請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94276
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃誌川 | zh_TW |
dc.contributor.advisor | Jr-Chuan Huang | en |
dc.contributor.author | 李玟璇 | zh_TW |
dc.contributor.author | Wen-Shiuan Lee | en |
dc.date.accessioned | 2024-08-15T16:34:34Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | Rodríguez-Castillo, T.; Estévez, E.; González-Ferreras, A.M.; Barquín, J. Estimating Ecosystem Metabolism to Entire River Networks. Ecosystems 2019, 22, 892-911, doi:10.1007/s10021-018-0311-8.
Woodwell, G.M.; Whittaker, R.H. Primary production in terrestrial ecosystems. American Zoologist 1968, 8, 19-30. Hall, R. Metabolism of Streams and Rivers. 2016; pp. 151-180. Hall, R.O.; Hotchkiss, E.R. Chapter 34 - Stream Metabolism. In Methods in Stream Ecology (Third Edition), Lamberti, G.A., Hauer, F.R., Eds.; Academic Press: 2017; pp. 219-233. Battin, T.J.; Luyssaert, S.; Kaplan, L.A.; Aufdenkampe, A.K.; Richter, A.; Tranvik, L.J. The boundless carbon cycle. Nat. Geosci 2009, 2, 598-600, doi:10.1038/ngeo618. Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 2009, 54, 2298-2314, doi:10.4319/lo.2009.54.6_part_2.2298. Hall, R.O.; Tank, J.L.; Baker, M.A.; Rosi-Marshall, E.J.; Hotchkiss, E.R. Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems 2016, 19, 73-86, doi:10.1007/s10021-015-9918-1. Vannote, R.L.; Minshall, G.; Cummins, K.; Sedell, J.; Gushing, C.E. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 1980, 37, 130-137, doi:10.1139/f80-017. Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. AGU 1957, 38, 913-920, doi:10.1029/TR038i006p00913. Downing, J.A.; Cole, J.J.; Duarte, C.; Middelburg, J.J.; Melack, J.M.; Prairie, Y.T.; Kortelainen, P.; Striegl, R.G.; McDowell, W.H.; Tranvik, L.J. Global abundance and size distribution of streams and rivers. Inland Waters 2012, 2, 229-236, doi:10.5268/IW-2.4.502. Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355-359, doi:10.1038/nature12760. Huang, J.C.; Lee, T.Y.; Lin, T.C.; Hein, T.; Lee, L.C.; Shih, Y.T.; Kao, S.J.; Shiah, F.K.; Lin, N.H. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences 2016, 13, 1787-1800, doi:10.5194/bg-13-1787-2016. Saunders, W.C.; Bouwes, N.; McHugh, P.; Jordan, C.E. A network model for primary production highlights linkages between salmonid populations and autochthonous resources. Ecosphere 2018, 9, e02131, doi:10.1002/ecs2.2131. McGuire, K.J.; Torgersen, C.E.; Likens, G.E.; Buso, D.C.; Lowe, W.H.; Bailey, S.W. Network analysis reveals multiscale controls on streamwater chemistry. Proc. Nat. Acad. Sci. 2014, 111, 7030-7035, doi:10.1073/pnas.1404820111. Peterson, E.E.; Hoef, J.M.V. A mixed-model moving-average approach to geostatistical modeling in stream networks. Ecology 2010, 91, 644-651, doi:https://doi.org/10.1890/08-1668.1. Ver Hoef, J.M.; Peterson, E.E. A Moving Average Approach for Spatial Statistical Models of Stream Networks. J. Am. Stat. Assoc. 2010, 105, 6-18, doi:10.1198/jasa.2009.ap08248. Cressie, N.; Frey, J.; Harch, B.; Smith, M. Spatial prediction on a river network. J. Agric. Biol. Environ. Stat. 2006, 11, 127, doi:10.1198/108571106X110649. Hoef, J.M.V.; Peterson, E.; Theobald, D. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 2006, 13, 449-464, doi:10.1007/s10651-006-0022-8. Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.-J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.; Ceulemans, R.; Schulze, E.-D. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 2003, 300, 1538-1542. Bernot, M.J.; Sobota, D.J.; Hall Jr, R.O.; Mulholland, P.J.; Dodds, W.K.; Webster, J.R.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N.; et al. Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology 2010, 55, 1874-1890, doi:10.1111/j.1365-2427.2010.02422.x. Townsend, S.A.; Padovan, A.V. The seasonal accrual and loss of benthic algae (Spirogyra) in the Daly River, an oligotrophic river in tropical Australia. Mar. Freshw. Res. 2005, 56, 317-327, doi:10.1071/MF04079. Hill, W.R.; Ryon, M.G.; Schilling, E.M. Light limitation in a stream ecosystem: responses by primary producers and consumers. Ecology 1995, 76, 1297-1309. Mulholland, P.J.; Fellows, C.S.; Tank, J.L.; Grimm, N.B.; Webster, J.R.; Hamilton, S.K.; Martí, E.; Ashkenas, L.; Bowden, W.B.; Dodds, W.K.; et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 2001, 46, 1503-1517, doi:10.1046/j.1365-2427.2001.00773.x. Roberts, B.J.; Mulholland, P.J.; Hill, W.R. Multiple scales of temporal variability in ecosystem metabolism rates: Results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 2007, 10, 588-606, doi:10.1007/s10021-007-9059-2. Carruthers, T.J.; Longstaff, B.J.; Dennison, W.C.; Abal, E.G.; Aioi, K. Measurement of light penetration in relation to seagrass. Global seagrass research methods 2001, 370-392. Hill, W.R.; Harvey, B.C. Periphyton responses to higher trophic levels and light in a shaded stream. Can. J. Fish. Aquat. Sci. 1990, 47, 2307-2314, doi:10.1139/f90-257. Mosisch, T.D.; Bunn, S.E.; Davies, P.M. The relative importance of shading and nutrients on algal production in subtropical streams. Freshw. Biol. 2001, 46, 1269-1278, doi:10.1046/j.1365-2427.2001.00747.x. Frankforter, J.D.; Weyers, H.S.; Bales, J.D.; Moran, P.W.; Calhoun, D.L. The relative influence of nutrients and habitat on stream metabolism in agricultural streams. Environ. Monit. Assess. 2010, 168, 461-479. Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment degradation. Freshw. Biol. 1999, 41, 333-345, doi:10.1046/j.1365-2427.1999.00434.x. Han, B.-P.; Virtanen, M.; Koponen, J.; Straškraba, M. Effect of photoinhibition on algal photosynthesis: a dynamic model. J. Plankton Res. 2000, 22, 865-885, doi:10.1093/plankt/22.5.865. 蔡函霓. 苗栗淺山溪流系統代謝暨食物網模式建構. 中興大學生命科學系所學位論文 2015, 1-120. Yates, A.G.; Brua, R.B.; Culp, J.M.; Chambers, P.A. Multi-scaled drivers of rural prairie stream metabolism along human activity gradients. Freshw. Biol. 2013, 58, 675-689, doi:doi.org/10.1111/fwb.12072. Peterjohn, W.T.; Correll, D.L. Nutrient dynamics in an agricultural watershed: Observations on the role of a riparian forest. Ecology 1984, 65, 1466-1475, doi:10.2307/1939127. Hillebrand, H.; Sommer, U. The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnol. Oceanogr. 1999, 44, 440-446. Redfield, A.C. On the proportions of organic derivatives in sea water and their relation to the composition of plankton; University Press of Liverpool Liverpool: 1934; Volume 1. Kemp, M.J.; Dodds, W.K. The influence of ammonium, nitrate, and dissolved oxygen concentrations on uptake, nitrification, and denitrification rates associated with prairie stream substrata. Limnol. Oceanogr. 2002, 47, 1380-1393, doi:10.4319/lo.2002.47.5.1380. Rier, S.T.; Stevenson, R.J. Response of periphytic algae to gradients in nitrogen and phosphorus in streamside mesocosms. In Advances in Algal Biology: A Commemoration of the Work of Rex Lowe, Stevenson, R.J., Pan, Y., Kociolek, J.P., Kingston, J.C., Eds.; Springer Netherlands: Dordrecht, 2006; pp. 131-147. Kevern, N.R.; Ball, R.C. Primary productivity and energy relationships in artificial streams. Limnol. Oceanogr. 1965, 10, 74-87, doi:10.4319/lo.1965.10.1.0074. Bothwell, M.L. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: The influence of temperature and light. Can. J. Fish. Aquat. Sci. 1988, 45, 261-270, doi:10.1139/f88-031. DeNicola, D.M. Periphyton responses to temperature at different ecological levels. Algal ecology: freshwater benthic ecosystems 1996, 149-181. Hunt, R.J.; Jardine, T.D.; Hamilton, S.K.; Bunn, S.E.; Rivers, T.; B., C.K.R.H.U. Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biology 2012, 57, 435-450, doi:10.1111/j.1365-2427.2011.02708.x. Acuña, V.; Giorgi, A.; Muñoz, I.; Uehlinger, U.; Sabater, S. Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshw. Biol. 2004, 49, 960-971. Stevenson, R.J.; Bothwell, M.L.; Lowe, R.L.; Thorp, J.H. The stimulation and drag of current. Algal ecology: Freshwater benthic ecosystem; Academic press: 1996. Yvon-Durocher, G.; Caffrey, J.M.; Cescatti, A.; Dossena, M.; Giorgio, P.d.; Gasol, J.M.; Montoya, J.M.; Pumpanen, J.; Staehr, P.A.; Trimmer, M.; et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 2012, 487, 472-476, doi:10.1038/nature11205. Bernhardt, E.S.; Savoy, P.; Vlah, M.J.; Appling, A.P.; Koenig, L.E.; Hall Jr, R.O.; Arroita, M.; Blaszczak, J.R.; Carter, A.M.; Cohen, M. Light and flow regimes regulate the metabolism of rivers. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2121976119. Grattan, R.M.; Suberkropp, K. Effects of nutrient enrichment on yellow poplar leaf decomposition and fungal activity in streams. J. N. Am. Benthol. Soc. 2001, 20, 33-43, doi:10.2307/1468186. Colangelo, D.J. Response of river metabolism to restoration of flow in the Kissimmee River, Florida, U.S.A. Freshw. Biol. 2007, 52, 459-470, doi:10.1111/j.1365-2427.2006.01707.x. Townsend, S.A.; Webster, I.T.; Schult, J.H. Metabolism in a groundwater-fed river system in the Australian wet/dry tropics: tight coupling of photosynthesis and respiration. J. N. Am. Benthol. Soc. 2011, 30, 603-620, doi:10.1899/10-066.1. Dodds, W.K.; Veach, A.M.; Ruffing, C.M.; Larson, D.M.; Fischer, J.L.; Costigan, K.H. Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshw. Sci. 2013, 32, 1073-1087, doi:10.1899/13-018.1. Webster, J.R.; Benfield, E.F.; Ehrman, T.P.; Schaeffer, M.A.; Tank, J.L.; Hutchens, J.J.; D’Angelo, D.J. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshw. Biol. 1999, 41, 687-705, doi:10.1046/j.1365-2427.1999.00409.x. Tank, J.L.; Webster, J.R. Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 1998, 79, 2168-2179, doi:10.2307/176719. Golladay, S.W.; Palik, B.J.; Goebel, P.; Taylor, B. Influence of riparian landform on large woody debris input and movement in a blackwater coastal plain stream. 1997. Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171-184. Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO<sub>2</sub> growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 18866-18870, doi:10.1073/pnas.0702737104. Battin, T.J.; Kaplan, L.A.; Findlay, S.; Hopkinson, C.S.; Marti, E.; Packman, A.I.; Newbold, J.D.; Sabater, F. Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci 2008, 1, 95-100, doi:10.1038/ngeo101. Stanford, J.A.; Lorang, M.; Hauer, F. The shifting habitat mosaic of river ecosystems. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 2005, 29, 123-136. Marzolf, E.R.; Mulholland, P.J.; Steinman, A.D. Improvements to the Diurnal Upstream–Downstream Dissolved Oxygen Change Technique for Determining Whole-Stream Metabolism in Small Streams. Can. J. Fish. Aquat. Sci. 1994, 51, 1591-1599, doi:10.1139/f94-158. Aristegi, L.; Izagirre, O.; Elosegi, A. Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism. Hydrobiologia 2009, 635, 113-124. Hornberger, G.M.; Kelly, M.G. Atmospheric reaeration in a river using productivity analysis. Journal of the Environmental Engineering Division 1975, 101, 729-739. Odum, H.T. Primary Production in Flowing Waters1. Limnology and Oceanography 1956, 1, 102-117, doi:10.4319/lo.1956.1.2.0102. Jähne, B.; Münnich, K.O.; Bösinger, R.; Dutzi, A.; Huber, W.; Libner, P. On the parameters influencing air-water gas exchange. Journal of Geophysical Research: Oceans 1987, 92, 1937-1949, doi:https://doi.org/10.1029/JC092iC02p01937. Appling, A.P.; Hall Jr., R.O.; Yackulic, C.B.; Arroita, M. Overcoming equifinality: Leveraging long time series for stream metabolism estimation. Journal of Geophysical Research: Biogeosciences 2018, 123, 624-645, doi:10.1002/2017JG004140. Grace, M.; Imberger, S. Stream metabolism: performing and interpreting measurements. Water Studies Centre, Monash University. Report for the Murray Darling Basin Commission and New South Wales Department of Environment and Climate Change 2006, 1-204. van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychonomic Bulletin & Review 2018, 25, 143-154, doi:10.3758/s13423-016-1015-8. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087-1092. Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 1995, 49, 327-335, doi:10.2307/2684568. Peterson, E.; Ver Hoef, J. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. Journal of Statistical Software 2014, 56, 1-17. Ver Hoef, J.; Peterson, E.; Clifford, D.; Shah, R. SSN: An R Package for Spatial Statistical Modeling on Stream Networks. Journal of Statistical Software 2014, 56, 45, doi:10.18637/jss.v056.i03. ElSaadani, M.; Krajewski, W.F.; Zimmerman, D.L. River network based characterization of errors in remotely sensed rainfall products in hydrological applications. Remote Sensing Letters 2018, 9, 743-752, doi:10.1080/2150704X.2018.1475768. Peterson, E.E.; Theobald, D.M.; VER HOEF, J.M. Geostatistical modelling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshw. Biol. 2007, 52, 267-279. Ver Hoef, J.M.; Peterson, E.E.; Isaak, D.J. Spatial statistical models for stream networks. In Handbook of Environmental and Ecological Statistics; Chapman and Hall/CRC: 2019; pp. 421-444. Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia & Analgesia 2018, 126, 1763-1768, doi:10.1213/ane.0000000000002864. Bevans, R. Akaike Information Criterion | When & How to Use It (Example). Available online: https://www.scribbr.com/statistics/akaike-information-criterion/ (accessed on 2023/03/04). Ver Hoef, J.; Peterson, E.; Theobald, D. Some new spatial statistical models for stream networks. Environmental and Ecological Statistics 2007, 14. Holthuijzen, M.F. A comparison of five statistical methods for predicting stream temperature across stream networks; Utah State University: 2017. Lee, Y.J.; Chen, P.H.; Lee, T.Y.; Shih, Y.T.; Huang, J.C. Temporal variation of chemical weathering rate, source shifting and relationship with physical erosion in small mountainous rivers, Taiwan. Catena 2020, 190, 104516, doi:10.1016/j.catena.2020.104516. Huang, J.C.; Milliman, J.D.; Lee, T.Y.; Chen, Y.C.; Lee, J.F.; Liu, C.C.; Lin, J.C.; Kao, S.J. Terrain attributes of earthquake- and rainstorm-induced landslides in orogenic mountain Belt, Taiwan. Earth Surf. Process. Landf. 2017, 42, 1549-1559, doi:10.1002/esp.4112. Lin, T.C.; Shaner, P.J.L.; Wang, L.J.; Shih, Y.T.; Wang, C.P.; Huang, G.H.; Huang, J.C. Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrol. Earth Syst. Sci. 2015, 19, 4493-4504, doi:10.5194/hess-19-4493-2015. Zehetner, F.; Vemuri, N.L.; Huh, C.-A.; Kao, S.-J.; Hsu, S.-C.; Huang, J.-C.; Chen, Z.-S. Soil and phosphorus redistribution along a steep tea plantation in the Feitsui reservoir catchment of northern Taiwan. Soil Sci. Plant Nutr. 2008, 54, 618-626, doi:10.1111/j.1747-0765.2008.00268.x. Lee, J.Y.; Shih, Y.T.; Lan, C.Y.; Lee, T.Y.; Peng, T.R.; Lee, C.T.; Huang, J.C. Characterization of event water fractions and transit times under typhoon rainstorms in fractured mountainous catchments: Implications for time-variant parameterization. Hydrol. Earth Syst. Sci. Discuss. 2019, 2019, 1-28, doi:10.5194/hess-2019-276. Frazer, G.W.; Canham, C.D.; Lertzman, K.P. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York 1999, 36. Childs, C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September 2004, 3235, 32-35. Thimijan, R.W.; Heins, R.D. Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. Hortscience 1983, 18, 818-822. dos Reis, M.G.; Ribeiro, A. Conversion factors and general equations applied in agricultural and forest meteorology. Agrometeoros 2020, 27. Garcia, H.E.; Gordon, L.I. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 1992, 37, 1307-1312, doi:10.4319/lo.1992.37.6.1307. Vehtari, A.; Gelman, A.; Simpson, D.; Carpenter, B.; Bürkner, P.-C. Rank-Normalization, Folding, and Localization: An Improved R for Assessing Convergence of MCMC (with Discussion). Bayesian Anal. 2021, 16, 667-718, 652. Holtgrieve, G.W.; Schindler, D.E.; Branch, T.A.; A'mar, Z.T. Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol. Oceanogr. 2010, 55, 1047-1063, doi:10.4319/lo.2010.55.3.1047. Akaike, H. A new look at the statistical model identification. IEEE transactions on automatic control 1974, 19, 716-723. Cressie, N. Statistics for spatial data; John Wiley & Sons: 2015. Hall Jr, R.O.; Yackulic, C.B.; Kennedy, T.A.; Yard, M.D.; Rosi‐Marshall, E.J.; Voichick, N.; Behn, K.E. Turbidity, light, temperature, and hydropeaking control primary productivity in the c olorado river, g rand c anyon. Limnology and Oceanography 2015, 60, 512-526. O'Donnell, B.; Hotchkiss, E. Coupling concentration‐and process‐discharge relationships integrates water chemistry and metabolism in streams. Water Resour. Res. 2019, 55, 10179-10190. Elósegui, A.; Pozo, J. Epilithic biomass and metabolism in a north Iberian stream. Aquatic Sciences 1998, 60, 1-16. Izagirre, O.; Agirre, U.; Bermejo, M.; Pozo, J.; Elosegi, A. Environmental controls of whole-stream metabolism identified from continuous monitoring of Basque streams. J. N. Am. Benthol. Soc. 2008, 27, 252-268. Marzolf, N.S.; Ardón, M. Ecosystem metabolism in tropical streams and rivers: a review and synthesis. Limnology and Oceanography 2021, 66, 1627-1638. Hall Jr, R.O.; Beaulieu, J.J. Estimating autotrophic respiration in streams using daily metabolism data. Freshwater Science 2013, 32, 507-516. Fuß, T.; Behounek, B.; Ulseth, A.J.; Singer, G.A. Land use controls stream ecosystem metabolism by shifting dissolved organic matter and nutrient regimes. Freshw. Biol. 2017, 62, 582-599. 黃偉倫. 應用結構方程模型評估亞熱帶山地集水區硝氮和銨氮吸收的控制因子. 2021. Demars, B.O.; Russell Manson, J.; Olafsson, J.S.; Gislason, G.M.; Gudmundsdottir, R.; Woodward, G.; Reiss, J.; Pichler, D.E.; Rasmussen, J.J.; Friberg, N. Temperature and the metabolic balance of streams. Freshw. Biol. 2011, 56, 1106-1121. Beaulieu, J.J.; Arango, C.P.; Balz, D.A.; Shuster, W.D. Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream. Freshw. Biol. 2013, 58, 918-937. Gerretsen, F. Studies in photosynthesis: IV. Redoxpotentials and corresponding pH changes in illuminated crude chloroplast suspensions. Plant and Soil 1951, 1-31. Val, J.; Chinarro, D.; Pino, M.R.; Navarro, E. Global change impacts on river ecosystems: a high-resolution watershed study of Ebro river metabolism. Sci. Total Environ. 2016, 569, 774-783. McCutchan Jr, J.H.; Lewis Jr, W.M.; Saunders III, J. Uncertainty in the estimation of stream metabolism from open-channel oxygen concentrations. J. N. Am. Benthol. Soc. 1998, 17, 155-164. Holcomb, D.A.; Messier, K.P.; Serre, M.L.; Rowny, J.G.; Stewart, J.R. Geostatistical prediction of microbial water quality throughout a stream network using meteorology, land cover, and spatiotemporal autocorrelation. Environ. Sci. Technol. 2018, 52, 7775-7784. Benda, L.; Poff, N.L.; Miller, D.; Dunne, T.; Reeves, G.; Pess, G.; Pollock, M. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 2004, 54, 413-427. Money, E.S.; Carter, G.P.; Serre, M.L. Modern space/time geostatistics using river distances: data integration of turbidity and E. coli measurements to assess fecal contamination along the Raritan River in New Jersey. Environ. Sci. Technol. 2009, 43, 3736-3742. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94276 | - |
dc.description.abstract | 河川新陳代謝(stream metabolism)通常與淨生態系統生產力(net ecosystem productivity)息息相關並且為碳循環在生態圈中重要的途徑之一,被視為一能夠有效度量生態系統功能的方式,可以以河川中溶氧(dissolved oxygen)的日夜變化來表示。河川新陳代謝整合了許多不同的生態系統過程,例如它控制了河川中的光合作用與呼吸作用。而河川新陳代謝主要會受控於光合有效輻射(photosynthetic active radiation)、地貌、水文特徵、生物群系、營養鹽濃度和溫度等環境參數。然而在過去研究中鮮少著重於小山地集水區,目前我們對於臺灣河川新陳代謝的量測是嚴重不足的,也缺乏集水區尺度的河段推估,導致我們在河川連續體(river continuum)的概念中是不了解的。本研究以在北勢溪進行的河川新陳代謝觀測為基礎,透過整合上述的重要環境參數並將其涵蓋於空間河道網絡模型(Spatial Stream Network Models)中,以達到小山地集水區新陳代謝的模擬。結果顯示各站每月的日平均河川新陳代謝值擁有顯著的季節變動並介於-16.0 g O2 m-2 d-1至11.6 g O2 m-2 d-1之間,其中全站最低月平均值出現於一月(-16.0 g O2 m-2 d-1);並在七月時達到頂峰(11.6 g O2 m-2 d-1),而水溫、pH值與不同的土地利用型態與河川新陳代謝呈現顯著相關性。此外,本研究展示了空間河道網絡模型於臺灣小山地集水區的可行性,並提供較非空間模型更優良的模擬表現,上游河道擁有較低的河川新陳代謝數值,顯示其河道可能屬於異營主導的,然而下游河道則逐漸轉變為自營主導的狀態。藉由本研究可增加對於臺灣小山地集水區河川新陳代謝運行機制的理解。 | zh_TW |
dc.description.abstract | Stream metabolism, closely linked to net ecosystem productivity (NEP), is one of important routes of carbon cycle and aquatic ecosystem functions. Stream metabolism can be described as the diurnal variation of dissolved O2 (DO) concentration, in which photosynthetic active radiation (PAR), landscape setting, hydrologic regime, biome, nutrient concentrations and temperature regulate. However, few studies focused on stream metabolism in subtropical small mountainous rivers (SMRs), where the change of stream metabolism along river is unclear. Our study used the hourly DO records to estimate the local stream metabolism. Further the controlling factors supplementary with landscape metrics was introduced to Spatial Stream Network (SSN) models for simulating stream metabolism along rivers. Results showed that the monthly mean NEP in each study sites from 2018 to 2021 vary from -16.0 g O2 m-2 d-1 to 11.6 g O2 m-2 d-1 with strong seasonal variation. Specifically, the lowest monthly mean NEP was observed in January (-16.0 g O2 m-2 d-1) and reached the peak in July (11.6 g O2 m-2 d-1). Meanwhile, the water temperature, pH, and different land cover likely affect stream metabolism significantly. Additionally, this study demonstrates the applicability of SSN models, which outperformed NS models, for estimating stream metabolism in SMRs in Taiwan. The low and negative NEP indicates the headwater rivers are heterotrophic-dominated, but changes toward autotrophic-dominated downstream. The understanding of the mechanism of stream metabolism in SMRs, Taiwan could be increased through this study. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:34:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:34:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 ii
摘要 iii Abstract iv Content v List of Figure vii List of Table x 1. Introduction 1 2. Literature Review 5 2.1 Stream Metabolism 5 2.1.1 Gross Primary Production 5 2.1.2 Ecosystem Respiration 8 2.1.3 Net Ecosystem Productivity 10 2.1.4 Gas Exchange K 13 2.2 Stream Metabolizer 15 2.2.1 Single-Station Metabolism Method 15 2.2.2 Bayesian inverse model 17 2.2.3 Markov chain Monte Carlo (MCMC) 18 2.3 Spatial Stream Network Model 21 2.3.1. Hydrologic Distance 21 2.3.2. Segment Weight 23 2.3.3. STARS Toolset 24 2.3.4 Spearman Rank Correlation 26 2.3.5 Akaike Information Criterion 26 2.3.6 Moving-average Construction 27 3. Materials and method 33 3.1 Study sites 33 3.2 Data Collection 36 3.2.1 Environment Variables 37 3.2.2 StreamMetabolizer Inputs 43 3.3 Stream Metabolism Estimates 44 3.4 SSN Models 47 3.4.1 Data preparation 47 3.4.2 Parameters Selection 48 3.4.3 SSN Models 49 4. Results 51 4.1 Stream Metabolism Estimation 51 4.2 Correlation Metrics 56 4.3 SSN Models 60 5. Discussion 65 5.1 MCMC 65 5.2 Stream Metabolism Characteristics in Taiwan 68 5.3 Correlation Metrics 71 5.4 Spatial Stream Network Modeling Performance 74 6. Conclusion 79 Reference 81 Supplementary data 90 | - |
dc.language.iso | en | - |
dc.title | 亞熱帶山地集水區河川新陳代謝之流域尺度模擬 | zh_TW |
dc.title | Modeling watershed-scale stream metabolism in subtropical small mountainous rivers, Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李宗祐;任秀慧 | zh_TW |
dc.contributor.oralexamcommittee | Tsung-Yu Lee;Rita S. W. Yam | en |
dc.subject.keyword | 河川新陳代謝,小山地集水區,臺灣,空間河道網絡模型,河川連續體, | zh_TW |
dc.subject.keyword | stream metabolism,small mountainous rivers (SMRs),Taiwan,spatial stream network (SSN) models,river continuum, | en |
dc.relation.page | 95 | - |
dc.identifier.doi | 10.6342/NTU202403274 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地理環境資源學系 | - |
顯示於系所單位: | 地理環境資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 4.26 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。