請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94259完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立仁 | zh_TW |
| dc.contributor.advisor | Li-Jen Chen | en |
| dc.contributor.author | 李仲淇 | zh_TW |
| dc.contributor.author | Jhong-Ci Lee | en |
| dc.date.accessioned | 2024-08-15T16:29:24Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | [1] Khan, N.; Brettmann, B. Intermolecular Interactions in Polyelectrolyte and Surfactant Complexes in Solution. Polymers 2019, 11, 51.
[2] Dobrynin, A.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Progress in Polymer Science 2005, 30 (11), 1049-1118. [3] Litmanovich, E; Zakharchenko, S; Stoichev, G. Journal of Physical Chemistry B 2007, Vol. 111, 8567-8571. [4] Lopez, C. Scaling and Entanglement Properties of Neutral and Sulfonated Polystyrene. Macromolecules 2019, 52, 9409−9415. [5] Dobrynin, A.; Colby, R and Rubinstein, M. Scaling Theory of Polyelectrolyte Solutions. Macromolecules 1995, 28, 1859-1871. [6] Rubinstein, M; Colby, R. Polymer Physics; Oxford University Press, 2003. [7] Carlos G. Lopez; Jürgen Linders; Christian Mayer; Walter Richtering. Diffusion and Viscosity of Unentangled Polyelectrolytes. Macromolecules 2021, 54, 8088−8103. [8] Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications, Second Edition.; John Wiley & Sons, Inc., 1999. [9] Preston, W. C. Some correlating principles of detergent action. J Phys Colloid Chem 1948, 52 (1), 84-97. [10] Phillips, J. N. The energetics of micelle formation. Transactions of the Faraday Society 1955, 51. [11] Klevens, H. B. Structure and aggregation in dilate solution of surface active agents. Journal of the American Oil Chemists' Society 1953, 30 (2), 74-80. [12] Ohta, A.; Murakami, R.; Takiue, T.; Ikeda, N.; Aratono, M. Calorimetric Study of Micellar Solutions of Pentaethylene Glycol Monooctyl and Monodecyl Ethers. The Journal of Physical Chemistry B 2000, 104 (35), 8592-8597. [13] Attwood, D.; Florence, A. T. Surfactant Systems: Their chemistry, pharmacy and biology; Chapman and Hall, 1983. [14] Lapitsky, Y.; Parikh, M.; Kaler, E. W. Calorimetric determination of surfactant/polyelectrolyte binding isotherms. J Phys Chem B 2007, 111 (29), 8379-8387. [15] Nizri, G.; Lagerge, S.; Kamyshny, A.; Major, D. T.; Magdassi, S. Polymer-surfactant interactions: binding mechanism of sodium dodecyl sulfate to poly(diallyldimethylammonium chloride). J Colloid Interface Sci 2008, 320 (1), 74-81. [16] Khan, N.; Brettmann, B. Intermolecular Interactions in Polyelectrolyte and Surfactant Complexes in Solution. Polymers (Basel) 2018, 11 (1). [17] Hsueh-Wen Tseng; Po-Chia Chen; Hung-Wei Tsui; Chieh-Hsiang Wang; Ting-Yu Hu; Li-Jen Chen. Effect of molecular weight of poly(acrylic acid) on the interaction of oppositely charged ionic surfactant-polyelectrolyte mixtures. Journal of the Taiwan Institute of Chemical Engineers 2018, 92, 50-57. [18] Pojják, K.; Bertalanits, E.; Meszaros, R. Effect of salt on the equilibrium and nonequilibrium features of polyelectrolyte/surfactant association. Langmuir 2011, 27 (15), 9139-9147. [19] 廖芝婷, 碩士學位論文, 帶相反電性之聚電解質/界面活性劑系統添加鹽類的效應其熱力學性質探討與雙成分共聚物高分子形成水凝膠之動態效應, 國立臺灣大學化學工程學研究所 2021. [20] Zuidema, H.; Waters, G. Ring Method for the Determination of Interfacial Tension. Industrial & Engineering Chemistry Analytical Edition 2016, 13 (5), 312-313. [21] 呂宗祐, 碩士學位論文, 聚電解質/界面活性劑系統添加尿素的效應其機制與熱力學性質探討, 國立臺灣大學化學工程學研究所 2023. [22] Shimizu, S.; Pires, P. A. R.; Loh, W.; El Seoud, O. A. Thermodynamics of micellization of cationic surfactants in aqueous solutions: consequences of the presence of the 2-acylaminoethyl moiety in the surfactant head group. Colloid and Polymer Science 2004, 282 (9), 1026-1032. [23] Campbell, R. A.; Yanez Arteta, M.; Angus-Smyth, A.; Nylander, T.; Varga, I. Effects of bulk colloidal stability on adsorption layers of poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate at the air-water interface studied by neutron reflectometry. J Phys Chem B 2011, 115 (51), 15202-15213. [24] 顏孝耘, 碩士學位論文, 聚電解質與界面活性劑作用之熱力學性質探討, 國立臺灣大學化學工程學研究所 2011. [25] Wu, Q.; Du, M.; Ye, T. et al. Rheological behavior of PAA–CnTAB complex: influence of PAA charge density and surfactant tail length in PAA semidilute aqueous solution. Colloid Polym Sci 2009, 287, 911–918. [26] Lim, P. F. C.; Chee, L. Y.; Chen, S. B.; Chen, B.-H. Study of Interaction between Cetyltrimethylammonium Bromide and Poly(acrylic acid) by Rheological Measurements. The Journal of Physical Chemistry B 2003, 107 (26), 6491-6496. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94259 | - |
| dc.description.abstract | 聚電解質以及聚電解質/界面活性劑系統因其獨特的溶液性質及可調控性被廣泛的研究及運用於工業上。本研究中將探討在不同中和度下,聚電解質之黏度性質及聚電解質/界面活性劑之熱力學性質與特徵濃度。
本研究由落球式黏度計量測陰離子型聚電解質聚丙烯酸 (PAA) 溶液之黏度,並加入氫氧化鈉溶液改變其中和度,並討論中和度以及分子量對黏度性質之影響。實驗結果為中和度越高,黏度越大,並且短鍊 PAA 在有增加中和度的情況下,其黏度性質會更為符合 Scaling theory,重疊濃度下降、纏繞濃度上升,可以說其黏度性質變得更像「聚電解質」了。 聚電解質/界面活性劑系統則是想探討聚丙烯酸 (PAA) 與陽離子型界面活性劑十六烷基三甲基溴化銨 (C16TAB) 之間的作用力與機制,改變系統中和度以探討其影響。使用了恆溫滴定熱卡計 (ITC)、表面張力儀、pH 計、界面電位儀,並觀察溶液之混濁度與沉澱情形。由實驗結果得知,在帶相反電性的 PAA/C16TAB 系統中,靜電作用力和疏水作用力共同形成鍵結和混微胞。隨著中和度的增加,PAA 解離出更多氫離子,使更多的 C16TAB 分子鍵結在鍊段上,臨界聚集濃度下降;沉澱點、飽和濃度、自由微胞濃度等特徵濃度均大幅上升。短鍊 PAA 在有增加中和度的情況下,沉澱更加明顯,呈現塊狀白色沉澱。這是由於 PAA/C16TAB 複合物的分子量因鍵結了更多 C16TAB 而顯著增加,使 PAA 呈現出類似帶有大量碳鍊支鍊的構型,使各複合物之間產生更強的纏繞,且粒子不帶電難以穩定分散,最終形成明顯的沉澱。 | zh_TW |
| dc.description.abstract | The polyelectrolyte/surfactant (PES) system has been researched for a long time. Due to its unique properties and controllability of PES mixed micelles, it could be applied in solution modification, wastewater treatment, enhanced oil recovery, etc. This study will discuss the rheological properties of polyelectrolytes and the thermodynamic properties of polyelectrolyte/surfactant systems at different degrees of neutralization.
The rolling ball viscometer was used to measure the viscosity of weak acid poly(acrylic acid) (PAA) solution at different degrees of neutralization, which is changed through titrating sodium hydroxide solution in the PAA solution. The viscosity increased as degrees of neutralization increased. We also noticed that the rheological behaviors of short-chain PAA became much by the scaling theory, indicating that short-chain PAA became more like a “polyelectrolyte” through adding NaOH. In this study, we used an isothermal titration calorimeter (ITC), tensiometer, pH meter, and zeta sizer to measure the data of PAA and Hexadecyltrimethylammonium bromide (C16TAB) at different degrees of neutralization. The result showed if the degree of neutralization increases, CAC decreases, and Cp, Cs, Cm increase. The electrostatic interaction would get stronger. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:29:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:29:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 目 次 vi 圖 次 ix 表 次 xii 第一章 緒論 1 第二章 文獻回顧 5 2.1 聚電解質溶液性質 5 2.1.1 聚電解質黏度性質 5 2.1.2 比黏度與濃度之關係 5 2.1.3 重疊濃度 6 2.1.4 中和度對聚電解質之影響 6 2.2 界面活性劑性質 8 2.2.1 界面活性劑之種類 8 2.2.2 微胞與臨界微胞濃度 9 2.2.3 界面活性劑結構對 CMC 的影響 11 2.2.4 微胞化的熱力學模型 11 2.2.5 恆溫滴定量熱法 13 2.3 帶相反電性的聚電解質/界面活性劑系統 14 2.3.1 聚電解質/界面活性劑系統之交互作用 14 2.3.2 聚電解質分子量的影響 16 2.3.3 混合方法之影響 17 第三章 實驗方法 19 3.1 實驗藥品 19 3.2 實驗儀器 19 3.3 儀器原理 24 3.3.1 落球式黏度計 24 3.3.2 恆溫滴定量熱法 (ITC) 24 3.3.3 表面張力儀 25 3.3.4 界面電位儀 26 3.3.5 密度儀 26 3.4 實驗操作 27 3.4.1 落球式黏度計 27 3.4.2 ITC 28 3.4.3 表面張力儀 28 3.4.4 pH計、界面電位及混濁度觀察 29 3.4.5 密度儀 29 3.4.6 樣品配置與清洗 29 第四章 結果討論 31 4.1 實驗數據處理方法 31 4.1.1 落球式黏度計 31 4.1.2 ITC 33 4.1.3 表面張力計 36 4.1.4 pH值、界面電位值、沉澱點 37 4.2 PAA 系統黏度性質 38 4.2.1 黏度數據之趨勢 39 4.2.2 中和度與分子量之影響 50 4.3 PAA/C16TAB 系統 54 4.3.1 ITC 實驗結果 54 4.3.2 表面張力實驗結果 56 4.3.3 pH 值與界面電位實驗結果 60 4.3.4 混濁度實驗結果 63 4.4 PAA/C16TAB 作用機制推測 69 第五章 結論 73 參考文獻 74 附錄 77 A. PAA 黏度與密度數據 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聚電解質 | zh_TW |
| dc.subject | 黏度 | zh_TW |
| dc.subject | 表面張力 | zh_TW |
| dc.subject | 中和度 | zh_TW |
| dc.subject | 混微胞 | zh_TW |
| dc.subject | 微胞 | zh_TW |
| dc.subject | 界面活性劑 | zh_TW |
| dc.subject | viscosity | en |
| dc.subject | mixed micelle | en |
| dc.subject | surfactant | en |
| dc.subject | polyelectrolyte | en |
| dc.subject | degrees of neutralization | en |
| dc.subject | isothermal titration calorimeter | en |
| dc.title | 聚電解質/界面活性劑系統在不同中和度下之熱力學與黏度性質探討 | zh_TW |
| dc.title | Rheological Properties of Polyelectrolyte and Thermodynamic Properties of Polyelectrolyte/Surfactant System at Different Degrees of Neutralization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 崔宏瑋;謝之真;王勝仕;黃延吉 | zh_TW |
| dc.contributor.oralexamcommittee | Hung-Wei Tsui;Chih-Chen Hsieh;Steven Sheng-Shih Wang;Yan-Jyi Huang | en |
| dc.subject.keyword | 聚電解質,界面活性劑,微胞,混微胞,中和度,表面張力,黏度, | zh_TW |
| dc.subject.keyword | polyelectrolyte,surfactant,mixed micelle,degrees of neutralization,isothermal titration calorimeter,viscosity, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202403488 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
