Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬zh_TW
dc.contributor.advisorYu-Pin Linen
dc.contributor.author吳倩敏zh_TW
dc.contributor.authorSIN-MAN NGen
dc.date.accessioned2024-08-15T16:26:22Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation王毓華、黃晉興、余志儒(2009)。洋香瓜栽培管理。興大農業,71,16-23。
古家倫(2023)。黑水虻蟲糞作為黃瓜種植肥料之效果。碩士論文,國立屏東科技大學熱帶農業與國際合作系。
沈再發(1990)。溫室洋香瓜水耕之養分吸收研究。農業試驗所中華農業研究專刊,39,55-64。
沈再發(1994)。溫室洋香瓜栽培季節與養液吸收量之研究。農業試驗所中華農業研究專刊,43,182-194。
沈再發(1996)。不同栽培方法對溫室洋香瓜根溫及生育之影響。農業試驗所中華農業氣象專刊,3,203-208。
沈再發(2009a)。培養液組成之理論和實際(上)。農業試驗所技術服務專刊,20,26-30。
沈再發(2009b)。培養液組成之理論和實際(下)。農業試驗所技術服務專刊,80,37-42。
周映孜(2022)。水稻SPRI農法與不同比例肥料施用對土壤化學性質和根際微生物的影響。碩士論文,國立屏東科技大學生物科技系。
周郁欣(2022)。氣候變遷下臭氧對農業生產影響之探討-以洋香瓜為例。碩士論文,國立臺灣師範大學地理系。
林正忠、林明瑩、林益昇、胡仲祺等(2009)。甜瓜保護。行政院農業委員會動植物防疫檢疫局,民98.12冊。
林育則、洪詠捷(2015)。綠色產品價格與外觀對跨文化消費者購買意願之影響。碩士論文,輔仁大學企業管理學系。
林巧敏、林裕彬、柯旻君、鄭鎌杰、羅筱鳳、林京田(2020)。評估洋香瓜於不同養液配方下對主要營養素與水分吸收之相關性。臺灣水利,68(4)。
林德田(2021)。中央攜手全民防疫養豬產業永續經營。農牧旬刊,35,農政與農情,343:354,15-18。
施純堅(2002)。 澎湖地區高品質洋香瓜栽培技術之研究–Ⅲ葉面積對溫室洋香瓜亞魯斯(Earl’s)果實生長與品質之影響。高雄區農業改良場研究彙報,14(1):31-42。
胡唯昭(2011)。栽培養液濃度對東方甜瓜果實品質之影響。碩士論文,國立臺灣大學園藝暨景觀學系。
邱勝飛(2023)。澎湖監獄黑水虻對廚餘處理之碳排放量研究。碩士論文,南華大學永續綠色科技學系。
張淳皓(2013)。應用於循環式養液系統之電導度與酸鹼度調配控制系統。農業機械學刊,22。
張慈恩(2023)。降低水耕萵苣中硝酸鹽含量分析研究。碩士論文,環球科技大學生物技術系。
黃賢良、鄭安秀、陳文雄(1999)。隧道式洋香瓜栽培管理。臺南區農業改良場技術專刊,(92),1-26。
黃瑞彰、黃圓滿、彭瑞菊、黃秀雯、陳昇寬、鄭安秀(2016)。設施洋香瓜健康管理技術。行政院農業委員會臺南區農業改良場。
黃瑞彰(2019a)。生物性肥料在有機洋香瓜應用研究。溶磷菌肥料肥(功)效評估及驗證研討會專刊,140。
黃瑞彰(2019b)。洋香瓜土壤管理與施肥推薦參考資訊。作物土壤管理與施肥技術(蔬菜與雜糧篇)。農業試驗所。
黃珮甄(2018)。草莓植物工廠循環式水耕系統栽培。碩士論文,國立臺灣大學園藝暨景觀系。
黃瑞彰(2022)。鹽分地區洋香瓜種植策略。臺南區農業專訊,119,6-11。
劉慧瑛(1992)。果蔬甜度、糖度、可溶性固形物與糖含量的論析。農業試驗所技術服務專刊,10,12-17。
陳萬福、盧子淵、鄭榮瑞、黃賢良(1988)。洋香瓜分級機之研製。臺南區農業改良場研究彙報,22,39-48。
陳俊位、戴振洋(1997)。夏季蔬菜常見之病害。台中區農業改良場專訊,19。
陳兆倫(2017)。水耕網紋洋香瓜養液配方之研究。碩士論文,國立臺灣大學園藝暨景觀系。
陳昊(2018)。養液溫度對水耕網紋洋香瓜生長與發育之影響。碩士論文,國立臺灣大學園藝暨景觀系。
謝佳文(2023)。水稻SPRI農法與不同比例肥料施用對土壤化學性質和根際微生物的影響。碩士論文,國立屏東科技大學生物科技系。
鄭光進(1989)。洋香瓜之養液栽培經驗。養液栽培技術講習會專刊(第二輯),111-115。
戴振洋、陳令錫(2019)。不同留蔓及留果數對設施東方甜瓜品種間生育之影響。臺中區農業改良場研究彙報,145:53-63。
葉連桂(1992)。洋香瓜養液栽培經驗談。養液栽培技術講習會專刊,75-77。
楊証閔(2013)。根溫處理對甜瓜與番茄生長之影響。碩士論文,國立中興大學園藝系。
Alam, S. M. (1984). Effect of nutrient solution pH and N-Sources (NH4/NO3) on the growth and elemental content of rice plants. Agronomie, 4(4), 361-365.
Amrul, N.F., Kabir Ahmad, I., Ahmad Basri, N.E., Suja, F. Abdul Jalil, N.A. and Azman, N.A. (2022). A Review of Organic Waste Treatment Using Black Soldier Fly (Hermetia illucens). Sustainability, 14, 4565.
Argyris, J. M., Díaz, A., Ruggieri, V., Fernández, M., Jahrmann, T., Gibon, Y. and Garcia-Mas, J. (2017). QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Frontiers in Plant Science, 8, 1679.
Beesigamukama, D., Tanga, C. M., Sevgan, S., Ekesi, S. and Kelemu, S. (2023). Waste to value: Global perspective on the impact of entomocomposting on environmental health, greenhouse gas mitigation and soil bioremediation. The Science of the total environment, 902, 166067.
Britto, D.T. and Kronzucker, H.J. (2002). NH4+ Toxicity in Higher Plants: A Critical Review. Journal of Plant Physiology, 159, 567-584.
Bruna SANTOS SILVA, Renato de MELLO PRADO and Alexander CALERO HURTADO et al. (2020). AMMONIA TOXICITY AFFECTS CATIONS UPTAKE AND GROWTH IN PAPAYA PLANTS INCLUSIVE WITH SILICON ADDITION. Acta biol.Colomb., 25(3):345-353.
Cakmak, I. (2005). The Role of Potassium in Alleviating Detrimental Effects of Abiotic Stresses in Plants. Journal of Plant Nutrition and Soil Science, 168, 521-530.
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. and Smith, V. H. (1998). Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecological Applications, 8(3), 559–568.
Cheng, J. Y. K., Chiu, S. L. H., and Lo, I. M. C. (2017). Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Management, 67, 315-323.
Chisti, Y. (2007). Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
Dias, N.D., Morais, P.L., Sarmento, J.D., Neto, O.N., Palácio, V.S. and Freitas, J.J. (2018). Nutrient solution salinity effect of greenhouse melon (Cucumis melon L. cv. Néctar). Acta Agronómica.
Fanzo, J., Rudie, C., Sigman, I., Grinspoon, S., Benton, T. G., Brown, M. E., Covic, N., Fitch, K., Golden, C. D., Grace, D., Hivert, M. F., Huybers, P., Jaacks, L. M., Masters, W. A., Nisbett, N., Richardson, R. A., Singleton, C. R., Webb, P. and Willett, W. C. (2022). Sustainable food systems and nutrition in the 21st century: a report from the 22nd annual Harvard Nutrition Obesity Symposium. The American journal of clinical nutrition, 115(1), 18–33.
Fukutoku, Y., Koto, S., Teraoka, Y. and Kubo, K. (2000). Nitrogen absorption and distribution of muskmelons (Cucumis melo L.) at different growth stages using hydroponics. Japanese Journal of Soil Science and Plant Nutrition, 71, 72-81.
Gonzales-Camejo, J., Aparicio, S., Paches Giner, M.A.V., Borrás, L. and Seco, A. (2022). Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies. Algal Research, 61:1-15.
Huang, C.H., Zong, L., Buonanno, M., Xue, X., Wang, T. and Tedeschi, A. (2012). Impact of saline water irrigation on yield and quality of melon (Cucumis melo L. ‘Huanghemi’) in northwest China. Europ. J. Agron. 43, 68–76.
Ikeda, H. and T. Osawa. (1983). Effects of ratios of NO3 to NH4 and concentrations of each N source in the nutrient solution on growth and leaf N constituents of vegetable crops and solution pH. J. Jpn. Soc. Hort. Sci. 52(2):159-166.
Ishfaq, M., Wang, Y., Yan, M., Wang, Z., Wu, L., Li, C. and Li, X. (2022). Physiological Essence of Magnesium in Plants and Its Widespread Deficiency in the Farming System of China. Frontiers in plant science, 13, 802274.
Jayanegara A, Haryati RP, Nafisah A, Suptijah P, Ridla M and Laconi EB (2020). Derivatization of chitin and chitosan from black soldier fly (hermetia illucens) and their use as feed additives: an in vitro study. Adv. Anim. Vet. Sci. 8(5), 472-477.
Jensen, Merle H. (1999). Hydroponics worldwide. Acta Hortic. 481, 719-730.
Kawasaki, K., Kawasaki, T., Hirayasu, H., Matsumoto, Y. and Fujitani, Y. (2020). Evaluation of Fertilizer Value of Residues Obtained after Processing Household Organic Waste with Black Soldier Fly Larvae (Hermetia illucens). Sustainability, 12, 4920.
Lalander, C.H., Fidjeland, J., Diener, S., Eriksson, S. and Vinneras, B. (2015). High Waste-to-Biomass Conversion and Efficient Salmonella Spp. Reduction Using Black Soldier Fly for Waste Recycling. Agronomy for Sustainable Development, 35, 261-271.
Lester, G. (2006). Consumer preference quality attributes of melon fruits. Acta Hortic. 712, 175-182.
Liu, T., Klammsteiner, T., Dregulo, A. M., Kumar, V., Zhou, Y., Zhang, Z. and Awasthi, M. K. (2022). Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. The Science of the total environment, 833, 155122.
Lu T, Yu H, Wang T, Zhang T, Shi C and Jiang W. (2022). Influence of the Electrical Conductivity of the Nutrient Solution in Different Phenological Stages on the Growth and Yield of Cherry Tomato. Horticulturae. 8(5), 378.
Marschner, H. (2012). Marschner’s Mineral Nutrition of Higher Plants. Vol. 89, Academic Press, London, 651.
McGeehan, Steven L. (2012). Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance. Applied and Environmental Soil Science, 907831.
Mi Young Lim, Su Hyun Choi, Gyeong Lee Choi, So Hui Kim, and Ho Jeong Jeong. (2021). Effects of Irrigation Amount on Fruiting Period and EC Level by Growth Period on Growth and Quality of Melon (Cucumis melo L.) Using Coir Substrate Hydroponics During Autumn Cultivation. Horticultural Science and Technology, 39, 446-455.
Nethone, S. and Osamu, N. (2024). Cucumber (Cucumis sativus L.) Growth and Productivity under Solar Radiation-Based Quantitative Nutrient Management in Hydroponic System. Agricultural and Food Sciences.
Pardossi, A., Malorgio, F., Incrocci, L., Campiotti, C.A. and Tognoni, F. (2002). A comparison between two methods to control nutrient delivery to greenhouse melons grown in recirculating nutrient solution culture. Scientia Horticulturae, 92, 89-95.
Phibunwatthanawong, T. and Riddech, N. (2019). Liquid organic fertilizer production for growing vegetables under hydroponic condition. International Journal of Recycling of Organic Waste in Agriculture, 1-12.
Qu, F., Zhang, Q., Jiang, Z., Zhang, C., Zhang, Z., and Hu, X. (2022). Optimizing irrigation and fertilization frequency for greenhouse cucumber grown at different air temperatures using a comprehensive evaluation model. Agricultural Water Management, 273, 107876.
Rajaseger, G., Chan, K. L., Yee Tan, K., Ramasamy, S., Khin, M. C., Amaladoss, A. and Kadamb Haribhai, P. (2023). Hydroponics: current trends in sustainable crop production. Bioinformation, 19(9), 925–938.
Rabalais, N.N., Turner, R.E., Díaz, R.J. and Justic, D. (2009). Global Change and Eutrophication of Coastal Waters. ICES Journal of Marine Science, 66, 1528-1537.
Raghothama, K.G. (1999). Phosphate Acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693.
Resh, H.M. (2012). Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, Seventh Edition (7th ed.). CRC Press.
Samba, N., Nunomura, O., Lu, N., Johkan, M.; Nakano, A. and Tsukagoshi, S. (2024). Cucumber (Cucumis sativus L.) Growth and Productivity under Solar Radiation-Based Quantitative Nutrient Management in Hydroponic System. Agronomy, 14, 296.
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M. and Smith, J. (2008). Greenhouse gas mitigation in agriculture. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1492), 789–813.
Suddick, E.C., Whitney, P., Townsend, A.R. and Davidson, E.A. (2013). The role of nitrogen in climate change and the impacts of nitrogen–climate interactions in the United States: foreword to thematic issue. Biogeochemistry, 114, 1–10.
Tirtawijaya, G., Lee, J.-H., Bashir, K.M.I., Lee, H.-J., and Choi, J.-S. (2024). Evaluating the Efficiency of Black Soldier Fly (Hermetia illucens) Larvae in Converting Mackerel Head Waste into Valuable Resources. Animals, 14, 1332.
Tyson RV, Simonne EH, White JM and Lamb EM. (2004). Reconciling water quality parameters impacting nitrification in aquaponics: the pH levels. In Proceedings of the Florida State Horticultural Society, 117(79), 79–83.
Walsby, A. E. (1995). Microalgae: Biotechnology and Microbiology. By E. W. Becker. Cambridge: Cambridge University Press (1994). Experimental Agriculture, 31(1), 112–112.
Wang, C., Wu, G., Wang, H., Wang, J., Yuan, M., Guo, X., Liu, C., Xing, S., Sun, Y. and Talpur, M. M. A. (2024). Optimizing Tomato Cultivation: Impact of Ammonium–Nitrate Ratios on Growth, Nutrient Uptake, and Fertilizer Utilization. Sustainability, 16, 5373.
Yu, Y., Zhang, Q., Kang, J., Xu, N., Zhang, Z., Deng, Y., Gillings, M., Lu T and Qian, H. (2024). Effects of organic fertilizers on plant growth and the rhizosphere microbiome. Applied and Environmental Microbiology, 90(2), e01719-23.
Zhu, X., Yang, R., Han, Y., Hao, J., Liu, C. and Fan, S. (2020). Effects of different NO3−:NH4+ ratios on the photosynthesis and ultrastructure of lettuce seedlings. Hortic. Environ. Biotechnol, 61, 459–472.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94249-
dc.description.abstract聯合國糧食及農業組織(Food and Agriculture Organization of the United Nations, FAO)的最新估計顯示,2022年全球饑餓人數在6.91億至7.83億之間。隨著農業需求的不斷增加,傳統農業生產方式面臨許多挑戰,例如土壤退化、化學肥料和農藥的過度使用,以及由此引發的環境污染和生態失衡問題。這些問題不僅影響農業的可持續性,還威脅到人類的食品安全和健康。為應對這些挑戰,實現聯合國可持續發展目標(United Nations Sustainable Development Goals, SDGs)成為全球各界的共同努力方向。這些目標旨在消除貧困、保護地球和確保所有人享有和平與繁榮,尤其在推進可持續農業方面。然而,傳統農業模式高度依賴化學肥料,長期使用不僅導致土壤肥力下降,還引發水體污染、生態失衡等環境問題。因此,探索環保且高效的農業生產方法成為當前農業研究的核心議題之一。
黑水虻(Black Soldier Fly, BSF)因其在有機廢棄物處理和有機肥料生產中的優勢,逐漸受到研究者的關注。這種昆蟲的幼蟲能有效地將廚餘轉化為富含有機質和多種植物所需營養元素的肥料。黑水虻肥料不僅提升土壤的肥力,還有助於減少對化學肥料的依賴。此外,黑水虻在處理廚餘時,能顯著降低溫室氣體的排放,展現其對環境的優勢。這使得黑水虻在推動可持續農業和資源循環利用方面,成為一種具有潛力的解決方案。
本研究分為兩季試驗,秋冬季栽培時間為2023年11月至2024年2月,春夏季栽培時間為2024年4月至2024年6月,採用湛液式水耕栽培系統,使用黑水虻養液於智慧溫室栽培網紋洋香瓜阿露斯「夏系二號」,並與化學肥料進行比較。根據植物在不同生長階段的需求,調整氮鉀比例:營養生長期(Juvenile),氮鉀比例為75:75;授粉小果期(Flowering),氮鉀比例為75:125;果實肥大期(Fruit Swelling),氮鉀比例為100:25。研究分別分析株高、節數、葉綠素含量、果重、果長、果寬、果型指數、果肉厚度、果肉硬度、總可溶性固形物、總鹽含量、抗壞血酸含量、硝酸鹽含量、乾物率和官能品評等項目,以探討黑水虻養液對植株生長狀況和果實品質的影響。研究結果顯示,使用20%黑水虻養液栽培的網紋洋香瓜在秋冬季的果重較低,約652 g,總可溶性固形物(14°Brix)達到市場標準(14-15°Brix),但果實網紋外觀較差(網紋線條差異為3-4 mm)。而在春夏季,果重高達1637 g,總可溶性固形物(15°Brix)和果實網紋外觀較佳(網紋線條差異為2-3 mm)。兩季中使用20%黑水虻養液栽培阿露斯之研究結論為,20%黑水虻養液作為化肥替代品在水耕栽培網紋洋香瓜中具有顯著的效果。果實的總可溶性固形物達到市場標準,且春夏季節能顯著提高網紋的均勻度和整體外觀,兩季的果實均呈現圓潤的形狀。這些結果證明黑水虻養液在可持續農業中的潛力,尤其是在減少對化學肥料依賴、降低環境污染方面的優勢。
zh_TW
dc.description.abstractThe latest estimates from the Food and Agriculture Organization of the United Nations (FAO) show that the number of hungry people in the world in 2022 will be between 691 million and 783 million. As agricultural demand continues to increase, traditional agrarian production methods face many challenges, such as soil degradation, excessive use of chemical fertilizers and pesticides, and resulting environmental pollution and ecological imbalance. These issues not only impact the sustainability of agriculture but also threaten food security and human health. To address these challenges, achieving the United Nations Sustainable Development Goals (SDGs) has become a global effort. These goals aim to eradicate poverty, protect the planet, and ensure peace and prosperity for all, especially in advancing sustainable agriculture. However, the traditional agricultural model is highly dependent on chemical fertilizers, and long-term use not only leads to a decline in soil fertility but also causes environmental problems such as water pollution and ecological imbalance. Therefore, exploring environmentally friendly and efficient agricultural production methods has become one of the core topics of current agricultural research.
Black Soldier Fly (BSF) has increasingly attracted researchers’ attention due to its advantages in organic waste management and organic fertilizer production. The larvae of this insect effectively convert kitchen waste into fertilizer rich in organic matter and various essential nutrients required by plants. BSF fertilizer enhances soil fertility and helps reduce reliance on chemical fertilizers. Additionally, the use of BSF in processing kitchen waste significantly lowers greenhouse gas emissions, demonstrating its environmental advantages. This positions BSF as a promising solution for advancing sustainable agriculture and resource recycling.
This study is divided into two seasons of experiments. The autumn-winter season is from October 2023 to February 2024, and the spring-summer season is from April 2024 to June 2024. The Deep Flow Technology (DFT) hydroponic cultivation system was used to cultivate netted melons (Earl’s) in smart greenhouses using a BSF nutrient solution, which was compared with a chemical nutrient solution. The nitrogen and potassium ratio was adjusted according to the needs of the plants at different growth stages. During the juvenile stage, the nitrogen-potassium ratio is 75:75; in the flowering stages, the nitrogen-potassium ratio is 75:125; and in the fruit swelling stage, the nitrogen-potassium ratio is 100:25. The study investigated various parameters, including plant height, number of nodes, chlorophyll content, fruit weight, fruit length, fruit width, fruit shape index, flesh thickness, flesh firmness, total soluble solids, total salt content, ascorbic acid, nitrate, dry matter ratio, and sensory evaluation, to explore the impact of BSF nutrient solution on plant growth and fruit quality.
The study results indicate that netted muskmelons cultivated with 20% BSF nutrient solution had a lower fruit weight in the autumn-winter season, averaging around 652 g. However, the total soluble solids (14°Brix) met market standards, although the fruit’s netted appearance was subpar, with a net line width variation of 3-4 mm. In the spring-summer season, the fruit weight reached up to 1,637 g, with total soluble solids at 15°Brix and a better-netted appearance, with a net line width variation of 2-3 mm.
The conclusions from the study using 20% BSF nutrient solution to cultivate Earl’s Melon over two seasons indicate that the 20% BSF nutrient solution serves as an effective substitute for chemical fertilizers in the hydroponic cultivation of netted muskmelons. The fruit's sugar content met market standards and significantly improved the uniformity of the netting and overall appearance during the spring-summer season. The fruits in both seasons had a well-rounded shape. These results demonstrate the potential of BSF nutrient solutions in sustainable agriculture, particularly in reducing reliance on chemical fertilizers and minimizing environmental pollution.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:26:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:26:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
目次 vii
圖次 ix
表次 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 5
1.4 研究架構 6
第二章 文獻回顧 8
2.1 網紋洋香瓜 8
2.2 水耕栽培 10
2.3 營養液 12
2.3.1 化學營養液 12
2.3.2 黑水虻養液 12
第三章 材料與方法 15
3.1 試驗材料與場域 15
3.2 試驗設計 16
3.3 栽培管理 19
3.3.1 穴植管育苗 19
3.3.2 定植 20
3.3.3 單蔓整枝與引蔓 20
3.3.4 授粉 21
3.3.5 選果、吊果及套袋 22
3.3.6 採收判斷 23
3.3.7 病蟲害防治法 24
3.4 調查項目 25
3.4.1 營養液水質 25
3.4.2 植株生長 27
3.4.3 果實品質 28
3.5 統計分析 31
第四章 結果與討論 33
4.1 結果 33
4.1.1 營養液水質分析 33
4.1.2 黑水虻養液對阿露斯生長狀況之影響 41
4.1.3 黑水虻養液對阿露斯生果實品質之影響 46
4.2 討論 52
4.2.1 營養液水質分析 52
4.2.2 黑水虻養液對阿露斯生長狀況之影響 55
4.2.3 黑水虻養液對阿露斯果實品質之影響 59
第五章 結論與建議 64
5.1 結論 64
5.2 建議 66
參考文獻 67
-
dc.language.isozh_TW-
dc.subject網紋洋香瓜zh_TW
dc.subject水耕zh_TW
dc.subject溫室zh_TW
dc.subject營養液zh_TW
dc.subject黑水虻zh_TW
dc.subjectBlack Soldier Flyen
dc.subjectnutrient solutionen
dc.subjectgreenhouseen
dc.subjectCucumis melo L. var. reticulatusen
dc.subjecthydroponicen
dc.title黑水虻養液於水耕網紋洋香瓜栽培之研究zh_TW
dc.titleStudy on the Cultivation of Black Soldier Fly Nutrient Solution in the Hydroponic Netted Melonsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林淑怡;王咏潔zh_TW
dc.contributor.oralexamcommitteeShu-I Lin;Yung-Chieh Wangen
dc.subject.keyword水耕,網紋洋香瓜,黑水虻,營養液,溫室,zh_TW
dc.subject.keywordhydroponic,Cucumis melo L. var. reticulatus,Black Soldier Fly,nutrient solution,greenhouse,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202400872-
dc.rights.note未授權-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved