Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94261
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 劉嚞睿 | zh_TW |
dc.contributor.advisor | Je-Ruei Liu | en |
dc.contributor.author | 沈俊廷 | zh_TW |
dc.contributor.author | Chun-Ting Shen | en |
dc.date.accessioned | 2024-08-15T16:29:58Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | 李恩. (2014). 具黴菌毒素分解能力之芽孢桿菌的鑑定與特性分析 國立臺灣大學. 臺灣博碩士論文知識加值系統. 台北市.
易秉蓉. (2010). 以地衣芽孢桿菌去除黴菌毒素之研究 國立臺灣大學. 臺灣博碩士論文知識加值系統. 台北市. 葛文聖. (2018). 益生菌促進澳洲淡水龍蝦特定免疫活性及抗白點病毒之潛力 國立臺灣大學. 臺灣博碩士論文知識加值系統. 台北市. Abarike, E. D., Cai, J., Lu, Y., Yu, H., Chen, L., Jian, J., Tang, J., Jun, L., & Kuebutornye, F. K. A. (2018). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 82, 229-238. Al-Lahham, S. H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. J., & Venema, K. (2010). Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta, 1801(11), 1175-1183. Bayati, A., Kumar, R., Francis, V., & McPherson, P. S. (2021). SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem, 296, 100306. Becattini, S., Taur, Y., & Pamer, E. G. (2016). Antibiotic-Induced changes in the intestinal microbiota and disease. Trends Mol Med, 22(6), 458-478. Botić, T., Klingberg, T. D., Weingartl, H., & Cencič, A. (2007). A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. International Journal of Food Microbiology, 115(2), 227-234. Cao, H., He, S., Wei, R., Diong, M., & Lu, L. (2011). Bacillus amyloliquefaciens G1: a potential antagonistic bacterium against eel-pathogenic Aeromonas hydrophila. Evidence-Based Complementary and Alternative Medicine, 2011, 824104. Caramia, G., & Silvi, S. (2011). Probiotics: from the ancient wisdom to the actual therapeutical and nutraceutical perspective. In (pp. 3-37). Chen, H. H., Lin, H. T., Foung, Y. F., & Han-You Lin, J. (2012). The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev Comp Immunol, 38(2), 285-294. Chen, M. F., Weng, K. F., Huang, S. Y., Liu, Y. C., Tseng, S. N., Ojcius, D. M., & Shih, S. R. (2017). Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunol, 10(1), 215-227. Chen, X., Yi, H., Liu, S., Zhang, Y., Su, Y., Liu, X., Bi, S., Lai, H., Zeng, Z., & Li, G. (2021). Probiotics improve eating disorders in mandarin fish (Siniperca chuatsi) induced by a pellet feed diet via stimulating immunity and regulating gut microbiota. Microorganisms, 9(6). Conner, S. D., & Schmid, S. L. (2003). Regulated portals of entry into the cell. Nature, 422(6927), 37-44. Dahiya, D., & Nigam, P. S. (2023). Biotherapy using probiotics as therapeutic agents to restore the gut microbiota to relieve gastrointestinal tract inflammation, IBD, IBS and prevent induction of cancer. Int J Mol Sci, 24(6). Deutsch, S. M., Mariadassou, M., Nicolas, P., Parayre, S., Le Guellec, R., Chuat, V., Peton, V., Le Maréchal, C., Burati, J., Loux, V., Briard-Bion, V., Jardin, J., Plé, C., Foligné, B., Jan, G., & Falentin, H. (2017). Identification of proteins involved in the anti-inflammatory properties of Propionibacterium freudenreichii by means of a multi-strain study. Sci Rep, 7, 46409. Ding, X., Lu, D.-q., Hou, Q.-h., Li, S.-s., Liu, X.-c., Zhang, Y., & Lin, H.-r. (2012). Orange-spotted grouper (Epinephelus coioides) toll-like receptor 22: Molecular characterization, expression pattern and pertinent signaling pathways. Fish & Shellfish Immunology, 33(3), 494-503. Dobson, A., Cotter, P. D., Ross, R. P., & Hill, C. (2012). Bacteriocin production: a probiotic trait? Appl Environ Microbiol, 78(1), 1-6. El-Saadony, M. T., Alagawany, M., Patra, A. K., Kar, I., Tiwari, R., Dawood, M. A. O., Dhama, K., & Abdel-Latif, H. M. R. (2021). The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology, 117, 36-52. Elsabagh, M., Mohamed, R., Moustafa, E. M., Hamza, A., Farrag, F., Decamp, O., Dawood, M. A. O., & Eltholth, M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(6), 1613-1622. Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol, 74(8), 2461-2470. Fuller, R. (1989). Probiotics in man and animals. J Appl Bacteriol, 66(5), 365-378. Galdeano, C. M., & Perdigón, G. (2004). Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J Appl Microbiol, 97(4), 673-681. Ganguly, N., Bhattacharya, S., Sesikeran, B., Nair, G., Ramakrishna, B., Sachdev, H., Batish, V., Kanagasabapathy, A., Muthuswamy, V., & Kathuria, S. (2011). ICMR-DBT guidelines for evaluation of probiotics in food. Indian Journal of Medical Research, 134(1), 22-25. Gatesoupe, F. J. (2008). Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol, 14(1-3), 107-114. Gobi, N., Malaikozhundan, B., Sekar, V., Shanthi, S., Vaseeharan, B., Jayakumar, R., & Khudus Nazar, A. (2016). GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus. Fish & Shellfish Immunology, 52, 230-238. Harikrishna, N., Mahalakshmi, S., Kiran Kumar, K., & Reddy, G. (2017). Fish scales as potential substrate for production of alkaline protease and amino acid rich aqua hydrolyzate by Bacillus altitudinis GVC11. Indian J Microbiol, 57(3), 339-343. Harrigan, W. F., & McCance, M. E. (1966). Laboratory methods in microbiology. Hazards, E. Panel o. B., Koutsoumanis, K., Allende, A., Alvarez-Ordóñez, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., De Cesare, A., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Cocconcelli, P. S., Fernández Escámez, P. S., Prieto-Maradona, M., Querol, A., Sijtsma, L., Evaristo Suarez, J., Sundh, I., Vlak, J., Barizzone, F., Hempen, M., & Herman, L. (2022). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notified to EFSA until September 2021. EFSA Journal, 20(1), e07045. Hazeri, M., Hassan, M. D., Abba, Y., Omar, A. R., Allaudin, Z. N., Soltani, M., Hamdan, R. H., Mohamad, N. F. A., Raina, S. M., & Vishkaei, M. S. (2016). Histopathological evaluation and molecular detection of natural Iridovirus infection in cultured grouper fish in Malaysia. Comparative Clinical Pathology, 25(5), 965-971. Helenius, A., & Marsh, M. (1982). Endocytosis of enveloped animal viruses. Ciba Found Symp(92), 59-76. Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therap Adv Gastroenterol, 6(1), 39-51. Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514. Hlordzi, V., Kuebutornye, F. K. A., Afriyie, G., Abarike, E. D., Lu, Y., Chi, S., & Anokyewaa, M. A. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18, 100503. Hotel, A. (2001). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria – Joint FAO/WHO Expert Consultation. 2014. Hu, S.-L., Liou, C.-J., Cheng, Y.-H., Yiu, J.-C., Chiou, P. P., & Lai, Y.-S. (2015). Development and characterization of two monoclonal antibodies against grouper iridovirus 55L and 97L proteins. Journal of Fish Diseases, 38(3), 249-258. Huang, S.-M., Tu, C., Tseng, C.-H., Huang, C.-C., Chou, C.-C., Kuo, H.-C., & Chang, S.-K. (2011). Genetic analysis of fish iridoviruses isolated in Taiwan during 2001–2009. Archives of Virology, 156(9), 1505-1515. Hudson, L. K., Orellana, L. A. G., Bryan, D. W., Moore, A., Munafo, J. P., den Bakker, H. C., & Denes, T. G. (2021). Phylogeny of the Bacillus altitudinis complex and characterization of a newly isolated strain with antilisterial activity. Journal of Food Protection, 84(8), 1321-1332. Hui, C., Wei, R., Jiang, H., Zhao, Y., & Xu, L. (2019). Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier Bacillus amyloliquefaciens DT. International Biodeterioration & Biodegradation, 142, 11-17. Husni, A. A. A., Ismail, S. I., Jaafar, N. M., & Zulperi, D. (2021). Current classification of the Bacillus pumilus group species, the rubber-pathogenic bacteria causing trunk bulges disease in Malaysia as assessed by MLSA and multi rep-PCR Approaches. Plant Pathol J, 37(3), 243-257. Hyatt, A. D., & Chinchar, V. G. (2008). Iridoviruses of vertebrates. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of Virology (Third Edition) (pp. 155-160). Academic Press. Jeon, H. Y., Kim, K. S., & Kim, S. (2023). Effects of yogurt containing probiotics on respiratory virus infections: Influenza H1N1 and SARS-CoV-2. J Dairy Sci, 106(3), 1549-1561. Kaksonen, M., & Roux, A. (2018). Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 19(5), 313-326. Kaur, C., Kaur, I., Raichand, R., Bora, T. C., & Mayilraj, S. (2011). Description of a novel actinobacterium Kocuria assamensis sp. nov., isolated from a water sample collected from the river Brahmaputra, Assam, India. Antonie Van Leeuwenhoek, 99(3), 721-726. Kavitha, M., Raja, M., & Perumal, P. (2018). Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquaculture Reports, 11, 59-69. Kim, C. H., Park, J., & Kim, M. (2014). Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw, 14(6), 277-288. Kıvanç, S. A., Takım, M., Kıvanç, M., & Güllülü, G. (2014). Bacillus spp. isolated from the conjunctiva and their potential antimicrobial activity against other eye pathogens. Afr Health Sci, 14(2), 364-371. Kuebutornye, F. K. A., Abarike, E. D., & Lu, Y. (2019). A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology, 87, 820-828. Kuebutornye, F. K. A., Abarike, E. D., Lu, Y., Hlordzi, V., Sakyi, M. E., Afriyie, G., Wang, Z., Li, Y., & Xie, C. X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry, 46(3), 819-841. Lai, Y.-S., Murali, S., Ju, H.-Y., Wu, M.-F., Guo, I.-C., Chen, S.-C., Fang, K., & Chang, C.-Y. (2000). Two iridovirus-susceptible cell lines established from kidney and liver of grouper, Epinephelus awoara (Temminck & Schlegel), and partial characterization of grouper iridovirus. Journal of Fish Diseases, 23(6), 379-388. Lakadamyali, M., Rust, M. J., & Zhuang, X. (2004). Endocytosis of influenza viruses. Microbes Infect, 6(10), 929-936. Lam, F. W., Wu, S. Y., Lin, S. J., Lin, C. C., Chen, Y. M., Wang, H. C., Chen, T. Y., Lin, H. T., & Lin, J. H. (2011). The expression of two novel orange-spotted grouper (Epinephelus coioides) TNF genes in peripheral blood leukocytes, various organs, and fish larvae. Fish Shellfish Immunol, 30(2), 618-629. Leu, J.-H., Wu, M.-H., & Chou, H.-Y. (2013). A comparative study between ranavirus and megalocytivirus infections in orange-spotted grouper (Epienphelus coioides). Journal of Marine Science and Technology, 21, 58-64. Li, J., Wu, Z.-B., Zhang, Z., Zha, J.-W., Qu, S.-Y., Qi, X.-Z., Wang, G.-X., & Ling, F. (2019). Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Fish & Shellfish Immunology, 93, 1047-1055. Lieleg, O., Lieleg, C., Bloom, J., Buck, C. B., & Ribbeck, K. (2012). Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules, 13(6), 1724-1732. Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganism. Science, 147(3659), 747-748. Liu, C.-C., Ho, L.-P., Yang, C.-H., Kao, T.-Y., Chou, H.-Y., & Pai, T.-W. (2017). Comparison of grouper infection with two different iridoviruses using transcriptome sequencing and multiple reference species selection. Fish & Shellfish Immunology, 71, 264-274. Liu, Y., Lai, Q., Dong, C., Sun, F., Wang, L., Li, G., & Shao, Z. (2013). Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS One, 8(11), e80097. Markowiak-Kopeć, P., & Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4). Mehmeti, I., Kiran, F., & Osmanagaoglu, O. (2012). Comparison of three methods for determination of protein concentration in lactic acid bacteria for proteomics studies. Mercer, J., & Helenius, A. (2009). Virus entry by macropinocytosis. Nature Cell Biology, 11(5), 510-520. Metchnikoff, E. (1907). The prolongation of life: optimistic studies, trans. P. Chalmers Mitchell. New York: GP Putnam’s Sons. Mohan, K. V., Rao, S. S., & Atreya, C. D. (2010). Antiviral activity of selected antimicrobial peptides against vaccinia virus. Antiviral Res, 86(3), 306-311. Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463-6472. Mujeeb Rahiman, K. M., Jesmi, Y., Thomas, A. P., & Mohamed Hatha, A. A. (2010). Probiotic effect of Bacillus NL110 and Vibrio NE17 on the survival, growth performance and immune response of Macrobrachium rosenbergii (de Man). Aquaculture Research, 41(9), e120-e134. Mulaw, G., Sisay Tessema, T., Muleta, D., & Tesfaye, A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented ethiopian food products. Int J Microbiol, 2019, 7179514. Murali, S., Wu, M.-F., Guo, I.-C., Chen, S.-C., Yang, H.-W., & Chang, C.-Y. (2002). Molecular characterization and pathogenicity of a grouper iridovirus (GIV) isolated from yellow grouper, Epinephelus awoara (Temminck & Schlegel). Journal of Fish Diseases, 25(2), 91-100. Nielsen, J. P. (2014). MEAT, ANIMAL, POULTRY AND FISH PRODUCTION AND MANAGEMENT | Disease control and specific pathogen free pig production. In M. Dikeman & C. Devine (Eds.), Encyclopedia of Meat Sciences (Second Edition) (pp. 186-189). Academic Press. Nunes, C., Figueiredo, R., Laranjinha, J., & da Silva, G. J. (2019). Intestinal cytotoxicity induced by Escherichia coli is fully prevented by red wine polyphenol extract: Mechanistic insights in epithelial cells. Chemico-Biological Interactions, 310, 108711. Nunn, K. L., Wang, Y. Y., Harit, D., Humphrys, M. S., Ma, B., Cone, R., Ravel, J., & Lai, S. K. (2015). Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with Lactobacillus crispatus-dominant microbiota. mBio, 6(5), e01084-01015. O'Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P., & Hill, C. (2012). Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. International Journal of Food Microbiology, 152(3), 189-205. Park, J.-S., Lee, E.-J., Lee, J.-C., Kim, W.-K., & Kim, H.-S. (2007). Anti-inflammatory effects of short chain fatty acids in IFN-γ-stimulated RAW 264.7 murine macrophage cells: Involvement of NF-κB and ERK signaling pathways. International Immunopharmacology, 7(1), 70-77. Peterson, J., Garges, S., Giovanni, M., McInnes, P., Wang, L., Schloss, J. A., Bonazzi, V., McEwen, J. E., Wetterstrand, K. A., Deal, C., Baker, C. C., Di Francesco, V., Howcroft, T. K., Karp, R. W., Lunsford, R. D., Wellington, C. R., Belachew, T., Wright, M., Giblin, C., David, H., Mills, M., Salomon, R., Mullins, C., Akolkar, B., Begg, L., Davis, C., Grandison, L., Humble, M., Khalsa, J., Little, A. R., Peavy, H., Pontzer, C., Portnoy, M., Sayre, M. H., Starke-Reed, P., Zakhari, S., Read, J., Watson, B., & Guyer, M. (2009). The NIH human microbiome project. Genome Res, 19(12), 2317-2323. Purty, S., Saranathan, R., Prashanth, K., Narayanan, K., Asir, J., Sheela Devi, C., & Kumar Amarnath, S. (2013). The expanding spectrum of human infections caused by Kocuria species: a case report and literature review. Emerg Microbes Infect, 2(10), e71. Pushparaj, K., Kuchi Bhotla, H., Pappuswamy, M., Issara, U., Balasubramanian, B., Al-Dhabi, N. A., Arasu, M. V., & Meyyazhagan, A. (2022). Perspectives and implications of probiotics as beneficial mediators in aquaculture industry. In B. Balasubramanian, W.-C. Liu, & G. Sattanathan (Eds.), Aquaculture Science and Engineering (pp. 79-97). Springer Nature Singapore. Qin, Q. W., Shi, C., Gin, K. Y., & Lam, T. J. (2002). Antigenic characterization of a marine fish iridovirus from grouper, Epinephelus spp. Journal of virological methods, 106(1), 89-96. Ramos, M. A., Gonçalves, J. F. M., Batista, S., Costas, B., Pires, M. A., Rema, P., & Ozório, R. O. A. (2015). Growth, immune responses and intestinal morphology of rainbow trout (Oncorhynchus mykiss) supplemented with commercial probiotics. Fish & Shellfish Immunology, 45(1), 19-26. Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S., & Menasveta, P. (1998). Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture, 167(3), 301-313. Ritter, A. C., Paula, A., Correa, F., Veras, F. F., & Brandelli, A. (2018). Characterization of Bacillus subtilis available as probiotics. Journal of Microbiology Research, 8(2), 23-32. Rout, P. R., Bhunia, P., & Dash, R. R. (2017). Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. Bioresour Technol, 244(Pt 1), 484-495. Russell, S. L., Gold, M. J., Hartmann, M., Willing, B. P., Thorson, L., Wlodarska, M., Gill, N., Blanchet, M. R., Mohn, W. W., McNagny, K. M., & Finlay, B. B. (2012). Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep, 13(5), 440-447. Samanta, M., Swain, B., Basu, M., Panda, P., Mohapatra, G. B., Sahoo, B. R., & Maiti, N. K. (2012). Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita). Fish Shellfish Immunol, 32(3), 411-425. Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 31, 107-133. Simón, R., Docando, F., Nuñez-Ortiz, N., Tafalla, C., & Díaz-Rosales, P. (2021). Mechanisms used by probiotics to confer pathogen resistance to teleost fish [Review]. Frontiers in Immunology, 12. Sirichokchatchawan, W., Temeeyasen, G., Nilubol, D., & Prapasarakul, N. (2018). Protective effects of cell-free supernatant and live lactic acid bacteria isolated from Thai pigs against a pandemic strain of porcine epidemic diarrhea virus. Probiotics and Antimicrobial Proteins, 10(2), 383-390. Sánchez-Ortiz, A. C., Angulo, C., Luna-González, A., Álvarez-Ruiz, P., Mazón-Suástegui, J. M., & Campa-Córdova, Á. I. (2016). Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 59, 95-102. Son, V. M., Chang, C.-C., Wu, M.-C., Guu, Y.-K., Chiu, C.-H., & Cheng, W. (2009). Dietary administration of the probiotic, Lactobacillus plantarum, enhanced the growth, innate immune responses, and disease resistance of the grouper Epinephelus coioides. Fish & Shellfish Immunology, 26(5), 691-698. Song, K., Luo, F., Chen, W., Qi, X., Shen, Y., Zha, J., Ling, F., & Wang, G. (2022). Evaluation on the antiviral activity of Bacillus velezensis extract against spring viremia of carp virus. Aquaculture, 547, 737477. Starosila, D., Rybalko, S., Varbanetz, L., Ivanskaya, N., & Sorokulova, I. (2017). Anti-influenza activity of a Bacillus subtilis probiotic strain. Antimicrob Agents Chemother, 61(7). Steiner, K., Heasman, K., Laroche, O., Pochon, X., Preece, M., Bowman, J. P., Walker, S. P., & Symonds, J. E. (2021). The microbiome of Chinook salmon (Oncorhynchus tshawytscha) in a recirculation aquaculture system. Aquaculture, 534, 736227. Sung, C.-H., Chi, S. C., Huang, K.-C., & Lu, J.-K. (2010). Rapid detection of grouper iridovirus by loop-mediated isothermal amplification. Thankappan, B., Ramesh, D., Ramkumar, S., Natarajaseenivasan, K., & Anbarasu, K. (2015). Characterization of Bacillus spp. from the gastrointestinal tract of Labeo rohita—towards to identify novel probiotics against fish pathogens. Applied Biochemistry and Biotechnology, 175(1), 340-353. Tsai, C. T., Ting, J. W., Wu, M. H., Wu, M. F., Guo, I. C., & Chang, C. Y. (2005). Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J Virol, 79(4), 2010-2023. Van Doan, H., Lumsangkul, C., Ruangwong, O.-U., Meidong, R., Hoseinifar, S. H., Dawood, M. A. O., Azra, M. N., Jatursitha, S., & Carnevali, O. (2021). Effects of host-associated probiotic Bacillus altitudinis B61-34b on growth performance, immune response and disease resistance of Nile tilapia (Oreochromis niloticus) raised under biofloc system. Aquaculture Nutrition, 27(S1), 61-72. Vercauteren, D., Vandenbroucke, R. E., Jones, A. T., Rejman, J., Demeester, J., De Smedt, S. C., Sanders, N. N., & Braeckmans, K. (2010). The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther, 18(3), 561-569. Vollenbroich, D., Ozel, M., Vater, J., Kamp, R. M., & Pauli, G. (1997). Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals, 25(3), 289-297. Wang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int J Syst Evol Microbiol, 58(Pt 3), 671-675. Wang, S., Huang, X., Huang, Y., Hao, X., Xu, H., Cai, M., Wang, H., & Qin, Q. (2014). Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol, 88(22), 13047-13063. Wang, X., Hu, W., Zhu, L., & Yang, Q. (2017). Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep, 37(2). Wang, Y.-H., Limaye, A., Liu, J.-R., & Wu, T.-N. (2023). Potential probiotics for regulation of the gut-lung axis to prevent or alleviate influenza in vulnerable populations. Journal of Traditional and Complementary Medicine, 13(2), 161-169. Wang, Z., Chai, W., Burwinkel, M., Twardziok, S., Wrede, P., Palissa, C., Esch, B., & Schmidt, M. F. (2013). Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One, 8(1), e53043. Williams, T. (2008). Iridoviruses of Invertebrates. In B. W. J. Mahy & M. H. V. Van Regenmortel (Eds.), Encyclopedia of Virology (Third Edition) (pp. 161-167). Academic Press. Williams, T., Barbosa‐Solomieu, V., & Chinchar, V. G. (2005). A decade of advances in iridovirus research. In Advances in Virus Research (Vol. 65, pp. 173-248). Academic Press. Xu, R., Li, M., Wang, T., Zhao, Y. W., Shan, C. J., Qiao, F., Chen, L. Q., Zhang, W. B., Du, Z. Y., & Zhang, M. L. (2022). Bacillus amyloliquefaciens ameliorates high-carbohydrate diet-induced metabolic phenotypes by restoration of intestinal acetate-producing bacteria in Nile Tilapia. Br J Nutr, 127(5), 653-665. Yúfera, M., Moyano, F. J., Astola, A., Pousão-Ferreira, P., & Martínez-Rodríguez, G. (2012). Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS One, 7(3), e33687. Yamamoto, S., & Harayama, S. (1995). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol, 61(3), 1104-1109. Yeak, K. Y. C., Perko, M., Staring, G., Fernandez-Ciruelos, B. M., Wells, J. M., Abee, T., & Wells-Bennik, M. H. J. (2022). Lichenysin production by Bacillus licheniformis food isolates and toxicity to human cells. Front Microbiol, 13, 831033. Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J., & Wang, G. (2018). Probiotic potential of Bacillus velezensis JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish & Shellfish Immunology, 78, 322-330. Zhang, F., Guo, H., Zhang, J., Chen, Q., & Fang, Q. (2018). Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology, 513, 195-207. Zheng, D., Liwinski, T., & Elinav, E. (2020). Interaction between microbiota and immunity in health and disease. Cell Research, 30(6), 492-506. Zhou, S., Song, D., Zhou, X., Mao, X., Zhou, X., Wang, S., Wei, J., Huang, Y., Wang, W., Xiao, S.-M., & Qin, Q. (2019). Characterization of Bacillus subtilis from gastrointestinal tract of hybrid Hulong grouper (Epinephelus fuscoguttatus × E. lanceolatus) and its effects as probiotic additives. Fish & Shellfish Immunology, 84, 1115-1124. Zhu, X., Wang, J., Jia, Z., Feng, J., Wang, B., Wang, Z., Liu, Q., Wu, K., Huang, W., Zhao, X., Dang, H., & Zou, J. (2022). Novel dimeric architecture of an IFN-γ–related cytokine provides insights into subfunctionalization of type II IFNs in teleost fish. The Journal of Immunology, 209(11), 2203-2214. Zou, J., & Secombes, C. J. (2011). Teleost fish interferons and their role in immunity. Developmental & Comparative Immunology, 35(12), 1376-1387. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94261 | - |
dc.description.abstract | 石斑魚為國內主要的養殖魚種,吋魚時期易受病毒感染而造成高死亡率。石斑魚虹彩病毒(Grouper iridovirus, GIV)為其主要的威脅之一。在過去研究中顯示水產養殖所使用的益生菌,除了能增進魚隻生長、提升免疫力外,部分菌株甚至具有抗病毒的效果。本研究中以石斑魚腎臟細胞(grouper kidney cell, GK cell)作為篩選具抗GIV病毒的潛力菌株之平台,除了評估菌株之益生菌特性外,並更進一步探討GIV進入宿主細胞的途徑。以16S rRNA與Gyrase B基因進行菌種鑑定後,確認從石斑魚腸道中分離出的菌株分別為Kocuria assamensis KA、Bacillus altitudinis BS、Bacillus altitudinis BA。隨後在預防(pre-treatment)、共培養(co-incubation)、預培養(pre-incubation)的策略下,檢測各菌株萃取物抗GIV的潛力以及GK細胞的免疫與抗病毒基因表現。結果顯示以B. altitudinis BS、B. altitudinis BA菌株的胞內萃取液 (IF)在三種策略中均能提升細胞存活率,但在基因表現方面,BS-IF能調降預防策略下第48小時的發炎反應與GK細胞內GIV病毒基因表現量;BS-IF在共培養策略下能同時提升第48小時的發炎與抗病毒反應;而在預培養策略下,BS-IF會先促進24小時後的發炎反應,隨後在48小時才提升抗病毒反應。在免疫染色結果中驗證BS-IF在預處理下能減少GK細胞內病毒累積量。而B. altitudinis BA的萃取物在基因表現的調節較不顯著也無明顯GIV病毒減少,因此B. altitudinis BS是最具抗GIV病毒潛力的菌株,其中萃取物IF最有效。在益生菌評估中,B. altitudinis BS具有耐膽鹽、抗病原菌、抗生素敏感等特性,但在pH 2.5至3的酸性環境下不易生長,且呈現β-hemolysis的溶血反應,由此不完全符合益生菌的規範,雖可被視為有益菌株但並非益生菌。最後在GIV進入機制的探討中確認網格蛋白介導的內吞作用(clathrin-mediated endocytosis)為其進入宿主細胞的途徑之一。 | zh_TW |
dc.description.abstract | Groupers, the main-cultured and economic fish species in Taiwan, easily faced high mortality in the larvae period due to the virus infection. Grouper iridovirus (GIV) is one of the virus challenges to groupers. In past studies, probiotics were normally used in the aquaculture industry as an additive to elevate the growth index and immune system of fish. In addition, some of them were proven with anti-viral activity. In this study, we used Grouper kidney cell (GK cell) for GIV infection to select the ideal bacterial strains with anti-GIV potential and evaluate their probiotic characteristics. Furthermore, we explored the GIV entry mechanism to the GK host cell. Firstly, we successfully identified the isolated strains from the groupers through 16S rRNA and Gyrase B sequencing method, they were Kocuria assamensis KA, Bacillus altitudinis BS, and Bacillus altitudinis BA. Subsequently, under the three deigned strategies, pre-treatment, co-incubation, and pre-incubation, the results indicated that the intracellular fraction (IF) extraction of Bacillus altitudinis BS, Bacillus altitudinis BA were both able to elevate the cell viability of GIV-infected GK cell. However, only BS-IF significantly regulated the immune-related gene expression. In pre-treatment strategy, BS-IF decreased the inflammatory reaction and the GIV gene expression in GK cells; In the co-incubation strategy, BS-IF increased the inflammatory and anti-viral reactions at the same period; In the pre-incubation strategy, BS-IF stimulated the inflammation before the anti-viral reaction. The immune-staining results also displayed the same phenomenon that BS-IF decreased the GIV accumulation in GK cells. In conclusion, Bacillus altitudinis BS was the most efficient isolated strain against GIV infection. Then, in probiotic tests, Bacillus altitudinis BS had bile salt tolerance, anti-pathogen, and antibiotic sensitivity features but without acid tolerance and appeared β-hemolysis. Thus, Bacillus altitudinis BS is not suitable as a probiotic. What’s more, in the virus entry mechanism, we figured out that GIV used clathrin-mediated endocytosis as one of the pathways to enter the host cell. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:29:58Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:29:58Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv 目次 vi 圖次 xi 表次 xiv 第一章、文獻探討 1 第一節、益生菌 1 一、益生菌之定義 1 二、益生菌之特性 2 三、益生菌之功能 2 第二節、水產益生菌 7 一、益生菌與宿主關係 7 二、促進生長 8 三、抑制病原菌 9 四、改善水質 10 五、芽孢桿菌 13 第三節、虹彩病毒 18 一、虹彩病毒科 18 二、病毒進入機制 24 第四節、研究動機與目的 29 第二章、材料與方法 30 一、腸道菌株分離與保存 31 (一)、石斑魚犧牲 31 (二)、腸道菌株分離 31 (三)、菌株保存與活化 31 二、菌株萃取物製備 32 (一)、胞內液與胞外液製備 32 (二)、細胞壁製備 32 (三)、蛋白濃度測定 33 三、菌株鑑定 33 (一)、16S rRNA定序 33 (二)、Gyrase B定序 34 (三)、分類樹繪製 34 四、石斑魚腎臟細胞株培養 34 (一)、細胞活化與繼代 35 (二)、細胞保存 36 五、病毒製備與感染 36 (一)、病毒製備 36 (二)、病毒純化 36 (三)、病毒價數 36 六、樣本毒性測試 37 七、菌株萃取物前處理之預防模式 37 八、菌株萃取物與病毒之共培養模式 38 九、菌株萃取物與病毒混合之預培養模式 38 十、活菌共培養 39 十一、基因表現 39 (一)、mRNA抽取 39 (二)、cDNA之製備 40 (三)、即時定量聚合酶連鎖反應(real-time quantitative PCR, qPCR) 40 十二、免疫螢光染色 41 十三、細胞轉染 42 (一)、質體抽取 42 (二)、細胞轉染 42 十四、共軛焦螢光顯微鏡 43 十五、益生菌特性 43 (一)、基本特性 43 (二)、耐酸試驗 44 (三)、膽鹽耐受性試驗 44 (四)、抗生素敏感性試驗 44 (五)、病原菌拮抗試驗 45 (六)、溶血性試驗 45 (七)、碳源利用試驗 45 十六、統計方法 46 第三章、實驗結果 50 第一節、菌株篩選與細胞毒性檢測 50 一、菌株鑑定 50 二、菌株萃取物之毒性 51 三、活菌之毒性 52 第二節、三種策略下的菌株抗病毒潛力之評估 52 一、石斑魚虹彩病毒(GIV)感染能力測試 52 二、預防處理(Pre-treatment strategy) 53 三、共培養處理(Co-incubation strategy) 53 四、預培養處理(Pre-incubation strategy) 54 第三節、三種策略與活菌處理後之免疫相關基因表現 54 一、活菌共處理(Co-culturing with viable bacteria) 54 二、預防處理(Pre-treatment strategy) 54 三、共培養處理(Co-incubation strategy) 55 四、預培養處理(Pre-incubation strategy) 55 第四節、病毒累積量與網格蛋白引導的內吞作用(clathrin-mediated endocytosis) 56 一、不同策略下GK細胞內GIV病毒基因之表現量 56 二、免疫螢光染色 56 三、網格蛋白引導的內吞作用(clathrin-mediated endocytosis) 57 第五節、益生菌特性之評估 57 一、基本特性 58 二、耐酸試驗 58 三、膽鹽耐受性試驗 58 四、抗生素敏感性試驗 59 五、病原菌拮抗試驗 59 六、溶血性試驗 59 七、碳源利用試驗 60 第四章、討論 101 第五章、結論 112 第六章、參考文獻 113 | - |
dc.language.iso | zh_TW | - |
dc.title | 具抗虹彩病毒能力之益生菌篩選及其阻止病毒進入石斑魚腎臟細胞之機制探討 | zh_TW |
dc.title | Screening Potential Probiotics with anti-Grouper Iridovirus Activity and Investigating the Blocking Mechanism of Virus Entry into Grouper Kidney Cell | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉啟德;周信佑;謝建元 | zh_TW |
dc.contributor.oralexamcommittee | Chi-Te Liu;Hsin-Yiu Chou;Chien-Yan Hsieh | en |
dc.subject.keyword | 石斑魚虹彩病毒,Bacillus altitudinis BS,Bacillus altitudinis BA,胞內萃取液,益生菌,抗病毒,網格蛋白介導的內吞作用, | zh_TW |
dc.subject.keyword | Grouper iridovirus,Bacillus altitudinis BS,Bacillus altitudinis BA,probiotic,anti-GIV potential,clathrin-mediated endocytosis, | en |
dc.relation.page | 120 | - |
dc.identifier.doi | 10.6342/NTU202403215 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-09 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 3.2 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.