請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94292
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳于高 | zh_TW |
dc.contributor.advisor | Yue-Gau Chen | en |
dc.contributor.author | 蔡耀萱 | zh_TW |
dc.contributor.author | Yau-Hsuan Tsai | en |
dc.date.accessioned | 2024-08-15T16:39:22Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | Angelier, J., Chu, H. T., & Lee, J. C. (1997). Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan. Tectonophysics, 274(1-3), 117-143.
Barnhart, W. D. (2017). Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR. Journal of Geophysical Research: Solid Earth, 122(1), 372-386. Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383. Bilham, R., Suszek, N., & Pinkney, S. (2004). California creepmeters. Seismological Research Letters, 75(4), 481-492. Biq, C. (1965). The East Taiwan Rift. Petroleum Geology of Taiwan, 4, 93-106. Burbank, D. W., & Anderson, R. S. (2001). Tectonic Geomorphology, Chapter 4, ISBN:0-632-04386-5 Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112-134. Çakir, Z., Ergintav, S., Özener, H., Dogan, U., Akoglu, A. M., Meghraoui, M., & Reilinger, R. (2012). Onset of aseismic creep on major strike-slip faults. Geology, 40(12), 1115-1118. Cetin, E., Cakir, Z., Meghraoui, M., Ergintav, S., & Akoglu, A. M. (2014). Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 15(7), 2883-2894. Champenois, J., Fruneau, B., Pathier, E., Deffontaines, B., Lin, K. C., & Hu, J. C. (2012). Monitoring of active tectonic deformations in the Longitudinal Valley (Eastern Taiwan) using Persistent Scatterer InSAR method with ALOS PALSAR data. Earth and Planetary Science Letters, 337, 144-155. Chaussard, E., Bürgmann, R., Fattahi, H., Johnson, C. W., Nadeau, R., Taira, T., & Johanson, I. (2015). Interseismic coupling and refined earthquake potential on the Hayward‐Calaveras fault zone. Journal of Geophysical Research: Solid Earth, 120(12), 8570-8590. Chen, C. W., & Zebker, H. A. (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. JOSA A, 18(2), 338-351. Chen, H. Y., Lee, J. C., Tung, H., Chen, C. L., & Lee, H. K. (2021). Variable vertical movements and their deformation behaviors at convergent plate suture: 14-year-long (2004–2018) repeated measurements of precise leveling around middle Longitudinal Valley in eastern Taiwan. Journal of Asian Earth Sciences, 218, 104865. Chen, H. Y., Lee, J. C., Tung, H., Yu, S. B., Hsu, Y. J., & Lee, H. (2012). Determination of vertical velocity field of southernmost Longitudinal Valley in eastern Taiwan: a joint analysis of leveling and GPS measurements. Terrestrial, Atmospheric & Oceanic Sciences, 23(4). Chen, K. H., & Bürgmann, R. (2017). Creeping faults: Good news, bad news?. Reviews of Geophysics, 55(2), 282-286. Cheng, S. N., Yeh, Y. T., & Yu, M. S. (1996). The 1951 Taitung earthquake in Taiwan. Journal of the Geological Society of China, 39, 267-286. Chuang, R. Y., Miller, M. M., Chen, Y. G., Chen, H. Y., Shyu, J. B. H., Yu, S. B., ... & Chung, L. H. (2012). Interseismic deformation and earthquake hazard along the southernmost Longitudinal Valley fault, eastern Taiwan. Bulletin of the Seismological Society of America, 102(4), 1569-1582. Crespi, J. M., Chan, Y. C., & Swaim, M. S. (1996). Synorogenic extension and exhumation of the Taiwan hinterland. Geology, 24(3), 247-250. Doin, M. P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35-50. Duquesnoy, T., Barrier, E., Kasser, M., Aurelio, M., Gaulon, R., Punongbayan, R. S., & Rangin, C. (1994). Detection of creep along the Philippine fault: First results of geodetic measurements on Leyte island, central Philippine. Geophysical Research Letters, 21(11), 975-978. Fattahi, H., & Amelung, F. (2013). DEM error correction in InSAR time series. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4249-4259. Franklin, K. R., & Huang, M. H. (2022). Revealing crustal deformation and strain rate in Taiwan using InSAR and GNSS. Geophysical Research Letters, 49(21), e2022GL101306. Gabriel, A. K., Goldstein, R. M., & Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191. Hamiel, Y., Piatibratova, O., & Mizrahi, Y. (2016). Creep along the northern Jordan Valley section of the Dead Sea Fault. Geophysical Research Letters, 43(6), 2494-2501. Hao, M., Wang, Q., Shen, Z., Cui, D., Ji, L., Li, Y., & Qin, S. (2014). Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632, 281-292. Harris, R. A., & Segall, P. (1987). Detection of a locked zone at depth on the Parkfield, California, segment of the San Andreas fault. Journal of Geophysical Research: Solid Earth, 92(B8), 7945-7962. Harris, R. A. (2017). Large earthquakes and creeping faults. Reviews of Geophysics, 55(1), 169-198. Hassen, R.F.(2001), Radar Interferometry:Data Interpretation and Error Analysis, Kluwer Acad., New York. Hreinsdóttir, S., & Bennett, R. A. (2009). Active aseismic creep on the Alto Tiberina low-angle normal fault, Italy. Geology, 37(8), 683-686. Hsu, L., & Bürgmann, R. (2006). Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements. Geophysical research letters, 33(6). Hsu, T. L. (1962). Recent faulting in the Longitudinal Valley of eastern Taiwan. Proc. Geol. Soc. China Mem., 1, 95-102. Hu, J. C., Cheng, L. W., Chen, H. Y., Wu, Y. M., Lee, J. C., Chen, Y. G., ... & Angelier, J. (2007). Coseismic deformation revealed by inversion of strong motion and GPS data: the 2003 Chengkung earthquake in eastern Taiwan. Geophysical Journal International, 169(2), 667-674. IEEE. (2020). IEEE Standard Letter Designations for Radar-Frequency Bands. IEEE Std 521-2019 (Revision of IEEE Std 521-2002) (pp. 1-15). InSAR Technology. (n.d.). InSAR Slovakia. https://insar.space/insar-technology/ Jackson, M., & Bilham, R. (1994). Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. Journal of Geophysical Research: Solid Earth, 99(B7), 13897-13912. JAXA. (n.d.). ALOS-2 / PALSAR-2. https://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.htm Jolivet, R., Agram, P. S., Lin, N. Y., Simons, M., Doin, M. P., Peltzer, G., & Li, Z. (2014). Improving InSAR geodesy using global atmospheric models. Journal of Geophysical Research: Solid Earth, 119(3), 2324-2341. Jolivet, R., Grandin, R., Lasserre, C., Doin, M. P., & Peltzer, G. (2011). Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(17). Jolivet, R., Lasserre, C., Doin, M. P., Guillaso, S., Peltzer, G., Dailu, R., ... & Xu, X. (2012). Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry. Journal of Geophysical Research: Solid Earth, 117(B6). Kuochen, H., Wu, Y.M., Chang, C.H., Hu, J.C., Chen, W.S. (2004). Relocation of eastern Taiwan earthquakes and tectonic implications. Terrestrial, 15, 647-666. Kuochen, H., Wu, Y. M., Chen, Y. G., & Chen, R. Y. (2007). 2003 Mw6. 8 Chengkung earthquake and its related seismogenic structures. Journal of Asian Earth Sciences, 31(3), 332-339. Lee, C., & Yu, S. B. (1985). Precision of distance measurements for observing horizontal crustal deformation in Taiwan. Bulletin of the Institute of Earth Sciences, Academia Sinica 5, 161–174. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2001). Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan. Tectonophysics, 333(1-2), 219-240. Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., Jeng, F. S., & Rau, R. J. (2003). Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. Journal of Geophysical Research: Solid Earth, 108(B11). Lee, J. C., Angelier, J., Chu, H. T., Hu, J. C., & Jeng, F. S. (2005). Monitoring active fault creep as a tool in seismic hazard mitigation. Insights from creepmeter study at Chihshang, Taiwan. Comptes rendus. Géoscience, 337(13), 1200-1207. Liang, C., & Fielding, E. J. (2017a). Interferometry with ALOS-2 full-aperture ScanSAR data. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2739-2750. Liang, C., & Fielding, E. J. (2017b). Measuring azimuth deformation with L-band ALOS-2 ScanSAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2725-2738. Liang, C., Liu, Z., Fielding, E. J., & Bürgmann, R. (2018). InSAR time series analysis of L-band wide-swath SAR data acquired by ALOS-2. IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4492-4506. Lienkaemper, J. J., McFarland, F. S., Simpson, R. W., & Caskey, S. J. (2014). Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data. Bulletin of the Seismological Society of America, 104(6), 3094-3114. Lienkaemper, J. J., DeLong, S. B., Domrose, C. J., & Rosa, C. M. (2016). Afterslip behavior following the 2014 M 6.0 South Napa earthquake with implications for afterslip forecasting on other seismogenic faults. Seismological Research Letters, 87(3), 609-619. Liu, C.-C., & Yu, S.-B. (1990). Vertical crustal movements in eastern taiwan and their tectonic implications. Tectonophysics, 183(1-4), 111-119. Louderback, G. D. (1942). Faults and earthquakes. Bulletin of the Seismological Society of America, 32(4), 305-330. Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., ... & Crew, A. S. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211. Maurer, J., & Johnson, K. (2014). Fault coupling and potential for earthquakes on the creeping section of the central San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119(5), 4414-4428. Moore, D. E., & Rymer, M. J. (2007). Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448(7155), 795-797. Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System, 74. University of California, San Diego. Ohzono, M., Sagiya, T., Hirahara, K., Hashimoto, M., Takeuchi, A., Hoso, Y., ... & Doke, R. (2011). Strain accumulation process around the Atotsugawa fault system in the Niigata-Kobe Tectonic Zone, central Japan. Geophysical Journal International, 184(3), 977-990. Ozener, H., Dogru, A., & Turgut, B. (2013). Quantifying aseismic creep on the Ismetpasa segment of the North Anatolian Fault Zone (Turkey) by 6 years of GPS observations. Journal of Geodynamics, 67, 72-77. Peyret, M., Dominguez, S., Cattin, R., Champenois, J., Leroy, M., & Zajac, A. (2011). Present‐day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS‐InSAR analysis of the ERS satellite archives. Journal of Geophysical Research: Solid Earth, 116(B3). Schulz, S. S., Mavko, G. M., Burford, R. O., & Stuart, W. D. (1982). Long‐term fault creep observations in central California. Journal of Geophysical Research: Solid Earth, 87(B8), 6977-6982. Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., & Cheng, C. T. (2016). A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3). Shyu, J. B. H., Chung, L. H., Chen, Y. G., Lee, J. C., & Sieh, K. (2007). Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317-331. Shyu, J. B. H., Sieh, K., Avouac, J. P., Chen, W. S., & Chen, Y. G. (2006a). Millennial slip rate of the Longitudinal Valley fault from river terraces: Implications for convergence across the active suture of eastern Taiwan. Journal of Geophysical Research: Solid Earth, 111(B8). Shyu, J. B. H., Sieh, K., Chen, Y. G., & Chung, L. H. (2006b). Geomorphic analysis of the Central Range fault, the second major active structure of the Longitudinal Valley suture, eastern Taiwan. GSA Bull 118 (11–12): 1447–1462. Shyu, J. B. H., Sieh, K., Chen, Y. G., Chuang, R. Y., Wang, Y., & Chung, L. H. (2008). Geomorphology of the southernmost Longitudinal Valley fault: Implications for evolution of the active suture of eastern Taiwan. Tectonics, 27(1). Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., & Liu, S. C. (2020). Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terr Atmos Ocean Sci, 31(4), 469-478. Smith, S. W., & Wyss, M. (1968). Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake. Bulletin of the Seismological Society of America, 58(6), 1955-1973. Stoffer, P. W. (2008). Where's the Hayward Fault?: A Green Guide to the Fault (pp. 1-96). US Geological Survey. Thomas, M. Y., Avouac, J. P., Gratier, J. P., & Lee, J. C. (2014). Lithological control on the deformation mechanism and the mode of fault slip on the Longitudinal Valley Fault, Taiwan. Tectonophysics, 632, 48-63. Tsutsumi, H., Fukushima, Y., Perez, J. S., & Lienkaemper, J. J. (2013). Aseismic creeping of the Philippine fault in Leyte Island, Philippines, revealed by field observation and InSAR analysis. In Japan Geoscience Union Meeting (Vol. 104). Wu, Y. M., Chen, Y. G., Chang, C. H., Chung, L. H., Teng, T. L., Wu, F. T., & Wu, C. F. (2006). Seismogenic structure in a tectonic suture zone: With new constraints from 2006 Mw6. 1 Taitung earthquake. Geophysical research letters, 33(22). Yang, C.N. and Wang, Y. (1985) Petrotectonic study on the Yuli belt of the Tananao Schist in the Juisui area, eastern Taiwan. Acta. Geol. Taiwanica, 23, 149-176. Yu, C., Li, Z., & Penna, N. T. (2018a). Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sensing of Environment, 204, 109-121. Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018b). Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202-9222. Yu, C., Penna, N. T., & Li, Z. (2017). Generation of real‐time mode high‐resolution water vapor fields from GPS observations. Journal of Geophysical Research: Atmospheres, 122(3), 2008-2025. Yunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline InSAR time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331. Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. Yu, S. B., & Kuo, L. C. (2001). Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333(1-2), 199-217. Yu S.B. and Liu C.C., (1989). Fault creep on the central segment of the longitudinal valley fault, Eastern Taiwan. Proc. Geol. Soc. China, 32 (3), 209-231. 王源、楊昭男、陳文山(1992)玉里圖幅及說明書,五萬分之一臺灣地質圖第 48 號。經濟部中央地質調查所,共 81 頁。 石再添、張瑞津、黃朝恩、石慶得、楊貴三、孫林耀明(1983)台灣西部與南部活動斷層的地形學研究。國立臺灣師範大學地理研究所地理研究報告,第10期,第49-94頁。 朱傚祖和游明聖(1995)花東縱谷活動斷層調查研究。行政院國家科學委員會專題研究計畫成果報告,NSC-83-0202-M47-001,共176頁。 林啓文(2023)池上斷層條帶圖說明書2023年版1016R。 林啓文和周稟珊(2022)玉里斷層條帶圖說明書(2022年版)。 林啓文、陳文山、劉彥求、陳柏村(2009)臺灣東部與南部的活動斷層:二萬五千分之一活動斷層條帶圖說明書。經濟部中央地質調查所特刊第23號,81-97頁。 紀權窅(2007)南段花東縱谷之新期構造研究-利吉斷層與鹿野斷層的活動特性。國立台灣大學地質科學研究所碩士論文,共84頁。 徐鐵良(1956)臺灣東部海岸山脈地質。臺灣省地質調查所彙刊,第8號,15-41 頁。 陳文山(1988)臺灣東部海岸山脈沉積盆地之演化及其在地體構造上之意義。國立台灣大學地質學研究所博士論文,共304頁。 陳文山(2010)地震地質與地變動潛勢分析計畫─斷層長期滑移速率與再現週期研究(總報告)。經濟部中央地質調查所報告第99-09總號,共141頁。 莊昀叡、景國恩、張午龍、陳宏宇、李易叡、莊怡蓉、邵國士(2023)重要活動斷層地區地表變形觀測與斷層潛勢評估-第二階段(1/3)(第1年度)。經濟部地質調查及礦業管理中心112年度委託專業服務期末報告書,計畫編號:B11208。 張瑞津、石再添、沉淑敏、張政亮(1992)花蓮縱谷北段河階的地形學研究。師大地理研究報告,第18期,第241-292頁。 楊蔭清(1953)41年來隻花蓮地震。花蓮文獻,創刊號,第67-71頁。 劉 政、黃明偉、蔡義本(2007)2003 年 12 月 10 日成功地震前後池上斷層錯動及水準測量結果。經濟部中央地質調查所彙刊,第20號,第23-51頁。 鍾令和(2003)1951年池上-玉里地震地表破裂與其所指示之新構造意義。國立臺灣大學地質學研究所碩士論文,共168頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94292 | - |
dc.description.abstract | 地表潛移為重要的斷層滑移行為,其透過無震滑移釋放能量,然而有時斷層面有部分未潛移也能夠產生地震,因此攸關地震危害的評估。臺灣位於菲律賓海板塊和歐亞板塊的活動碰撞帶,跨過台灣每年約有82毫米的縮短量,其中43%集中於東部的花東縱谷聚合帶,該區域最主要的斷層為縱谷斷層,此斷層的南段也是世界上著名的潛移斷層之一。縱谷斷層為一條逆衝兼左移的斷層,根據前人的研究成果,其南段玉里至利吉具有地表潛移,速率約為10-30 mm/yr。前人之Envisat和ALOS-1雷達影像的InSAR時間序列成果也觀測到,斷層南段在視衛星方向的地表速度場有明顯的地表潛移。然而,現地觀測與影像的測地觀測結果不一致,測地資料顯示了沿斷層的地表潛移廣泛分布於縱谷斷層南段,而現地觀測可辨識的斷層地表潛移僅局限在少數特定地點。此外, InSAR時間序列推導的速度場顯示,縱谷斷層南段的地表潛移速率會隨時間和空間變化,Peyret et al.(2011)觀測最大的地表潛移速率在富里,往北往南遞減,於玉里甚至趨近於0 mm/yr;Champenois et al.(2012)所觀測到的則是富里至玉里均有較高的地表潛移速率,於玉里有約為26 mm/yr,與Peyret et al.(2011)的觀測成果有很大的差異。
因此,本研究使用2015至2020年27幅(9個時間 x 3幅)ALOS-2雷達影像,應用於InSAR時間序列小基線法,分析縱谷斷層南段地表潛移的時空分布情形。並使用ISCE軟體進行雷達影像的前處理以及產製干涉圖,其中包含影像對位、圖幅拼接、電離層校正等。根據視衛星方向速度場成果,縱谷南段存在明顯的速度不連續邊界,跨過此邊界的速度差約5-30 mm/yr,其位置也與前人繪製的縱谷斷層大致重疊,且在玉里至池上跨斷層的速度變化寬度約為0.5至1公里,代表此處有非常近地表的潛移。另外,在鹿野斷層也觀測到明顯的速度變化邊界,約為5-16 mm/yr,且鹿野斷層的長度較前人調查的還要更長,在檳榔向南延伸約5公里有皆有地表潛移,而在東側卑南山西緣則沒有顯著的速度差異。 | zh_TW |
dc.description.abstract | Surface fault creep, a significant behavior related to seismic hazard assessments, releases energy through aseismic slip and can potentially lead to earthquakes. The Longitudinal Valley fault (LVF) in eastern Taiwan, situated within the active collision boundary of the Philippine Sea and Eurasian plates, is globally renowned for its observed surface creep with oblique motion in southern portion from Yuli to Lichi. Geodetic data indicate a reported surface creep rate of approximately 10-30 mm/yr at specific sites along the fault. InSAR time series using Envisat and ALOS-1 images also reveal substantial surface creep along the southern LVF. Despite widespread surface creep in geodetic data, in-situ observations do not consistently align with imaging geodetic observations, showing localized surface creep at specific locations. Moreover, fault creep patterns derived from InSAR time series exhibit variations over time. Peyret et al. (2011) observed the highest surface creep rate in Fuli, which decreases towards both the north and south, approaching nearly 0 mm/yr in Yuli. In contrast, Champenois et al. (2012) observed higher surface creep rates from Fuli to Yuli, with approximately 26 mm/yr in Yuli, showing significant differences from the observations by Peyret et al. (2011).
Hence, in this study we conduct a spatial-temporal analysis of southern LVF surface creep by using the Small Baseline Subset (SBAS) InSAR technique. Employing ISCE software, we preprocess, co-register, and apply DInSAR to 3 frames and 9 ALOS-2 SAR images from 2015 to 2020 in the ascending orbit in the stripmap (SM3) mode. The split-spectrum method is employed for ionospheric correction. The results reveal a velocity boundary ranging from 5 to 30 mm/yr in the line-of-sight (LOS) direction along the southern Longitudunal valley. The major velocity change boundary migrates westward in the southernmost valley, and a noticeable change in LOS velocity, approximately 5 to 16 mm/yr, is observed along the northern section of the Luyeh fault. Conversely, the southern part of the Luyeh fault along the western edge of Beinan Mountain does not display a significant difference in velocity. Instead, extending 5 kilometers south from Pinglang on the western side exhibits a gradual velocity change due to surface creep. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:39:21Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:39:22Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝………………………………………………………………........ i
中文摘要……………………………………………………………...… ii 英文摘要………………………………………………………………… iv 目次………………………………………………………………......... vi 圖次……………………………………………………………………. x 表次……………………………………………………………..…...... xv 第一章 緒論…………………………………………………………... 1 1.1研究動機……………………………………………………..... 1 1.2研究問題………………………………………………………. 1 1.3研究目的………………………………………………………. 3 第二章 文獻回顧………………………………………………........... 4 2.1斷層潛移(fault creep)……………………………................. 4 2.2地表潛移…………………………………................................. 5 2.3地表潛移與地震的關係………………………......................... 6 2.4地表潛移觀測………………………………............................. 8 2.5地表潛移的位置及影響………………………………........... 10 第三章 研究區域……………………………………………………. 12 3.1地層………………………………………………………...… 13 3.2活動斷層…………………………………………………...… 14 3.2.1縱谷斷層南段…………………………………………...… 15 3.2.2鹿野斷層………………………………………………....… 16 3.2.3中央山脈斷層…………………………………………....… 16 3.2.4玉里斷層………………………………………………....… 17 3.3縱谷斷層南段地表潛移…………………………...……....… 17 第四章 研究方法……………………………………………………. 22 4.1研究流程……………………………………………………... 22 4.2研究資料……………………………………………………... 25 4.3雷達干涉技術………………………………………………... 25 4.3.1合成孔徑雷達(SAR)……………………………….... 25 4.3.2差分合成孔徑雷達干涉(D-InSAR)…………….…... 27 4.3.3電離層校正-分離頻譜法……………………..…….... 29 4.3.4 ISCE-2 alosStack處理流程…………………..……….... 31 4.4小基線合成孔徑雷達干涉(SBAS-InSAR)……..……….... 34 4.4.1原理…………………………...………………………... 34 4.4.2 MintPy處理流程…………...…………………………... 35 4.5 GNSS驗證……………………......…………………………... 39 第五章 研究成果……………………………………………….…… 41 5.1 D-InSAR及電離層校正…………………………..…….…… 41 5.1.1原始干涉圖…………………………….………….…… 41 5.1.2電離層延遲估計……………………….………….…… 42 5.1.3相位展開……………………………….………….…… 44 5.2 InSAR時間序列…………………………….………….…….. 46 5.2.1建立網絡…………………………….…………….…… 46 5.2.2相位展開…………………………….…………….…… 48 5.2.3時間序列與對流層延遲修正……….…………….…… 48 5.2.4速度估算…………………………….…………….…… 52 5.3縱谷南段LOS速度場……….…………….…….…….…….. 52 5.4 GNSS驗證…………………………….……………..….…… 54 第六章 討論…………………………….……….…………..….…… 57 6.1速度剖面分析與地表潛移活動斷層繪製………..…...…… 57 6.1.1速度剖面型態分析概述….……….……….…..….…… 58 6.1.2縱谷斷層南段…………….……….……….…..….…… 60 6.1.3鹿野斷層………………….……….……….…..….…… 72 6.2地表潛移速率空間變化…….………….….…….…..….…… 75 6.3地表潛移速率時空變化…….………….….…….…..….…… 78 6.4縱谷南段構造討論…….………….….………….…..….…… 85 第七章 結論………….….………….……………..…….…..….…… 88 參考文獻………….….………….……………..………….…..….…… 90 附錄1、電離層延遲估計多視數組合測試……..…………...….…… 101 附錄2、干涉圖濾波強度測試……..…………..….…………….…… 105 附錄3、GNSS擬合圖及處理後資料………….….…..……..….…… 109 附錄4、計算跨斷層速度差之平均法與回歸線法剖面………….... 114 附錄5、ALOS-1與ALOS-2的觀測角度與轉換成視衛星方向速度差………………………………………… 123 附錄6、ALOS-1計算跨斷層速度差之回歸線法剖面………………. 125 附錄7、跨斷層的兩個 GNSS 測站轉換成 ALOS-1 視衛星方向速度差. …………………………………………………………… 130 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用 InSAR 時間序列探討縱谷斷層南段的地表潛移 | zh_TW |
dc.title | Investigating Surface Creeping in Southern Longitudinal Valley Fault by InSAR Time Series | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 莊昀叡 | zh_TW |
dc.contributor.coadvisor | Ray Y. Chuang | en |
dc.contributor.oralexamcommittee | 詹瑜璋;郭昱廷;景國恩 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Chang Chan;Yu-Ting Kuo;Kuo-En Ching | en |
dc.subject.keyword | 間震變形,活動構造,潛移斷層,池上斷層,地表變形, | zh_TW |
dc.subject.keyword | interseismic deformation,active tectonics,creep fault,Chihshang Fault,surface deformation, | en |
dc.relation.page | 131 | - |
dc.identifier.doi | 10.6342/NTU202402804 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 22.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。