth modulated by sapphire substrates,” Nanoscale, vol. 16, pp. 978–1004, 2024.
[28] M. O’Brien, N. McEvoy, T. Hallam, H.-Y. Kim, N. C. Berner, D. Hanlon, K. Lee, J. N. Coleman, and G. S. Duesberg, “Transition metal dichalcogenide growth via close proximity precursor supply,” Scientific Reports, vol. 4, p. 7374, 2014.
[29] Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian, C. Liu, Q. Wang, G. Xue, Y. You, Q. Guo, J. Wang, Y. Fu, K. Liu, X. Zhou, H. Hong, M. Wu, X. Lu, R. Yang, G. Zhang, D. Yu, E. Wang, X. Bai, F. Ding, and K. Liu, “Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply,” Nature Communications, vol. 13, p. 1007, 2022.
[30] Q. Liang, Q. Zhang, X. Zhao, M. Liu, and A. T. S. Wee, “Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities,” ACS Nano, vol. 15, no. 2, pp. 2165–2181, 2021.
[31] J. Kucharek, R. Bożek, and W. Pacuski, “Molecular beam epitaxy growth of Transition Metal Dichalcogenide (Mo, Mn)Se2 on 2D, 3D and polycrystalline substrates,”Materials Science in Semiconductor Processing, vol. 163, p. 107550, 2023.
[32] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects of two-dimensional transistors,” Nature, vol. 591, p. 43–53, 2021.
[33] Y. Xiong, D. Xu, Y. Feng, G. Zhang, P. Lin, and X. Chen, “P-type 2d semiconductors for future electronics,” Advanced Materials, vol. 35, no. 50, p. 2206939, 2023.
[34] L. Zhang, Y. Zhang, X. Sun, K. Jia, Q. Zhang, Z. Wu, and H. Yin, “High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications,” J. Mater. Sci.: Mater. Electron., vol. 32, pp. 17427–17435, 2021.
[35] D. H. Keum, S. Cho, J. H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee, “Bandgap opening in few-layered monoclinic MoTe2,” Nature Physics, vol. 11, no. 6, pp. 482–486, 2015.
[36] N. Liu, J. Baek, S. M. Kim, S. Hong, Y. K. Hong, Y. S. Kim, H.-S. Kim, S. Kim, and J. Park, “Improving the stability of high-performance multilayer MoS2 field-effect transistors,” ACS Applied Materials & Interfaces, vol. 9, no. 49, pp. 42943–42950, 2017.
[37] A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R. W. Grady, C. S. Bailey, H. R. Lee,
K. Schauble, K. Brenner, and E. Pop, “High-performance flexible nanoscale transistors based on transition metal dichalcogenides,” Nature Electronics, vol. 4, no. 7, pp. 495–501, 2021.
[38] S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, et al., “Progress, challenges, and opportunities in two-dimensional materials beyond graphene,” ACS nano, vol. 7, no. 4, pp. 2898-2926, 2013.
[39] S. Zhang, H. Xu, F. Liao, Y. Sun, K. Ba, Z. Sun, Z.-J. Qiu, Z. Xu, H. Zhu, L. Chen, et al., “Wafer-scale transferred multilayer MoS2 for high performance field effect transistors,” Nanotechnology, vol. 30, no. 17, p. 174002, 2019.
[40] Q. Tao, R. Wu, Q. Li, L. Kong, Y. Chen, J. Jiang, Z. Lu, B. Li, W. Li, Z. Li, et al.,“Reconfigurable electronics by disassembling and reassembling van der waals heterostructures,” Nature communications, vol. 12, no. 1, p. 1825, 2021.
[41] X. Zhang, J. Lai, and T. Gray, “Recent progress in low-temperature CVD growth of 2D materials,” Oxford Open Materials Science, vol. 3, no. 1, p. 010, 2023.
[42] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nat. Mater., vol. 14, pp. 1195–1205, 2015.
[43] Y. Zheng, J. Gao, C. Han, and W. Chen, “Ohmic contact engineering for two-dimensional materials,” Cell Rep. Phys. Sci., vol. 2, p. 100298, 2021.
[44] S. Andleeb, J. Eom, N. R. Naz, and A. K. Singh, “MoS2 field-effect transistor with graphene contacts,” Journal of Materials Chemistry C, vol. 5, no. 32, pp. 8308–8314, 2017.
[45] Y. Du, L. Yang, J. Zhang, H. Liu, K. Majumdar, P. D. Kirsch, and P. D. Ye, “MoS2 field-effect transistors with graphene/metal heterocontacts,” IEEE Electron Device Letters, vol. 35, no. 5, p. 599–601, 2014.
[46] Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L.-J. Li, and J. Kong, “Work function engineering of graphene electrode via chemical doping,” ACS nano, vol. 4, no. 5, pp. 2689–2694, 2010.
[47] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Phys. Rev.X, vol. 4, p. 031005, 2014.
[48] B. Ouyang, S. Xiong, and Y. Jing, “Tunable phase stability and contact resistance of monolayer transition metal dichalcogenides contacts with metal,” npj 2D Mater. Appl., vol. 2, p. 13, 2018.
[49] H. Tang, B. Shi, Y. Pan, J. Li, X. Zhang, J. Yan, S. Liu, J. Yang, L. Xu, J. Yang, M. Wu, and J. Lu, “Schottky contact in monolayer WS2 field-effect transistors,”Adv. Theory Simul., vol. 2, p. 1900001, 2019.
[50] R. T. Tung, “The physics and chemistry of the Schottky barrier height,” Appl. Phys. Rev., vol. 1, no. 1, 2014.
[51] R. Younas, G. Zhou, and C. L. Hinkle, “A perspective on the doping of transition metal dichalcogenides for ultra-scaled transistors: Challenges and opportunities,” Appl. Phys. Lett., vol. 122, no. 16, 2023.
[52] G. Mirabelli, M. Schmidt, B. Sheehan, K. Cherkaoui, S. Monaghan, I. Povey, M. McCarthy, A. P. Bell, R. Nagle, F. Crupi, et al., “Back-gated Nb-doped MoS2 junction-less field-effect-transistors,” AIP Advances, vol. 6, no. 2, 2016.
[53] M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J.-C. Idrobo, et al., “p-type doping of MoS2 thin films using Nb,” Applied Physics Letters, vol. 104, no. 9, 2014.
[54] J. Gao and M. Gupta, “Titanium disulfide as schottky/ohmic contact for monolayer molybdenum disulfide,” npj 2D Materials and Applications, vol. 4, no. 1, p. 26, 2020.
[55] D. Pierucci, H. Henck, Z. Ben Aziza, C. H. Naylor, A. Balan, J. E. Rault, M. G. Silly, Y. J. Dappe, F. Bertran, P. Le Fèvre, F. Sirotti, A. T. C. Johnson, and A. Ouerghi, “Tunable doping in hydrogenated single layered molybdenum disulfide,” ACS nano, vol. 11, no. 2, pp. 1755–1761, 2017.
[56] L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, and Y. Liu, “Doping-free complementary WSe2 circuit via van der Waals metal integration,” Nat. Commun., vol. 11, p. 1866, 2020.
[57] N. Zhao and U. Schwingenschlögl, “Dipole-induced Ohmic contacts between mono-layer Janus MoSSe and bulk metals,” npj 2D Mater. Appl., vol. 131, p. 72, 2022.
[58] S. M. Sze, Y. Li, and K. K. Ng, Physics of Semiconductor Devices. Wiley, 2021.
[59] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, pp. 4033–4041, 2014.
[60] S. Das, M. Dubey, and A. Roelofs, “High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors,” Appl. Phys. Lett., vol. 105, no. 8, 2014.
[61] A.-J. Cho, K. C. Park, and J.-Y. Kwon, “A high-performance complementary inverter based on transition metal dichalcogenide field-effect transistors,” Nanoscale Res. Lett., vol. 10, p. 115, 2015.
[62] X. Xiong, A. Tong, X. Wang, S. Liu, X. Li, R. Huang, and Y. Wu, “Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion > 700 μA/μm and MoS2/WSe2 CFET,” in 2021 IEEE International Electron Devices Meeting (IEDM), pp. 7.5.1–7.5.4, 2021.
[63] S. Ullah, X. Yang, H. Q. Ta, M. Hasan, A. Bachmatiuk, K. Tokarska, B. Trzebicka, L. Fu, and M. H. Rummeli, “Graphene transfer methods: A review,” Nano Res., vol. 14, pp. 3756–3772, 2021.
[64] Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W.-B. Jian, K. Ueno, and K. Tsukagoshi, “Ambipolar MoTe2 transistors and their applications in logic circuits,” Adv. Mater., vol. 26, no. 20, pp. 3263–3269, 2014.
[66] Z. Jin, X. Li, J. T. Mullen, and K. W. Kim, “Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides,” Phys. Rev. B, vol. 90, p. 045422, 2014.
[67] A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, and S. Das, “Benchmarking monolayer MoS2 and WS2 field-effect transistors,” Nature communications, vol. 12, no. 1, p. 693, 2021.
[68] S. Larentis, B. Fallahazad, and E. Tutuc, “Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers,” Applied Physics Letters, vol. 101, no. 22, p. 223104, 2012.
[69] Y. Xia, L. Wei, J. Deng, L. Zong, C. Wang, X. Chen, F. Liang, C. Luo, W. Bao, Z. Xu, et al., “Tuning electrical and optical properties of MoSe2 transistors via elemental doping,” Advanced Materials Technologies, vol. 5, no. 7, p. 2000307, 2020.
[70] Q. Cao, Y.-W. Dai, J. Xu, L. Chen, H. Zhu, Q.-Q. Sun, and D. W. Zhang, “Realizing stable p-type transporting in two-dimensional WS2 films,” ACS Applied Materials & Interfaces, vol. 9, no. 21, pp. 18215–18221, 2017.
[71] S. Das, M. Dubey, and A. Roelofs, “High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors,” Applied Physics Letters, vol. 105, no. 8, 2014.
[72] Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A. A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, H. M. I. Meyer, M. Lorenz, M. F. Chisholm, I. N. Ivanov, C. M. Rouleau, G. Duscher, K. Xiao, and D. B. Geohegan, “Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures,” ACS Nano, vol. 14, no. 4, pp. 3896–3906, 2020.
[73] A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M.-Y. Chou, X. Zhang, and L.-J. Li, “Janus monolayers of transition metal dichalcogenides,” Nat. Nanotechnol., vol. 12, pp. 744–749, 2017.
[74] D. B. Trivedi, G. Turgut, Y. Qin, M. Y. Sayyad, D. Hajra, M. Howell, L. Liu, S. Yang, N. H. Patoary, H. Li, M. M. Petrić, M. Meyer, M. Kremser, M. Barbone, G. Soavi, A. V. Stier, K. Müller, S. Yang, I. S. Esqueda, H. Zhuang, J. J. Finley, and S. Tongay,“Room-temperature synthesis of 2D Janus crystals and their heterostructures,” Adv. Mater., vol. 32, no. 50, p. 2006320, 2020.
[75] R. Chaurasiya, G. Gupta, and A. Dixit, “Ultrathin Janus WSSe buffer layer for W(S/Se)2 absorber based solar cells: A hybrid, DFT and macroscopic, simulation studies,” Sol. Energy Mater. Sol. Cells, vol. 201, p. 110076, 2019.
[76] M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J. Finley, A. Botello-Méndez, and K. Müller, “Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe,” Phys. Rev. B, vol. 103, p. 035414, 2021.
[77] D. Kong, F. Tian, Y. Xu, S. Zhu, Z. Yu, L. Xiong, P. Li, H. Wei, X. Zheng, and M. Peng, “Polarity reversal and strain modulation of Janus MoSSe/GaN polar semiconductor heterostructures,” Phys. Chem. Chem. Phys., vol. 25, pp. 30361–30372, 2023.
[78] L. Zhang, Z. Yang, T. Gong, R. Pan, H. Wang, Z. Guo, H. Zhang, and X. Fu, “Recent advances in emerging Janus two-dimensional materials: From fundamental physics to device applications,” J. Mater. Chem. A, vol. 8, pp. 8813–8830, 2020.
[79] L. Zhang, Y. Xia, X. Li, L. Li, X. Fu, J. Cheng, and R. Pan, “Janus two-dimensional transition metal dichalcogenides,” J. Appl. Phys., vol. 131, no. 23, p. 230902, 2022.
[80] Y.-Q. Chen, H.-H. Zhang, B. Wen, X.-B. Li, X.-L. Wei, W.-J. Yin, L.-M. Liu, and G. Teobaldi, “The role of permanent and induced electrostatic dipole moments for Schottky barriers in Janus MXY/graphene heterostructures: A first-principles study,” Dalton Trans., vol. 51, pp. 9905–9914, 2022.
[81] M. Palsgaard, T. Gunst, T. Markussen, K. S. Thygesen, and M. Brandbyge, “Stacked Janus device concepts: Abrupt pn-junctions and cross-plane channels,” Nano Lett., vol. 18, no. 11, pp. 7275–7281, 2018.
[82] X. Liu, P. Gao, W. Hu, and J. Yang, “Photogenerated-carrier separation and transfer in two-dimensional Janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells,” J. Phys. Chem. Lett., vol. 11, no. 10, pp. 4070–4079, 2020.
[83] K. Momma and F. Izumi, “Vesta: a three-dimensional visualization system for electronic and structural analysis,” Journal of Applied crystallography, vol. 41, no. 3, pp. 653–658, 2008.
[84] H. L. Skriver and N. M. Rosengaard, “Surface energy and work function of elemental metals,” Phys. Rev. B, vol. 46, no. 11, p. 7157, 1992.
[85] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, “Maximally localized wannier functions: Theory and applications,” Rev. Mod. Phys., vol. 84, pp. 1419–1475, 2012.
[86] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter, vol. 21, no. 39, p. 395502, 2009.
[87] J. Noffsinger, F. Giustino, B. D. Malone, C.-H. Park, S. G. Louie, and M. L. Cohen, “Epw: A program for calculating the electron–phonon coupling using maximally localized wannier functions,” Computer Physics Communications, vol. 181, no. 12, pp. 2140–2148, 2010.
[88] A. Laturia, M. L. V. de Put, and W. G. Vandenberghe, “Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk,” npj 2D Mater. Appl., vol. 2, p. 6, 2018.
[89] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials,” Phys. Rev. Lett., vol. 43, pp. 1494–1497, 1979.
[90] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu,” J. Chem. Phys., vol. 132, no. 15, p. 154104, 2010.
[91] P.-F. Chen and Y.-R. Wu, “Calculation of Field Dependent Mobility in MoS2 and WS2 with Multi-Valley Monte Carlo Method,” in 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), pp. 1–2, IEEE, 2021.
[92] M. Mansouri, A.-M. G. Dezfuli, and H. Salehi, “Stacking effect on the orbital characters and transition probability of bilayer MoS2,” Physica Scripta, vol. 98, no. 10, p. 105404, 2023.
[93] K. Kubra, M. R. Islam, M. S. Hasan Khan, M. S. Islam, and M. T. Hasan, “Study of Two-Dimensional Janus WXY (X≠Y= S, Se, and Te) Trilayer Homostructures for Photovoltaic Applications Using DFT Screening of Different Stacking Patterns,” ACS Omega, vol. 7, no. 15, pp. 12947–12955, 2022.
[94] C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace, and K. Cho, “First-principles study of metal–graphene interfaces,” J. Appl. Phys., vol. 108, no. 12, p. 123711, 2010.
[95] J. Bardeen and W. Shockley, “Deformation potentials and mobilities in non-polar crystals,” Phys. Rev., vol. 80, pp. 72–80, 1950.
[96] Z. Shuai, L. Wang, and C. Song, Theory of charge transport in carbon electronic materials. Springer Science & Business Media, 2012.
[97] K. Zollner, P. E. F. Junior, and J. Fabian, “Strain-tunable orbital, spin-orbit, and optical properties of monolayer transition-metal dichalcogenides,” Phys. Rev. B, vol. 100, p. 195126, 2019.
[98] M. Wu, Y. I. Alivov, and H. Negi, Morkoç, “High-κ dielectrics and advanced channel concepts for Si MOSFET,” J. Mater. Sci.: Mater. Electron., vol. 19, pp. 915–951, 2008.
[99] B. Kumar, B. K. Kaushik, and Y. S. Negi, “Perspectives and challenges for organic thin film transistors: Materials, devices, processes and applications,” J. Mater. Sci.: Mater. Electron., vol. 25, pp. 1–30, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94294-
dc.description.abstract近幾年出現的非對稱過渡金屬二硫屬化物(JTMD)因其卓越的光學和電學特性,吸引了廣泛關注。與傳統二維材料相比,JTMD額外的本質偶極矩可以產生 n 型和 p 型接觸,可用於太陽能電池和針型二極體等器件。在本論文中,我們利用這一特性來構建同時包含 n 型和 p 型的金屬氧化物半導體互補式場效電晶體。首先,我們通過密度泛函理論計算研究了三層二維硫硒化鉬(MoSSe)中的自發偶極矩電場強度。再來,我們探討 MoSSe 的自發偶極矩與不同金屬在接觸時產生的能帶彎曲,並探討電子和電洞的如何在介面累積而形成 p 型、n 型甚至歐姆接觸。利用後續這該接觸特性,透過二维有限元的泊松漂移擴散求解器進行電晶體元件模擬,透過這些模擬幫助我們構建最佳的互補型場校電晶體維度。我們最終的研究結果顯示,透過適當的設計,我們可以只使用單一個 JTMD 材料作為通道層,設計同時包含 n 型與 p 型的互補型場校電晶體,且無需額外掺雜就能形成高濃度載子區域。除此之外,我們也針對二維硫硒化鉬進行光學吸收性值的探討,並將吸收相關之關鍵參數取出,以供未來光電元件模擬做使用。zh_TW
dc.description.abstractJanus transition metal dichalcogenides (JTMDs) have attracted extensive attention due to their exceptional optical and electrical properties. The extra intrinsic dipole moment of JTMDs can generate n-type and p-type contacts, which can be used for devices such as solar cells and pin diodes. Our work explores JTMDs for complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs), enabling n- and p-type channels in a single material. Firstly, we investigate the spontaneous dipole field strength in layered MoSSe through density-functional theory. The MoSSe spontaneous polarization influences how it interacts with contacts, leading to Ohmic, p-type, or n-type contact formations. Utilizing these contact properties, we employed a finite element Poisson-drift-diffusion two-dimensional method to simulate the transistor device, and these simulations guided us to design the best dimensions for CMOSFETs. Our final results demonstrate that, through appropriate design, we can design CMOSFETs containing both n-type and p-type transistors using only a single JTMD material as the channel layer, and form high-carrier-density regions without additional doping. In addition, we investigated the optical absorption properties of two-dimensional MoSSe, extracting key absorption-related parameters for use in future optoelectronic device simulations.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:39:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:39:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
Verification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Overview of Transition Metal Dichalcogenides . . . . . . . . . . . . 1
1.2 Overview of TMD FETs . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 TMD Contact Properties with Electrode Materials . . . . . . . . . . 7
1.2.2 TMD Complementary Metal–Oxide–Semiconductor FET device . . 8
1.3 Transport Properties Simulation on TMD Materials . . . . . . . . . . 10
1.4 Introduction and Applications of Janus TMD Materials . . . . . . . . 12
Chapter 2 Methodology 14
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Structure Building . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Density Functional Theory and Related Methods . . . . . . . . . . . 16
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 2D System Dielectric Constant Extraction . . . . . . . . . . . . . . 19
2.3.3 Spontaneous Polarization Extraction . . . . . . . . . . . . . . . . . 20
2.3.4 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Non-parabolic Band Fitting . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Deformation Potential Model . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 Intravalley Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Intervalley Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Multi-valley Monte Carlo method . . . . . . . . . . . . . . . . . . . 27
2.7 Poisson and Drift-Diffusion Model . . . . . . . . . . . . . . . . . . 28
2.8 Absorption-related Properties Extraction . . . . . . . . . . . . . . . 29
Chapter 3 Properties of Janus MoSSe 31
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Band Structures and Related Electronic Characteristics of MoSSe . . 32
3.2.1 Structural Relaxation and Band Structures . . . . . . . . . . . . . . 32
3.2.2 Spontaneous Polarization . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Contact Characteristic of MoSSe . . . . . . . . . . . . . . . . . . . . 37
3.3.1 MoSSe with Graphene as Contact . . . . . . . . . . . . . . . . . . 37
3.3.2 MoSSe with Metal as Contact . . . . . . . . . . . . . . . . . . . . . 38
3.4 Intrinsic Transport of Mono- and Tri-layered MoSSe . . . . . . . . . 42
3.5 Absorption Properties of Mono-layer MoSSe . . . . . . . . . . . . . 47
Chapter 4 MoSSe Complementary Metal-Oxide-Semiconductor Field-Effect Transistor Design and Simulation 54
4.1 Device Conceptualization and Simulation Parameter . . . . . . . . . 54
4.2 Spontaneous Polarization Effect on Band Diagram . . . . . . . . . . 56
4.3 Effect of Gate Design . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Effect of Equivalent Oxide Thickness . . . . . . . . . . . . . . . . . 61
4.5 Effect of Spontaneous Polarization . . . . . . . . . . . . . . . . . . . 66
4.6 2D Carrier Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 69
Chapter 5 Conclusion 72
References 74
-
dc.language.isoen-
dc.subject二維非對稱型材料zh_TW
dc.subject密度泛涵理論zh_TW
dc.subject載子遷移率zh_TW
dc.subject吸收係數zh_TW
dc.subject二維材料電晶體zh_TW
dc.subjectJanus Two-dimensional materialen
dc.subject2D Material Transistorsen
dc.subjectAbsorption Coefficienten
dc.subjectCarrier Mobilityen
dc.subjectDensity Functional Theoryen
dc.title研究二維硫硒化鉬之特性及其用於金氧半互補式電晶體之設計zh_TW
dc.titleStudy on the Properties of Two-Dimensional MoSSe and Its Complementary Metal-Oxide-Semiconductor Field-Effect Transistor Designen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;陳建宏zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Jian-Hong Chenen
dc.subject.keyword二維非對稱型材料,密度泛涵理論,載子遷移率,吸收係數,二維材料電晶體,zh_TW
dc.subject.keywordJanus Two-dimensional material,Density Functional Theory,Carrier Mobility,Absorption Coefficient,2D Material Transistors,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202403452-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf21.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved