Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94252
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏志平zh_TW
dc.contributor.advisorChih-Ping Weien
dc.contributor.author莊啟宏zh_TW
dc.contributor.authorChi-Hung Chuangen
dc.date.accessioned2024-08-15T16:27:15Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationCai, M., Tan, Y., Ge, B., Dou, Y., Huang, G., & Du, Y. (2021). PURA: A product-and-user oriented approach for requirement analysis from online reviews. IEEE Systems Journal, 16(1), 566-577.
Chen, W., & Tabari, S. (2017). A study of negative customer online reviews and managerial responses on social media—case study of the Marriott Hotel Group in Beijing. Journal of Marketing and Consumer Research, 41, 53-64.
Holjevac, I. A., Marković, S., & Raspor, S. (2010, June). Customer satisfaction measurement in hotel industry: Content analysis study. In Proceedings of the 4th International Scientific Conference on Planning for the Future Learning from the Past: Contemporary Developments in Tourism, Travel & Hospitality.
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
Jiang, H. (2022). A multi-task deep neural network method for sentiment lexicon extraction. Unpublished Master Thesis. Department of Information Management, National Taiwan University, Taipei, Taiwan, ROC.
Jiang, S., Zhao, S., Hou, K., Liu, Y., & Zhang, L. (2019, October). A BERT-BiLSTM-CRF model for Chinese electronic medical records named entity recognition. In Proceedings of 12th International Conference on Intelligent Computation Technology and Automation (ICICTA) (pp. 166-169). IEEE.
Khan, I., & Fatma, M. (2022). Using netnography to understand customer experience towards hotel brands. Sustainability, 15(1), 279.
Lee, C. C., & Hu, C. (2005). Analyzing hotel customers’ e-complaints from an internet complaint forum. Journal of Travel & Tourism Marketing, 17(2-3), 167-181.
Lee, Y., Kim, J., Kim, D., Kho, Y., Kim, Y., & Kang, P. (2023). Painsight: An extendable opinion mining framework for detecting pain points based on online customer reviews. arXiv preprint arXiv:2306.02043.
Li, H., Ye, Q., & Law, R. (2013). Determinants of customer satisfaction in the hotel industry: An application of online review analysis. Asia Pacific Journal of Tourism Research, 18(7), 784-802.
Liu, X., Burns, A. C., & Hou, Y. (2017). An investigation of brand-related user-generated content on Twitter. Journal of Advertising, 46(2), 236-247.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V. (2019). Roberta: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.
Ma, L., & Sun, B. (2020). Machine learning and AI in marketing–Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481-504.
McHugh, M. L. (2012). Interrater reliability: The kappa statistic. Biochemia Medica, 22(3), 276-282.
Miloslavić, M. (2019). “The customer is not always right”: Frontline employees’ perspective and coping with illegitimate customer complaints. Doctoral Dissertation. Rochester Institute of Technology, Croatia.
Mutlubaş, I. (2023). Evaluation of online customer complaints for hotel businesses in terms of expectation management and behavioral intention. Journal of Tourism & Gastronomy Studies, 11(2), 1416-1432.
Parasuraman, A., Berry, L. L., & Zeithaml, V. A. (1991). Understanding customer expectations of service. MIT Sloan Management Review, 32(3), 39-48.
Pacheco, C., García, I., & Reyes, M. (2018). Requirements elicitation techniques: a systematic literature review based on the maturity of the techniques. IET Software, 12(4), 365-378.
Piramanayagam, S., & Kumar, S. (2020). Determinants of customer’s dissatisfaction: A content analysis of negative online customer reviews on budget segment hotels in India. African Journal of Hospitality, Tourism and Leisure, 9(1), 1-9.
Salminen, J., Mustak, M., Corporan, J., Jung, S. G., & Jansen, B. J. (2022). Detecting pain points from user-generated social media posts using machine learning. Journal of Interactive Marketing, 57(3), 517-539.
Sann, R., Lai, P. C., & Liaw, S. Y. (2020). Online complaining behavior: Does cultural background and hotel class matter?. Journal of Hospitality and Tourism Management, 43, 80-90.
Singh, A., Saha, S., Hasanuzzaman, M., & Dey, K. (2022). Multitask learning for complaint identification and sentiment analysis. Cognitive Computation, 14(1), 212-227.
Soares, L. B., FitzGerald, N., Ling, J., & Kwiatkowski, T. (2019). Matching the blanks: Distributional similarity for relation learning. arXiv preprint arXiv:1906.03158.
Souza, F., Nogueira, R., & Lotufo, R. (2019). Portuguese named entity recognition using BERT-CRF. arXiv preprint arXiv:1909.10649.
Su, J. (2020, February 7). 你的CRF层的学习率可能不够大. [Blog post]. Retrieved from https://kexue.fm/archives/7196
Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune BERT for text classification?. In Proceedings of the 18th China National Conference on Chinese Computational Linguistics, Kunming, China (pp. 194-206). Springer International Publishing.
Sutton, C., & McCallum, A. (2007). An introduction to conditional random fields for relational learning. Introduction to Statistical Relational Learning. MIT Press: Cambridge, MA.
Tao, W., Zhang, Q., Zhang, M., & Li, Y. (2019, May). Mining pain points from hotel online comments based on sentiment analysis. In Proceedings of 2019 IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (pp. 1672-1677). IEEE.
Wang, B., Miao, Y., Zhao, H., Jin, J., & Chen, Y. (2016). A biclustering-based method for market segmentation using customer pain points. Engineering Applications of Artificial Intelligence, 47, 101-109.
Yin, C., Jiang, C., Jain, H. K., Liu, Y., & Chen, B. (2023). Capturing product/service improvement ideas from social media based on lead user theory. Journal of Product Innovation Management, 40(5), 630-656.
Zhang, M., Fan, B., Zhang, N., Wang, W., & Fan, W. (2021). Mining product innovation ideas from online reviews. Information Processing & Management, 58(1), 102389.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94252-
dc.description.abstract在網際網路時代,顧客能夠在社交媒體以及線上評論中分享他們的感受。了解這些顧客需求,尤其是了解顧客不滿意的地方,對於服務改進與創新相當重要,因為這些不滿意的顧客指出了服務無法滿足他們期望的具體之處。顧客不滿意可以分為兩種類型:抱怨和痛點。痛點是帶有具體問題或是不滿意的抱怨,提供可以付諸行為的見解。進行痛點分析有助於公司作出明智的決策。
在過去的研究中,痛點被萃取為關鍵詞或是整個句子,可能導致語意上的模糊或是包含不相關的訊息。此外,只有少數研究包含了痛點分類,提供痛點在類別層面上的評估。
在本研究中,我們提出了一個兩階段的模型來預測顧客評論中的痛點,並將獲得的痛點分類至事先定義的類別之中。我們進一步在不同的領域測試了痛點萃取模型的預測能力。另外,我們採用特殊標記來表示整個評論以進行痛點分類。實驗結果顯示了我們所提出的痛點分析框架的有效性。
zh_TW
dc.description.abstractIn the age of the Internet, customers can share their feelings on social media or through online reviews. Understanding these customer needs, especially customer dissatisfaction, is important for service improvement and innovation since unsatisfied customers highlight specific areas where services do not meet their expectations. There are two types of customer dissatisfaction: complaints and pain points. Pain points are complaints with specific problems or dissatisfactions, which provide actionable insights. Conducting pain point analysis assists companies in making informed decisions.
Pain points were extracted as keywords or entire sentences in previous studies, potentially leading to semantic ambiguity or the inclusion of irrelevant information. Additionally, only a few prior studies include pain points categorization, which enables evaluation of pain points at category level.
In this study, we propose a two-phase model to predict the pain point expressions in customer reviews and classify the obtained pain points into predefined categories. We further test the pain point extraction model across different domains. Besides, we adopt special tokens to represent entire reviews for pain point categorization. Experimental results show the effectiveness of our proposed framework for pain point analysis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:27:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:27:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abtract iii
Table of Contents v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation 6
1.3 Research Objective 7
Chapter 2 Related work 9
2.1 Customer Pain Point Analysis 9
2.2 Previous Studies on Pain Point Analysis 11
Chapter 3 Methodology 16
3.1 Problem Formulation 16
3.2 Overview of the PEC Framework 16
3.3 Pain Point Extraction (PPE) 18
3.4 Pain Point Categorization (PPC) 23
Chapter 4 Empirical Experiments 26
4.1 Data Collection 26
4.2 Evaluation Metrics 31
4.3 Experimental Procedure 33
4.4 Evaluation of Pain Point Extraction 33
4.5 Effect of Multi-task Learning in Pain Point Extraction 36
4.5.1 Multi-task Learning Architecture 36
4.5.2 Evaluation Results of Multi-task Learning 40
4.6 Power of the PPE Model for Cross-Domain Inference 42
4.7 Evaluation of Pain Point Categorization 45
Chapter 5 Conclusion 47
5.1 Contribution 47
5.2 Limitations and Future Work 48
References 50
-
dc.language.isoen-
dc.title運用深度學習從線上評論萃取顧客痛點zh_TW
dc.titleWhy are Customers Unsatisfied: A Deep Learning Approach to Extract Customer Pain Points from Online Reviewsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊錦生;胡雅涵zh_TW
dc.contributor.oralexamcommitteeChin-Sheng Yang;Ya-Han Huen
dc.subject.keyword深度學習,機器學習,痛點分析,顧客需求,線上評論探勘,zh_TW
dc.subject.keywordDeep learning,Machine Learning,Pain point analysis,Customer needs,Online review mining,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202402663-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved