Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡zh_TW
dc.contributor.advisorChing-I Huangen
dc.contributor.author林品均zh_TW
dc.contributor.authorPin-Chun Linen
dc.date.accessioned2024-08-15T16:30:16Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: a review. Journal of Industrial and Engineering Chemistry. 2015, 29, 1-11.
[2] Nguyen, H.-V.; Andreassen, E.; Kristiansen, H.; Johannessen, R.; Hoivik, N.; Aasmundtveit, K. E. Rheological characterization of a novel isotropic conductive adhesive – Epoxy filled with metal-coated polymer spheres. In Materials & Design (1980-2015); 2013, 784-793.
[3] Shamsuddoha, M.; Islam, M. M.; Aravinthan, T.; Manalo, A.; Lau, K. t. Characterisation of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines. In Materials & Design (1980-2015); 2013, 315-327.
[4] Jin, H.; Miller, G. M.; Pety, S. J.; Griffin, A. S.; Stradley, D. S.; Roach, D.; Sottos, N. R.; White, S. R. Fracture behavior of a self-healing, toughened epoxy adhesive. International Journal of Adhesion and Adhesives. 2013, 44, 157-165.
[5] Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Recent Development of Bio-Based Epoxy Resins: A Review. Polymer-Plastics Technology and Engineering. 2018, 57 (3), 133-155.
[6] Hao, Y.; Liu, F.; Han, E.-H. Protection of epoxy coatings containing polyaniline modified ultra-short glass fibers. Progress in Organic Coatings. 2013, 76 (4), 571-580.
[7] Wazalwar, R.; Sahu, M.; Raichur, A. M. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Adv. 2021, 3 (10), 2741-2776.
[8] Toldy, A.; Szolnoki, B.; Marosi, G. Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability. 2011, 96 (3), 371-376.
[9] Shen, Q.; Chen, Y.; Lin, X.; Wang, L.; Chen, D.; Ma, Y.; Yang, W. High-impact epoxy resins with superior hydrophobicity toughened by epoxy functionalized poly(olefin-alt-maleimide) derivatives. ACS Applied Polymer Materials. 2024, 6 (9), 4964-4974.
[10] Zhang, C.; Cui, J.; Sui, W.; Gong, Y.; Liu, H.; Ao, Y.; Shang, L. High heat resistance, strength, and toughness of epoxy resin with cellulose nanofibers and structurally designed ionic liquid. Chemical Engineering Journal. 2023, 478, 147063.
[11] Chen, Q.; Chasiotis, I.; Chen, C.; Roy, A. Nanoscale and effective mechanical behavior and fracture of silica nanocomposites. Composites Science and Technology. 2008, 68 (15-16), 3137-3144.
[12] Zunjarrao, S. C.; Singh, R. P. Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles. Composites Science and Technology. 2006, 66 (13), 2296-2305.
[13] Mishra, K.; Pandey, G.; Singh, R. P. Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polymer Testing. 2017, 62, 210-218.
[14] Saccani, A.; Magnaghi, V. Durability of epoxy resin-based materials for the repair of damaged cementitious composites. Cement and Concrete Research. 1999, 29 (1), 95-98.
[15] Bernard, C. A.; Bahlouli, N.; George, D.; Rémond, Y.; Ahzi, S. Identification of the dynamic behavior of epoxy material at large strain over a wide range of temperatures. Mechanics of Materials. 2020, 143, 103323.
[16] Feng, J.; Guo, Z. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites. Journal of Materials Science. 2015, 51 (5), 2747-2758.
[17] Wang, X.; Zhang, T.; Zhang, C.; Li, Z.; Chi, Q. Improved heat resistance and electrical properties of epoxy resins by introduction of bismaleimide. Journal of Electronic Materials. 2022, 52 (3), 1865-1874.
[18] Voo, R.; Mariatti, M.; Sim, L. C. Flexibility improvement of epoxy nanocomposites thin films using various flexibilizing additives. Composites Part B: Engineering. 2012, 43 (8), 3037-3043.
[19] Liu, Z. S.; Erhan, S. Z.; Calvert, P. D. Solid freeform fabrication of epoxidized soybean oil/epoxy composites with di‐, tri‐, and polyethylene amine curing agents. Journal of Applied Polymer Science. 2004, 93 (1), 356-363.
[20] Gazderazi, M.; Jamshidi, M. Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites: Influence on mechanical and thermal performances. Journal of Applied Polymer Science. 2016, 133 (34).
[21] Yuan, Q.; Wang, Z.; Yao, H.; Huang, J.; Zuo, S.; Huang, H. Comparative study of reactive diluents with different molecular structures on the curing properties of epoxy adhesives and the interface bonding properties with mortar. International Journal of Adhesion and Adhesives. 2023, 126, 103473.
[22] Ding, C.; Matharu, A. S. Recent developments on biobased curing agents: a Review of their preparation and use. ACS Sustainable Chemistry & Engineering. 2014, 2 (10), 2217-2236.
[23] Razack, N. A.; Varghese, L. A. The effect of various hardeners on the mechanical and thermal properties of epoxy resin. International Journal of Engineering Research & Technology (IJERT). 2014, 3 (1), 2662-2665.
[24] Breitsameter, J. M.; Reinhardt, N.; Feigel, M.; Hinrichsen, O.; Drechsler, K.; Rieger, B. Synthesis of a sustainable and bisphenol A‐free epoxy resin based on sorbic acid and characterization of the cured thermoset. Macromolecular Materials and Engineering. 2023, 308 (9), 2300068.
[25] Tachibana, Y.; Torii, J.; Kasuya, K.-i.; Funabashi, M.; Kunioka, M. Hardening process and properties of an epoxy resin with bio-based hardener derived from furfural. RSC Adv. 2014, 4 (99), 55723-55731.
[26] Soares, B. G.; Silva, A. A.; Lima, V. D.; Barros, D. N.; Livi, S. Toughened epoxy‐liquid polybutadiene networks cured with anhydride with outstanding thermal and mechanical properties. Journal of Applied Polymer Science. 2020, 138 (14).
[27] Wu, S. J.; Lin, T. K.; Shyu, S. S. Cure behavior, morphology, and mechanical properties of the melt blends of epoxy with polyphenylene oxide. Journal of Applied Polymer Science. 2000, 75 (1), 26-34.
[28] Foreman, J. P.; Porter, D.; Behzadi, S.; Travis, K. P.; Jones, F. R. Thermodynamic and mechanical properties of amine-cured epoxy resins using group interaction modelling. Journal of Materials Science. 2006, 41 (20), 6631-6638.
[29] Jeyranpour, F.; Alahyarizadeh, G.; Arab, B. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. Journal of Molecular Graphics and Modelling. 2015, 62, 157-164.
[30] Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M. Molecular modeling of elastic properties of thermosetting polymers using a dynamic deformation approach. Polymer. 2013, 54 (13), 3370-3376.
[31] Cravero, F.; Schustik, S. A.; Martínez, M. J.; Barranco, C. D.; Díaz, M. F.; Ponzoni, I. Computer-aided design of polymeric materials: computational study for characterization of databases for prediction of mechanical properties under polydispersity. Chemometrics and Intelligent Laboratory Systems. 2019, 191, 65-72.
[32] Palomba, D.; Vazquez, G. E.; Díaz, M. F. Prediction of elongation at break for linear polymers. Chemometrics and Intelligent Laboratory Systems. 2014, 139, 121-131.
[33] Choi, J.; Kang, H.; Lee, J. H.; Kwon, S. H.; Lee, S. G. Predicting the properties of high-performance epoxy resin by machine learning using molecular dynamics simulations. Nanomaterials. 2022, 12 (14), 2353.
[34] Jin, K.; Luo, H.; Wang, Z.; Wang, H.; Tao, J. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Materials & Design. 2020, 194, 108932.
[35] Albuquerque, R. Q.; Rothenhäusler, F.; Gröbel, P.; Ruckdäschel, H. Multi-objective optimization of sustainable epoxy resin systems through bayesian optimization and machine learning. ACS Applied Engineering Materials. 2023, 1 (12), 3298-3308.
[36] Libbrecht, M. W.; Noble, W. S. Machine learning applications in genetics and genomics. Nature Reviews Genetics. 2015, 16 (6), 321-332.
[37] Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials. 2019, 5 (1), 83.
[38] Gradus, J. L.; Rosellini, A. J.; Horvath-Puho, E.; Street, A. E.; Galatzer-Levy, I.; Jiang, T.; Lash, T. L.; Sorensen, H. T. Prediction of sex-specific suicide risk using machine learning and single-payer health care registry data from denmark. JAMA Psychiatry. 2020, 77 (1), 25-34.
[39] Schwaller, P., Hoover, B., Reymond, J. L., Strobelt, H., & Laino, T. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Science Advances. 2021, 7 (15).
[40] Srinidhi, C. L.; Kim, S. W.; Chen, F. D.; Martel, A. L. Self-supervised driven consistency training for annotation efficient histopathology image analysis. Medical Image Analysis. 2022, 75, 102256.
[41] Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Reviews of Modern Physics. 2019, 91 (4).
[42] Knudsen, E. I. Supervised learning in the brain. The Journal of Neuroscience. 1994, 14 (7), 3985-3997.
[43] Krishnan, R.; Rajpurkar, P.; Topol, E. J. Self-supervised learning in medicine and healthcare. Nature Biomedical Engineering. 2022, 6 (12), 1346-1352.
[44] Quinlan, J. R. Induction of decision trees. 1986, 1, 81-106.
[45] Chen, T. H., T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H. Xgboost: extreme gradient boosting. R package version 0. 2015, 1 (4), 1-4.
[46] Suthaharan, S. Support-vector networks. In Machine learning models and algorithms for big data classification: thinking with examples for effective learning; 2016, 273–297.
[47] Glielmo, A.; Husic, B. E.; Rodriguez, A.; Clementi, C.; Noe, F.; Laio, A. Unsupervised learning methods for molecular simulation data. Chemical Reviews. 2021, 121 (16), 9722-9758.
[48] Sinaga, K. P.; Yang, M.-S. Unsupervised K-means clustering algorithm. IEEE Access. 2020, 8, 80716-80727.
[49] Hegland, M. The apriori algorithm–a tutorial. In Mathematics and computation in imaging science and information processing; 2007, 209-262.
[50] Pearson, K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine. 1901, 2 (6), 559-572.
[51] Bengio, Y.; Courville, A.; Vincent, P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013, 35 (8), 1798-1828.
[52] Rogers, D.; Hahn, M. Extended-connectivity fingerprints. Journal of Chemical Information and Modeling. 2010, 50 (5), 742-754.
[53] Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Springer. 2009, 532-538.
[54] Lundberg, S. M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Neural Information Processing Systems 2017, 30.
[55] Breiman, L. Random Forests. In Machine Learning 2001, 5-32.
[56] Friedman, J. H. Greedy function approximation: a gradient boosting machine. The Annals of Statistics. 2001, 29, 1189-1232.
[57] Zhang, Y.-X.; Huang, C.-I. Investigating the influence of molecular structure on the mechanical properties of epoxy resin systems by molecular dynamics. 2023.
[58] Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 2020, 415, 295-316.
[59] Devore, J. L. Probability and statistics for engineering and the sciences, 8th ed. In 2011, 508-510.
[60] Chai, T.; Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geoscientific Model Development. 2014, 7 (3), 1247-1250.
[61] Staartjes, J. M. K. V. E. Foundations of machine learning-based clinical prediction modeling: part II—generalization and overfitting. Machine Learning in Clinical Neuroscience: Foundations and Applications. 2022, 15-21.
[62] Liu, H.; Zhang, H.; Wang, H.; Huang, X.; Huang, G.; Wu, J. Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity. Chemical Engineering Journal. 2019, 368, 61-70.
[63] Saleh, N. J.; Razak, A.; Tooma, M. A.; E.Aziz, M. A study mechanical properties of epoxy resin cured at constant curing time and temperature with different hardeners. Engineering and Technology Journal. 2011, 29 (9), 1804-1819.
[64] Huang, X.; Cai, H.; Gao, L.; Mao, Y.; Huang, W. The synthesis of biphenyl ether/vanillin‐based flame retardants for enhancing both the flame retardant properties and mechanical performance of epoxy resin. Journal of Applied Polymer Science. 2024, 141 (17).
[65] Xie, W.; Tang, D.; Liu, S.; Zhao, J. Facile synthesis of bio-based phosphorus-containing epoxy resins with excellent flame resistance. Polymer Testing. 2020, 86, 106466.
[66] Liu, X.; Xiao, Z.; Liu, X.; Liu, Y.; Zhao, J.; Liu, S. Design and synthesis of epoxy prepolymer containing aromatic imide structures for thermoset with excellent thermal, mechanical and dielectric properties. Chemical Engineering Science. 2023, 281, 119149.
[67] Zhang, K.; Huang, J.; Wang, Y.; Li, W.; Nie, X. Eco-friendly epoxy-terminated polyurethane-modified epoxy resin with efficient enhancement in toughness. Polymers. 2023, 15 (13), 2803.
[68] Zheng, Y.; Zou, B.; Yuan, L. Structure and properties of novel epoxy resins containing naphthalene units and aliphatic chains. Iranian Polymer Journal. 2013, 22 (5), 325-334.
[69] Chen, X.; Jin, C.; Wang, F.; Zhu, Y.; Qi, H. Preparation and properties of novolac epoxy resins containing polycyclic aromatic hydrocarbons. Polymers for Advanced Technologies. 2024, 35 (4).
[70] Xu, Z.; Zhang, K.; Cheng, Y.; Sun, X.; Ren, H.; Wei, H.; Wang, Q.; Wang, L.; Zhang, Z.; Wang, G. Locally π-π conjugated polyimide cured triglycidyl isocyanurate epoxy resin with enhanced dielectric polarization and microwave absorption performance for X and Ku bands. Chemical Engineering Journal. 2024, 483, 149186.
[71] Yang, J. H.; Srikanth, A.; Jang, C.; Abrams, C. F. Relationships between molecular structure and thermomechanical properties of bio‐based thermosetting polymers. Journal of Polymer Science Part B: Polymer Physics. 2016, 55 (3), 285-292.
[72] Wei, H.; Wang, D.; Xing, W. Strengthening and toughening technology of epoxy resin. Journal of Physics: Conference Series. 2023, 2468 (1), 012066.
[73] Zhang, W.; Qing, Y.; Zhong, W.; Sui, G.; Yang, X. Mechanism of modulus improvement for epoxy resin matrices: a molecular dynamics simulation. Reactive and Functional Polymers. 2017, 111, 60-67.
[74] Li, W.; Ma, J.; Wu, S.; Zhang, J.; Cheng, J. The effect of hydrogen bond on the thermal and mechanical properties of furan epoxy resins: molecular dynamics simulation study. Polymer Testing. 2021, 101, 107275.
[75] Liu, Y.; Zhao, J.; Peng, Y.; Luo, J.; Cao, L.; Liu, X. Comparative study on the properties of epoxy derived from aromatic and heteroaromatic compounds: the role of hydrogen bonding. Industrial & Engineering Chemistry Research. 2020, 59 (5), 1914-1924.
[76] Li, C.; Zhang, R.; Wang, G.; Shi, Y. The mechanical properties of epoxy resin composites modified by compound modification. AIP Advances. 2018, 8 (10), 105325.
[77] Chen, F.; Gao, F.; Guo, X.; Chen, Y.; Gao, X.; Shen, L. Synthesis of dynamic polymers by amino-yne click reaction using multifunctional amine. Progress in Organic Coatings. 2024, 186, 108080.
[78] Garcia, F. G.; Soares, B. G.; Pita, V. J. R. R.; Sánchez, R.; Rieumont, J. Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science. 2007, 106 (3), 2047-2055.
[79] Liu, X.-F.; Liu, B.-W.; Luo, X.; Guo, D.-M.; Zhong, H.-Y.; Chen, L.; Wang, Y.-Z. A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal. 2020, 380, 122471
[80] Qi, Y.; Weng, Z.; Kou, Y.; Song, L.; Li, J.; Wang, J.; Zhang, S.; Liu, C.; Jian, X. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chemical Engineering Journal. 2021, 406, 126881.
[81] Luo, Q.; Yuan, Y.; Dong, C.; Huang, H.; Liu, S.; Zhao, J. Highly effective flame retardancy of a novel DPPA-based curing agent for DGEBA epoxy resin. Industrial & Engineering Chemistry Research. 2016, 55 (41), 10880-10888.
[82] Agarwal, K. K.; Agarwal, G. A study of mechanical properties of epoxy resin in presence of different hardeners. 2019.
[83] Wang, S.; Lou, S.; Fan, P.; Ma, L.; Liu, J.; Tang, T. A novel aromatic imine-containing DOPO-based reactive flame retardant towards enhanced flame-retardant and mechanical properties of epoxy resin. Polymer Degradation and Stability. 2023, 213, 110364.
[84] Ma, M.; Liu, X.; Li, C.; Yuan, Q.; Huang, F. A high-performance silicon-containing arylacetylene resin with conjugated naphthalene rings. High Performance Polymers. 2021, 34 (1), 24-32.
[85] Wei, M.; Wang, B.; Zhang, X.; Wei, W.; Li, X. Cycloaliphatic epoxy-functionalized polydimethylsiloxanes for comprehensive modifications of epoxy thermosets. European Polymer Journal. 2024, 202, 112656.
[86] He, J.; Li, L.; Zhou, J.; Tian, J.; Chen, Y.; Zou, H.; Liang, M. Ultra-high modulus epoxy resin reinforced by intensive hydrogen bond network: From design, synthesis, mechanism to applications. Composites Science and Technology. 2023, 231, 109815.
[87] He, J.; Li, L.; Zhou, J.; Zhang, H.; Yuan, M.; Heng, Z.; Chen, Y.; Zou, H.; Liang, M. Computation-based design of multifunctional self-curing epoxy resin containing intensive hydrogen bond network: a novel super-strong, high reactivity and flame-retardant coating. Progress in Organic Coatings. 2023, 183, 107725.
[88] Sun, H.; Jiang, J.; Zheng, Y.; Xiang, S.; Zhao, S.; Fu, F.; Liu, X. Synthesis of a renewable bisguaiacol amide and its hydrogen bonding effect on enhancing polybenzoxazine performance. Polymer Chemistry. 2023, 14 (14), 1613-1621.
[89] Li, Y.; Kankala, R. K.; Wu, L.; Chen, A.-Z.; Wang, S.-B. 3D-printed photocurable resin with synergistic hydrogen bonding based on deep eutectic solvent. ACS Applied Polymer Materials. 2023, 5 (1), 991-1001.
[90] Li, L.; Cai, Z. Flame-retardant performance of transparent and tensile-strength-enhanced epoxy resins. Polymers. 2020, 12 (2), 317.
[91] Yu, J. W.; Jung, J.; Choi, Y.-M.; Choi, J. H.; Yu, J.; Lee, J. K.; You, N.-H.; Goh, M. Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents. Polymer Chemistry. 2016, 7 (1), 36-43.
[92] Seo, J.; Yui, N.; Seo, J.-H. Development of a supramolecular accelerator simultaneously to increase the cross-linking density and ductility of an epoxy resin. Chemical Engineering Journal. 2019, 356, 303-311.
[93] Xie, Y.; Kurita, H.; Ishigami, R.; Narita, F. Assessing the flexural properties of epoxy composites with extremely low addition of cellulose nanofiber content. Applied Sciences. 2020, 10 (3), 1159.
[94] Bhuvana, S.; Sarojadevi, M. Synthesis and characterization of epoxy/amine terminated amide‐imide‐imide blends. Journal of Applied Polymer Science. 2008, 108 (3), 2001-2009.
[95] Vashisth, A.; Ashraf, C.; Bakis, C. E.; van Duin, A. C. T. Effect of chemical structure on thermo-mechanical properties of epoxy polymers: Comparison of accelerated ReaxFF simulations and experiments. Polymer. 2018, 158, 354-363.
[96] Jin, F.-L.; Park, S.-J. Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Materials Science and Engineering: A. 2008, 478 (1-2), 402-405.
[97] Xu, Y.; Luo, J.; Liu, X.; Liu, R. Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit. Progress in Organic Coatings. 2020, 141, 105543.
[98] Chen, S.; Zhang, J.; Zhou, J.; Zhang, D.; Zhang, A. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid. Chemical Engineering Journal. 2018, 334, 1371-1382.
[99] Yang, G.; Fu, S.-Y.; Yang, J.-P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer. 2007, 48 (1), 302-310.
[100] Wang, Z.; Li, M.; Liu, B.; Yang, G.; Luo, M.; Zhang, T.; Li, L.; Cheng, Y.; Jia, Z.; Wu, G. Enhanced energy storage characteristics of the epoxy film with rigid phenyl-flexible etherified methylene chains. Journal of Materials Science & Technology. 2024, 183, 12-22.
[101] Saikia, A.; Sarmah, D.; Kumar, A.; Karak, N. Bio‐based epoxy/polyaniline nanofiber‐carbon dot nanocomposites as advanced anticorrosive materials. Journal of Applied Polymer Science. 2019, 136 (27), 47744.
[102] Zhao, Q.; Wang, X.-y.; Hu, Y.-h. The application of highly soluble amine-terminated aromatic polyimides with pendent tert-butyl groups as a tougher for epoxy resin. Chinese Journal of Polymer Science. 2015, 33 (10), 1359-1372.
[103] Yang, Y.; Chen, W.; Li, Z.; Huang, G.; Wu, G. Efficient flame retardancy, good thermal stability, mechanical enhancement, and transparency of DOPO-conjugated structure compound on epoxy resin. Chemical Engineering Journal. 2022, 450, 138424.
[104] Fu, J.; Kong, H.; Yu, R.; Tu, J.; Wu, Q.; Wang, M.; Niu, L.; Zhang, K. Synthesis of an epoxy toughening curing agent through modification of terephthalic acid sludge waste. Coatings. 2024, 14 (4), 503.
[105] De, B.; Karak, N. Tough hyperbranched epoxy/poly(amido‐amine) modified bentonite thermosetting nanocomposites. Journal of Applied Polymer Science. 2014, 131 (11).
[106] Baig, Z.; Akram, N.; Zia, K. M.; Saeed, M.; Khosa, M. K.; Ali, L.; Saleem, S. Influence of amine‐terminated additives on thermal and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) cured epoxy. Journal of Applied Polymer Science. 2019, 137 (8), 48404.
[107] Srikanth, I.; Kumar, S.; Kumar, A.; Ghosal, P.; Subrahmanyam, C. Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon–epoxy composites. Composites Part A: Applied Science and Manufacturing. 2012, 43 (11), 2083-2086.
[108] Vu, C. M.; Sinh, L. H.; Nguyen, D. D.; Thi, H. V.; Choi, H. J. Simultaneous improvement of the fracture toughness and mechanical characteristics of amine-functionalized nano/micro glass fibril-reinforced epoxy resin. Polymer Testing. 2018, 71, 200-208.
[109] Francis, B.; Lakshmana Rao, V.; Jose, S.; Catherine, B. K.; Ramaswamy, R.; Jose, J.; Thomas, S. Poly(ether ether ketone) with pendent methyl groups as a toughening agent for amine cured DGEBA epoxy resin. Journal of Materials Science. 2006, 41 (17), 5467-5479.
[110] Zubeldia, A.; Larrañaga, M.; Remiro, P.; Mondragon, I. Fracture toughening of epoxy matrices with blends of resins of different molecular weights and other modifiers. Journal of Polymer Science Part B: Polymer Physics. 2004, 42 (21), 3920-3933.
[111] Tanks, J.; Naito, K.; Tamura, K. Rigid epoxy networks with very high intrinsic fracture toughness using a piperazine-based in-situ polymerization strategy. Materials Letters. 2023, 335, 133821.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94262-
dc.description.abstract環氧樹脂以其多元優異的性能在各應用領域中備受矚目,為擁有高機械強度、耐熱性和優異加工性能等優點的高分子材料,迄今為止仍在蓬勃發展,然而應用層面上的不同考量,使同時兼具多面向機械性質的固化劑材料設計成為難題。本研究運用機器學習方法,輔以具大量數據的資料庫,以2000~2023年DGEBA的機械性質數據為基準,建立固化劑結構與機械性質的關聯性,並將結構直接導入模型進行訓練。首先,以資料筆數、材料組數最多的楊氏模量為代表,透過極致梯度提升迴歸樹演算法建立預測模型,得到良好的相關係數(R),在預測能力上具有較佳表現,其中,影響楊氏模量的有利結構片段為芳香環衍生物、雙鍵氧、胺基及飒基,芳香環衍生物中又以具備二芳香環共軛稠環的固化劑表現較佳,而不利片段則為二級碳,此外,還看見了環氧樹脂的最終性能與固化劑中片段的連接位置、數量相關,對於高性能固化劑我們還發現稠環種類、環重複數目和對稱性對楊氏模量的影響,提升程度依序為萘環、異吲哚、異苯並噻吩、蒽環和菲環,所適合的環重複數目也隨剛性大小改變,介在2~3之間,至於不對稱稠環結構若以支化形式存在則可以對楊氏模量有正面影響,並且與其他文獻比較後,本研究訓練之模型具有預測值更能符合實驗的優勢。接著藉由同樣的方法、條件建立其他機械性質的模型,大部分相關係數(R)也具有良好表現,為了讓本研究的成果更具應用性,我們還將8種機械性質分為兩大類,對於第一類追求剛性的「楊氏模量、彎曲模量、儲能模量、抗拉強度、抗彎強度」可以使用芳香環衍生物、雙鍵氧、胺基提升,若考量儲能模量還可以額外引入柔性二級碳片段;而第二類須同時保有剛性、柔性的「耐衝擊強度、斷裂伸長率、斷裂韌性」則可以使用單鍵氧、胺基、三級碳來提升,芳香環衍生物則是輔以柔性片段後便可使用;若要同時兼具兩大類機械性質則需使用芳香環衍生物、胺基、雙鍵氧、三級碳和單鍵氧片段,並留意維持材料應有的柔性和剛性。本研究利用機器學習低成本、高效率的特點輔助目前以實驗為主的材料開發方式,促進學者獲得更豐富的結構-性質趨勢,並提供材料設計準則作為研究參考,實現機器學習預測在前,實驗驗證在後的新材料創新策略。zh_TW
dc.description.abstractEpoxy resins continue to attract significant attention for their diverse and excellent properties, yet designing curing agents with multiple properties becomes a challenging objective due to the different considerations. In this study, we aim to figure out the relationship between curing agents and the mechanical properties by extreme gradient boosting regression tree algorithm. Firstly, we select "Young's modulus, Flexural modulus, Storage modulus, Tensile strength, Flexural strength, Impact strength, Elongation at break, and Fracture toughness" as features to analyze literature data from 2000 to 2023 and directly input structures for model training, with Young's modulus as representative due to its abundant data sets. Our work indicates that the aromatic ring derivatives, double-bond oxygen, amine, and sulfone can promote Young's modulus by rigidity, cross-linking density and steric hindrance, while the secondary carbon, which increases flexibility owing to single-bond rotation, will decrease it. In addition, the final performance is related to the position and quantity of the structural fragments, and the predicted values obtained from us are more in correspondence with the experiments as compared to others, furthermore, for high-performance curing agents, we establish the ranking of different fused rings that improve Young's modulus. And then, we also divide the properties into two categories. For the first category, "Young's modulus, Flexural modulus, Storage modulus, Tensile strength, and Flexural strength", the aromatic ring derivatives, double-bond oxygen and amine can enhance them via rigidity, steric hindrance and cross-linking density, while considering Storage modulus, flexible secondary carbon can be introduced. The second category of "Impact strength, Elongation at break, and Fracture toughness" can be improved by using single-bond oxygen, amine, and tertiary carbon with their combination of flexibility and rigidity characteristics, and aromatic ring derivatives can be used when supplemented with flexible segments. If considering both categories, aromatic ring derivatives, amines, double-bond oxygen, tertiary carbon, and single-bond oxygen are essential for balancing flexibility and rigidity. Our research utilizes machine learning to support experiment-based material development and provides criteria for materials design. Highlighting a strategy for innovative materials, with machine learning prediction at the forefront and experimental verification as a foundational support.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:30:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:30:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
中文摘要 ii
英文摘要 iii
目次 iv
圖次 v
表次 vi
第一章 前言 1
第二章 研究方法 8
2.1 資料庫建立 8
2.2 機器學習模型 9
第三章 結果與討論 12
3.1 楊氏模量預測模型結果 12
3.2 其他機械性質預測模型結果 27
第四章 結論 37
第五章 參考文獻 39
第六章 附錄 46
附錄一 46
附錄二 50
附錄三 61
-
dc.language.isozh_TW-
dc.title運用機器學習探討固化劑分子結構對於環氧樹脂系統機械性質之影響zh_TW
dc.titleInvestigating the Effects of Molecular Structures of Curing Agents on the Mechanical Properties of Epoxy Resin Systems by Machine Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳錦文;李旻軒zh_TW
dc.contributor.oralexamcommitteeChin-Wen Chen;Min-Hsuan Leeen
dc.subject.keyword環氧樹脂,機器學習,機械性質,極致梯度提升迴歸樹,重要結構片段,zh_TW
dc.subject.keywordEpoxy resins,Machine learning,Mechanical properties,eXtreme Gradient Boosting Regression Tree,Important Structural Fragments,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202402332-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf6.98 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved