請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94278完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓仁毓 | zh_TW |
| dc.contributor.advisor | Jen-Yu Han | en |
| dc.contributor.author | 陳夢岑 | zh_TW |
| dc.contributor.author | Meng-Tsen Chen | en |
| dc.date.accessioned | 2024-08-15T16:35:10Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, (6):679–698.
Cen, J., Zhao, J., Xia, X., and Liu, C. (2016). Application research on convolution neural network for bridge crack detection. In 2nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2017), pages 150–156. Atlantis Press. Cha, Y.-J., Choi, W., and Büyüköztürk, O. (2017). Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32(5):361–378. Cha, Y.-J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2018). Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Computer-Aided Civil and Infrastructure Engineering, 33(9):731–747. Dung, C. V. et al. (2019). Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99:52–58. Feng, C.-Q., Li, B.-L., Liu, Y.-F., Zhang, F., Yue, Y., and Fan, J.-S. (2023). Crack assessment using multi-sensor fusion simultaneous localization and mapping (slam) and image super-resolution for bridge inspection. Automation in Construction, 155:105047. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395. Hamishebahar, Y., Guan, H., So, S., and Jo, J. (2022). A comprehensive review of deep learning-based crack detection approaches. Applied Sciences, 12(3):1374. Hartley, R. and Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press. Hsu, S.-H., Hung, H.-T., Lin, Y.-Q., and Chang, C.-M. (2023). Defect inspection of indoor components in buildings using deep learning object detection and augmented reality. Earthquake Engineering and Engineering Vibration, 22(1):41–54. Ioli, F., Pinto, A., and Pinto, L. (2022). Uav photogrammetry for metric evaluation of concrete bridge cracks. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43:1025–1032. Jahanshahi, M. R. and Masri, S. F. (2012). Adaptive vision-based crack detection using 3d scene reconstruction for condition assessment of structures. Automation in Construction, 22:567–576. Johnny-zbb (2024). summary of yolov8-seg model structure. https://github.com/ultralytics/ultralytics/issues/1710, Accessed: 2024-06-13. Kang, D., Benipal, S. S., Gopal, D. L., and Cha, Y.-J. (2020a). Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning. Automation in Construction, 118:103291. Kang, D. and Cha, Y.-J. (2018). Autonomous uavs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Computer-Aided Civil and Infrastructure Engineering, 33(10):885–902. Kang, Z., Yang, J., Yang, Z., and Cheng, S. (2020b). A review of techniques for 3d reconstruction of indoor environments. ISPRS International Journal of Geo-Information, 9(5):330. Kim, B. and Cho, S. (2019). Image-based concrete crack assessment using mask and region-based convolutional neural network. Structural Control and Health Monitoring, 26(8):e2381. Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M., and Sim, S.-H. (2017). Concrete crack identification using a uav incorporating hybrid image processing. Sensors, 17(9):2052. Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Lee, V. C.-S., and Ding, L. (2020). Automated pavement crack detection and segmentation based on two-step convolutional neural network. Computer-Aided Civil and Infrastructure Engineering, 35(11):1291–1305. Liu, Z., Cao, Y., Wang, Y., and Wang, W. (2019). Computer vision-based concrete crack detection using u-net fully convolutional networks. Automation in Construction, 104:129–139. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60:91–110. Mohan, A. and Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. alexandria engineering journal, 57(2):787–798. Muja, M. and Lowe, D. (2009). Flann-fast library for approximate nearest neighbors user manual. Computer Science Department, University of British Columbia, Vancouver, BC, Canada, 5(6). Munawar, H. S., Hammad, A. W., Haddad, A., Soares, C. A. P., and Waller, S. T. (2021). Image-based crack detection methods: A review. Infrastructures, 6(8):115. NCREE (2018). Building data of the 20160206 meinong earthquake in taiwan. https: //www.ncree.org/recce/20160206/, Accessed: 2024-03-21. Park, S. E., Eem, S.-H., and Jeon, H. (2020). Concrete crack detection and quantification using deep learning and structured light. Construction and Building Materials, 252:119096. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788. Ren, Y., Huang, J., Hong, Z., Lu, W., Yin, J., Zou, L., and Shen, X. (2020). Imagebased concrete crack detection in tunnels using deep fully convolutional networks. Construction and Building Materials, 234:117367. Sarker, M., Ali, T., Abdelfatah, A., Yehia, S., and Elaksher, A. (2017). A cost-effective method for crack detection and measurement on concrete surface. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42:237–241. Stałowska, P., Suchocki, C., and Rutkowska, M. (2022). Crack detection in building walls based on geometric and radiometric point cloud information. Automation in Construction, 134:104065. Sweeney, C. (2016). Incremental sfm pipeline. http://theia-sfm.org/sfm.html# incremental-sfm-pipeline, Accessed: 2024-05-13. Talab, A. M. A., Huang, Z., Xi, F., and HaiMing, L. (2016). Detection crack in image using otsu method and multiple filtering in image processing techniques. Optik, 127(3):1030–1033. Ultralytics (2023). Ultralytics yolov8 docs. https://docs.ultralytics.com/, Accessed: 2024-03-16. Wang, P. and Huang, H. (2010). Comparison analysis on present image-based crack detection methods in concrete structures. In 2010 3rd international congress on image and signal processing, volume 5, pages 2530–2533. IEEE. Wu, Y., Han, Q., Jin, Q., Li, J., and Zhang, Y. (2023). Lca-yolov8-seg: an improved lightweight yolov8-seg for real-time pixel-level crack detection of dams and bridges. Applied Sciences, 13(19):10583. Xu, G., Yue, Q., and Liu, X. (2023). Real-time monitoring of concrete crack based on deep learning algorithms and image processing techniques. Advanced Engineering Informatics, 58:102214. Xu, X., Li, Q., Li, S., Kang, F., Wan, G., Wu, T., and Wang, S. (2024). Crack width recognition of tunnel tube sheet based on yolov8 algorithm and 3d imaging. Buildings, 14(2):531. Yokoyama, S. and Matsumoto, T. (2017). Development of an automatic detector of cracks in concrete using machine learning. Procedia engineering, 171:1250–1255. Yu, Z., Shen, Y., and Shen, C. (2021). A real-time detection approach for bridge cracks based on yolov4-fpm. Automation in Construction, 122:103514. Zafari, F., Gkelias, A., and Leung, K. K. (2019). A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21(3):2568–2599. Zhang, J., Qian, S., and Tan, C. (2022). Automated bridge surface crack detection and segmentation using computer vision-based deep learning model. Engineering Applications of Artificial Intelligence, 115:105225. Zhang, T. Y. and Suen, C. Y. (1984). A fast parallel algorithm for thinning digital patterns. Communications of the ACM, 27(3):236–239. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11):1330–1334. 內政部國土管理署 (2024). 403 花蓮強震各地勘災行動持續進行中國土署:民眾如房屋有結構疑慮應儘速通報. https://reurl.cc/nN8OWl, Accessed: 2024-07-01. 台北市結構技師公會 (2011). 災後住家房屋自我檢查手冊. 台北市政府, 台北市. 國家實驗研究院 (2016). 自家裂縫自己檢查!遠距離裂縫量測系統. https://www.narlabs.org.tw/xmdoc/cont?xsmsid=0I148622737263495777& sid=0I157374694921596757, Accessed: 2023-11-01. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94278 | - |
| dc.description.abstract | 建築物是我們生活和工作的重要場所,其結構健康直接關係到我們的安全和舒適。然而,若結構元件損壞或變形,建築物的整體穩定性和安全性就會受到影響。特別是台灣位處地震帶,降雨量豐富且集中,建築物的結構健康更需重視。裂縫是建築物受外力破壞的表現之一,目前建築物裂縫的偵測主要依靠結構技師的現地評估,是高成本且危險的。本研究旨在解決現有自動化裂縫偵測研究中缺乏完整幾何資訊的問題,提出基於運動恢復結構(Structure from Motion, SfM)和YOLOv8影像分割模型的裂縫幾何資訊計算方法。實驗中印製四組常見室內牆面裂縫形式的真實圖片,並模擬真實應用情境,以手機拍攝目標牆面。實驗結果顯示,本方法對於裂縫長度的誤差約為1.5 cm(3 %)、傾斜角度的誤差約為1°(4 %)、寬度的誤差約為0.43 mm(26 %)、中心位置的誤差約為2 cm。除了計算裂縫的幾何資訊,本研究將裂縫邊界框範圍內的像素點映射回場景點雲中,以彌補牆面在點雲上無法清楚顯示的缺陷。本研究提供了一種快速、低成本的自動化裂縫檢測方法,具有一定的準確性和穩定性,可供專業人員進行進一步的評估參考。 | zh_TW |
| dc.description.abstract | Buildings are essential places for our daily life and work, and their structural health is directly related to our safety and comfort. However, if structural elements are damaged or deformed, the overall stability and safety of the building will be affected. This is particularly important in Taiwan, which is located in a seismic zone with abundant and concentrated rainfall, making the structural health of buildings a critical concern. Cracks are one of the manifestations of external force damage to buildings. Currently, crack detection in buildings mainly relies on on-site evaluations by structural engineers, which are both costly and hazardous. This study aims to address the lack of complete geometric information in existing automated crack detection research by proposing a method for calculating crack geometric information based on Structure from Motion (SfM) and the YOLOv8 image segmentation model. In the experiment, four sets of real images of common indoor wall crack forms were printed and simulated in real application scenarios by using a mobile phone to capture the target wall. The results showed that the proposed method achieved an error of approximately 1.5 cm (3 %) in crack length, 1° (4 %) in crack angle, 0.43 mm (26 %) in crack width, and 2 cm in the center coordinates. In addition to calculating the geometric information of cracks, this study also mapped the pixel coordinates within the crack bounding box back to the scene point cloud to compensate for the inability to clearly display the wall in the point cloud. This study provides a fast, low-cost automated crack detection method with a certain degree of accuracy and stability, offering a reference for further evaluation by professionals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:35:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:35:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xi 表目錄 xiii 第一章 緒論 1 1.1 研究背景與目的 1 1.2 論文架構 4 第二章 文獻回顧 5 2.1 建築物裂縫偵測現況 5 2.2 使用影像進行影像裂縫偵測 7 2.2.1 基於影像處理方法的裂縫偵測 7 2.2.2 基於深度學習方法的裂縫偵測 7 2.3 以三維重建萃取裂縫幾何資訊 9 2.4 小結 10 第三章 研究方法與理論 11 3.1 相機率定及棋盤格角點坐標獲取 12 3.2 運動恢復結構 14 3.2.1 特徵點偵測及匹配 14 3.2.2 三維重建 17 3.3 像素三維坐標計算 20 3.4 裂縫分割深度學習模型 21 3.4.1 模型架構 21 3.4.2 模型評估指標 23 3.5 裂縫幾何資訊 24 3.5.1 裂縫聚合 24 3.5.2 裂縫骨架提取及邊緣偵測 26 3.5.3 裂縫幾何資訊計算 27 3.5.4 裂縫幾何資訊精度評估 29 3.6 裂縫點雲視覺化 29 3.7 小結 30 第四章 實驗場景設置 31 4.1 實驗場景與拍攝方式 31 4.2 控制點與局部坐標系定義 32 4.3 實驗場景中之裂縫 33 第五章 實驗結果與分析 37 5.1 裂縫分割模型 37 5.1.1 裂縫分割模型訓練 37 5.1.2 裂縫影像偵測成果 41 5.2 裂縫幾何資訊計算 44 5.2.1 裂縫聚合與幾何特徵提取 44 5.2.2 裂縫幾何資訊計算成果 47 5.3 裂縫點雲視覺化 57 第六章 結論與建議 59 6.1 結論 59 6.2 建議與未來工作 61 參考文獻 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | YOLOv8 | zh_TW |
| dc.subject | 實例分割 | zh_TW |
| dc.subject | 運動恢復結構 | zh_TW |
| dc.subject | 三維重建 | zh_TW |
| dc.subject | 室內裂縫偵測 | zh_TW |
| dc.subject | Indoor crack detection | en |
| dc.subject | 3D reconstruction | en |
| dc.subject | Structure from Motion | en |
| dc.subject | Instance Segmentation | en |
| dc.subject | YOLOv8 | en |
| dc.title | 結構裂縫偵測與三維空間資訊萃取 | zh_TW |
| dc.title | Detection and Extraction of Structure Cracks and their Three-Dimensional Spatial Information | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃文正;蔡慧萍;李宜珊 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jeng Huang;Hui-Ping Tsai;Yi-Shan Li | en |
| dc.subject.keyword | 室內裂縫偵測,三維重建,運動恢復結構,實例分割,YOLOv8, | zh_TW |
| dc.subject.keyword | Indoor crack detection,3D reconstruction,Structure from Motion,Instance Segmentation,YOLOv8, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202402823 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-07-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 16.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
