Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94285Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 江昭皚 | zh_TW |
| dc.contributor.advisor | Joe-Air Jiang | en |
| dc.contributor.author | 張晉維 | zh_TW |
| dc.contributor.author | Ching-Wei Chang | en |
| dc.date.accessioned | 2024-08-15T16:37:20Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Alterwl. Github. 2022. Alterwl / Battery_SOC_Estimation. Available at: github.com/AlterWL/Battery_SOC_Estimation. Accessed 6 July 2023.
Bergveld, H. J., W. S. Kruijt and P. H. L. Notten. 2002. Battery Management Systems Design by Modelling. Boston, USA. Kluwer Academic Publishers. Barletta, G., P. DiPrima and D. Papurello. 2022. Thevenin’s Battery Model Parameter Estimation Based on Simulink. Energies 15(17): 1-10. Cacciato, M., G. Nobile, G. Scarcella and G. Scelba. 2015. Real-time model-based estimation of SOC and SOH for energy storage systems. In "IEEE 6th International Symposium on Power Electronics for Distributed Generation Systems", 1-8 Chakir, A., M. Tabaa, F. Moutaouakkil, H. Medromi, M. Julien-Salame, A. Dandache and K. Alami. 2020. Optimal energy management for a grid connected PV-battery system. Energy Reports 6(3): 218-231. Daowd, M., N. Omar, B. Verbrugge, P. V. D. Bossche, J. V. Mierlo. 2010. Battery Models Parameter Estimation based on Matlab/Simulink. In "The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition", 5-9 Daud, M. Z., A. Mohamed and M.A. Hannan. 2013. An improved control method of battery energy storage system for hourly dispatch of photovoltaic power sources. Energy Conversion and Management 73: 256-270. Duong, V-H., H. A. Bastawrous, K. C. Lim, K. W. See, P. Zhang and S. X. Dou. 2015. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares. Journal of Power Sources 296: 215-224. Dutt, R. and A. Amit. 2020. Real-Time and Accurate State-of-Charge Estimation Methodology using Dual Square Root Unscented Kalman Filter. In "2020 IEEE International Symposium on Circuits and Systems" Eberhardt, J.J. 2006. Motivations for Promoting Clean Diesels. In " EPA Region 5 Diesel Conference" Ecker, M., J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, D. U. Sauer. 2012. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources 215: 248-257. Fang, L., J. Li and B. Peng. 2019. Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method. Energy Procedia 158: 3008-3013. Feng, J., F. Cai, J. Yang, S. Wang and K. Huang. 2022. An Adaptive State of Charge Estimation Method of Lithium-ion Battery Based on Residual Constraint Fading Factor Unscented Kalman Filter. IEEE Access 10:44549-44563 Feng, T., L. Yang, X. Zhao, H. Zhang, and J. Qiang. 2015. Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction. Journal of Power Sources 284: 192-203. Ghaeminezhad, N. and M. Monfared. 2021. Charging control strategies for lithium-ion battery packs: review and recent developments. IET Power Electronics 15(6): 349- 367. Harting, N., R. Schenkendorf, N. Wolff, and U. Krewer. 2018. State-of-health identification of lithium-ion batteries based on nonlinear frequency response analysis: first steps with machine learning. Applied Science 8: 5. He, H., Xx Zhang, Rx Xiong, Yx Xu and H. Guo. 2012. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 39(1):310-318. Hsieh, Y. C., S. P. Chou and C. S. Moo. 2004. Balance discharging for series-connected batteries. In "2004 IEEE 35th Annual Power Electronics Specialists Conference", 2697-2702. Huang, C., Z. Wang, Z. Zhao, L. Wang, C. S. Lai and D. Wang. 2018. Robustness Evaluation of Extended and Unscented Kalman Filter for Battery State of Charge Estimation. IEEE Access 6: 27617-27628. Julier, S. J. and J. K. Uhlmann. 1997. A New Extension of the Kalman Filter to Nonlinear Systems. In"The 11th International Symposium of Aerospace/Defense Sensing, Simulation and Controls, Multi Sensor Fusion, Tracking and Resource Management II" Kang, D., P-Y. Lee, K. Yoo and J. Kim. 2020. Internal thermal network model-based inner temperature distribution of high-power lithium-ion battery packs with different shapes for thermal management. Journal of Energy Storage 27:101017 Khezri, R., A. Mahmoudi, and H. Aki. 2022. Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: review, challenges and new perspectives. Renewable and Sustainable Energy Reviews 153: 111763. Li, X., D. Hui and X. Lai. 2013. Battery Energy Storage Station (BESS)-Based Smoothing Control of Photovoltaic (PV) and Wind Power Generation Fluctuations. IEEE Transactions on Sustainable Energy 4(2): 464-473. Liang, X., M. Zhang and G. Huang. 2020. Review on lithium-ion battery modeling methods based on BMS. Energy Storage Science and Technology 9(6): 1933-1939. Liao, Z., S. Zhang, K. Li, M. Zhao, Z. Qiu, D. Han, G. Zhang and T. G. Habetler. 2020. Hazard analysis of thermally abused lithium-ion batteries at different state of charges. Journal of Energy Storage 27:101065 Liu, C., M. Hu, G. Jin, Y. Xu, and J. Zhai. 2021. State of power estimation of lithiumion battery based on fractional-order equivalent circuit model. Journal of Energy Storage 41: 102954. Liu, F., D. Yu, C. Shao, X. Liu, W. Su. 2023. A review of multi-state joint estimation for lithium-ion battery: Research status and suggestions. Journal of Energy Storage 73 Part C: 109071, Ma, L., Y. Xu, H. Zhang, F. Yang, X. Wang and C. Li. 2022. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order model with multi-innovations unscented Kalman filter method. Journal of Energy Storage 52 part B:104904. Mousavi, S.M., M. Nikdel. 2014. Various battery models for various simulation studies and applications. Renewable and Sustainable Energy Reviews 32: 477-485. Pop, V., H. J. Bergveld, P. P. L. Regtien, B. Veld, D. Danilov and P. H. L. Notten. 2007, Battery Aging and Its Influence on the Electromotive Force. Journal of The Electrochemical Society 154(8). Ramadan, H. S., M. Becherif, and F. Claude. 2017. Extended Kalman filter for accurate state of charge estimation of lithium-based batteries: a comparative analysis. International Journal of Hydrogen Energy 42(48): 29033- 29046 Ren, H. B., Y. Z. Zhao, S .Z. Chen, T. P. Wang. 2019. Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation. Energy 166: 908-917. Park, S., A. Jeongho, K. Taewoo, P. Sungbeak, Y. Kim, I. Cho and J. Kim. 2020. Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems. Journal of Power Electronics 20(6): 1526-1540. Shen, P., M. Ouyang, L. Lu, J. Li and X. Feng. 2018. The Co-estimation of State of Charge, State of Health, and State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology 67(1): 92-103. Shen, X. F., B.S. Sun, H. F. Qi, X.B. Shen and X. J. Su. 2018. Research on peak power test method for Lithium Ion battery. Energy Procedia 152: 550-555. Shete, S., P. Jog, R. K. Kumawat and D. K. Palwalia. 2021. Battery Management System for SOC Estimation of Lithium-Ion Battery in Electric Vehicle: A Review. In "IEEE International Conference on Recent Advances and Innovations in Engineering", 1-4. Shu, X., G. Li, J.W. Shen, Z.Z. Lei, Z. Chen, Y.G. Liu. 2020. An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation. Energy 207:118262. Srinivasan, R., B. G. Carkhuff, M. H. Butler and A. C. Baisden. 2011. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells. Electrochimica Acta 56(17): 6198-6204. Sun, F., R. Xiong, H. He, W. Li, and J. E. E. Aussems. 2012. Model-based dynamic multiparameter method for peak power estimation of lithium–ion batteries. Applied Energy 96: 378-386. Taborelli, C. and S. Onori. 2014. State of charge estimation using extended Kalman filters for battery management system. In "2014 IEEE International Electric Vehicle Conference" 1-8 Takyi-Aninakwa, P., S. Wang, H. Zhang, Y. Xiao, C. Fernandez. 2023. Enhanced multi-state estimation methods for lithium-ion batteries considering temperature uncertainties. Journal of Energy Storage 66: 107495, Tamilselvi, S., S. Gunasundari, N. Karuppiah, A. Razak RK, S. Madhusudan, V. M. Nagarajan, T. Sathish, M. Z. M. Shamim, C. A. Saleel, and A. Afzal. 2021. A review on battery modelling techniques. Sustainability 13(18): 1-26. United Nations Climate Change. 2023. Climate Plans Remain Insufficient: More Ambitious Action Needed Now. Wang, Y., Y. Li, L. Jiang, Y. Huang and Y. Cao. 2019. PSO-based Optimization for Constant-current Charging Pattern for Li-ion Battery. Chinese Journal of Electrical Engineering 5(2): 72-78 Wang, Z.C. and C.Q. Du. 2021. A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews 139: 110685. World Economic Forum. 2023. The Global Risks Report 2023 18th edition. You, G-W., S. Park and D. Oh. 2016. Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach. Applied Energy 176: 92-103. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94285 | - |
| dc.description.abstract | 電池模型在電池管理系統的設計和優化中扮演著至關重要的角色,本研究主要關注在多狀態電池模型的建模與後續應用,目標是可在實際場域的環境中做使用,故與其他多數研究不同的地方在於考慮了溫度變數與電池參數對溫度的相依關係推定。並且由於溫度參數的引入,新開發的三項協同估計演算法的精度將往上提升。
本研究探討了電池模型的重要性。電池模型用於電池參數估算、演算法開發、電池特性定義和控制系統的優化。在本研究中,探索了多種使用不同類型算法的電池模型,並進行實驗比較不同模型間準確性的差異。以鋰離子電池在各種溫度環境下的工作狀況進行實驗以深入研究。 此外,本研究也對運用此電池模型的電池管理系統於不同雜訊狀況下之表現進行研究,探討當電池監控裝置受環境雜訊影響時的表現。未來本電池管理系統可與物聯網元件進行聯動,在確保電池充電和放電過程中的均衡性和安全性的同時完成電池管理平台的可操作性,提高電池組的性能和壽命,從而推動綠色能源的廣泛應用。電池模型的選擇和應用將對電池管理系統和儲能系統的性能和可信性產生巨大影響,本研究有望加速可再生能源產業的持續發展,特別是我國目前重視的太陽能與風能產業。 | zh_TW |
| dc.description.abstract | The battery model plays a crucial role in the design and optimization of battery management systems. This study focuses on the modeling and subsequent application of multi-state battery models, aiming for use in practical field environments. Unlike most other studies, it considers the temperature variable and the estimation of the dependency relationship between battery parameters and temperature.
This study investigates the importance of battery models. Battery models are used for battery parameter estimation, algorithm development, battery characteristic definition, and optimization of control systems. In this study, various battery models using different types of algorithms were explored, and experiments were conducted to compare the accuracy differences between different models. Additionally, this study also investigates the performance of battery management systems utilizing this battery model under different noise conditions, exploring the performance when the battery monitoring device is affected by environmental noise. In the future, this battery management system can interact with IoT components, ensuring the balance and safety of the battery charging and discharging process while achieving the operability of the battery management platform, improving the performance and lifespan of battery packs, thereby promoting the widespread application of green energy. The selection and application of the battery model will have a significant impact on the performance and reliability of battery management systems and energy storage systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:37:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:37:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vi 表次 viii 符號說明 x 第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 本論文之貢獻 5 第二章 文獻探討 6 2.1 電池模型 6 2.2 電池參數估計 9 2.3 協同估計演算法 14 2.4 卡曼濾波器算法 15 2.5 電池組平衡 17 第三章 研究方法 19 3.1 協同估計演算法系統架構 19 3.2 實驗儀器 21 3.3 系統參數辨識 24 3.4 SoC估算 30 3.5 SoH & SoT估算 33 3.6 模型負載測試 35 3.7 物聯網導向之管理平台架構 38 3.8 小型電池組之電池管理平台測試 39 第四章 實驗結果 43 4.1 歐姆內阻參數辨識結果 43 4.2 電路極化內阻辨識結果 44 4.3 極化電容參數辨識結果 46 4.4 SoT估算結果 48 4.5 模型準確度負載測試結果 51 4.6 小型電池組電池管理平台測試結果 60 第五章 結論及未來工作 64 參考文獻 65 附錄 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電池管理系統 | zh_TW |
| dc.subject | 儲能系統 | zh_TW |
| dc.subject | 協同估計演算法 | zh_TW |
| dc.subject | 卡曼濾波器算法 | zh_TW |
| dc.subject | 電池模型 | zh_TW |
| dc.subject | Kalman filter | en |
| dc.subject | Battery model | en |
| dc.subject | Battery management system | en |
| dc.subject | Energy storage system | en |
| dc.subject | Co-estimation algorithm | en |
| dc.title | 使用協同估計演算法於鋰離子電池多狀態模型的開發 | zh_TW |
| dc.title | Development of a multi-state model for lithium-ion batteries using co-estimation algorithm | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李建興;王人正;蕭瑛東;王永鐘 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hsing Lee;Jen-Cheng Wang;Ying-Tung Hsiao;Yung-Chung Wang | en |
| dc.subject.keyword | 儲能系統,電池管理系統,電池模型,卡曼濾波器算法,協同估計演算法, | zh_TW |
| dc.subject.keyword | Energy storage system,Battery management system,Battery model,Kalman filter,Co-estimation algorithm, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202403842 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| Appears in Collections: | 生物機電工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 4.19 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
