請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94242完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱俊翔 | zh_TW |
| dc.contributor.advisor | Jiunn-Shyang Chiou | en |
| dc.contributor.author | 陳柏辰 | zh_TW |
| dc.contributor.author | Po-Chen Chen | en |
| dc.date.accessioned | 2024-08-15T16:24:14Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | 1.李以雯 (2022),「單樁受地震動與斷層錯動引致地盤變位作用下反應之擬靜力分析模式」,國立臺灣大學碩士論文。
2.Allotey, N., and El Naggar, M. H. (2008). “Generalized dynamic Winkler model for nonlinear soil–structure interaction analysis.” Canadian Geotechnical Journal, 45(4), 560-573. 3.American Petroleum Institute. (2000). “API recommended practice for planning, designing, and constructing fixed offshore platforms-working stress design.” Report RP-2A-WSD, API Publishing Services, Washington, DC. 4.Castelli, F., Maugeri, M., and Mylonakis, G. (2008). “Numerical analysis of kinematic soil-pile interaction.” AIP Conference Proceedings, 1020 (1), 618–625. 5.Chen, L., Wu, W., Liu, H., Hu, A., Newson, T., El Naggar, M. H., Mei, G., and Xu, M. (2022). “Analytical solution for lateral vibration of offshore pipe piles considering hydrodynamic pressure.” Computers and Geotechnics, 151, 104962. 6.Chen, W., Huang, L., Xu, L., Zhao, K., Wang, Z., and Jeng, D. (2021). “Numerical study on the frequency response of offshore monopile foundation to seismic excitation.” Computers and Geotechnics, 138, 104342. 7.Chen, Y., Lv, Y., Wu, K., and Huang, X. (2022a). “Centrifuge shaking table study on the hydrodynamic effects on a pile foundation bridge pier in soft soil under earthquakes.” Marine Structures, 85, 103261. 8.Chen, Y., Lv, Y., Wu, K., and Huang, X. (2022b). “Numerical analysis of bridge piers under earthquakes considering pile‒soil interactions and water‒pier interactions.” Ocean Engineering, 266, 113023. 9.Chiou, J. S., and Chen, C. H. (2007). “Exact equivalent model for a laterally-loaded linear pile-soil system.” Soils and foundations, 47(6), 1053-1061. 10.Chiou, J. S., Hung, W. Y., Lee, Y. T., and Young, Z. H. (2020). “Combined dynamic structure-pile-soil interaction analysis considering inertial and kinematic effects.” Computers and Geotechnics, 125, 103671. 11.Chiou, J. S., Fu, Y. W., and Lee, Y. W. (2022). “Pseudostatic analysis for seismic responses of extended piles considering inertial and kinematic effects.” Engineering Structures, 252, 113572. 12.COMSOL AB. (2018). COMSOL Multiphysics–Reference Manual, version 5.4. COMSOL AB, Stockholm, Sweden. Available: http://www.comsol.com. 13.Dezi, F., Carbonari, S., and Leoni, G. (2010). “Static equivalent method for the kinematic interaction analysis of single piles.” Soil Dynamics and Earthquake Engineering, 30(8), 679–690. 14.Ding, Y., Ma, R., Shi, Y. D., and Li, Z. X. (2018). “Underwater shaking table tests on bridge pier under combined earthquake and wave-current action.” Marine Structures, 58, 301-320. 15.Du, X., Wang, P., and Zhao, M. (2014). “Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain.” Ocean Engineering, 85, 44-53. 16.Finn, W. D. L. (2005). “A study of piles during earthquakes: issues of design and analysis.” Bulletin of Earthquake Engineering, 3, 141-234. 17.Goto, H., and Toki, K. (1965). “Vibration characteristics and aseismic design of submerged bridge piers.” Proc., 3rd World Conf. on Earthquake Engineering, International Association for Earthquake Engineering, Tokyo. 18.Han, R. P. and Xu, H. (1996). “A simple and accurate added mass model for hydrodynamic fluid—Structure interaction analysis.” Journal of the Franklin Institute, 333(6), 929-945. 19.Hussien, M.N., Karray, M., Tobita, T., and Iai, S. (2015). “Kinematic and inertial forces in pile foundations under seismic loading.” Computers and Geotechnics, 69, 166–181. 20.Huang, X., and Li, Z. X. (2011). “Influence of free surface wave and water compressibility on earthquake induced hydrodynamic pressure of bridge pier in deep water.” J. Tianjin Univ, 44(4), 319-323. 21.Huang, Y., Wang, P., Zhao, M., Zhang, C., and Du, X. (2021). “Dynamic responses of an end-bearing pile subjected to horizontal earthquakes considering water-pile-soil interactions.” Ocean Engineering, 238, 109726. 22.Huang, Y., Wang, P., Zhao, M., Zhang, C., and Du, X. (2022a). “Dynamic response of sea-crossing bridge under combined seismic and wave-current action.” Structures, 40, 317-327 23.Huang, Y., Zhao, M., Wang, P., Cheng, X., and Du, X. (2022b). “An analytical solution of a horizontally vibrating pile considering water-pile-soil interaction on viscoelastic half-space.” Ocean Engineering, 260, 111959. 24.Kementzetzidis, E., Corciulo, S., Versteijlen, W. G., and Pisanò, F. (2019). “Geotechnical aspects of offshore wind turbine dynamics from 3D non-linear soil-structure simulations.” Soil Dynamics and Earthquake Engineering, 120, 181-199. 25.Kulhawy, F. H., and Mayne, P. W. (1990). “Manual on estimating soil properties for foundation design (No. EPRI-EL-6800).” Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group. 26.Li, Q., and Yang, W. (2013). “An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake.” Ocean Engineering, 72, 241-256. 27.Li, Z. X., Wu, K., Shi, Y., Ning, L., and Yang, D. (2019). “Experimental study on the interaction between water and cylindrical structure under earthquake action.” Ocean Engineering, 188, 106330. 28.Liang, F., Liang, X., and Wang, C. (2021). “Simplified added-mass model for evaluating the response of rectangular hollow bridge piers under earthquakes.” Journal of Bridge Engineering, 26(10), 04021076. 29.Liaw, C. Y., and Chopra, A. K. (1974). “Dynamics of towers surrounded by water.” Earthquake Engineering and Structural Dynamics, 3(1), 33-49. 30.Liu, C. G., and Sun, G. S. (2014). “Calculation and experiment for dynamic response of bridge in deep water under seismic excitation.” China Ocean Engineering, 28(4), 445-456. 31.Liyanapathirana, D.S., and Poulos, H.G. (2005). “Pseudostatic approach for seismic analysis of piles in liquefying soil.” Journal of Geotechnical and Geoenvironmental Engineering, 131(12), 1480–1487. 32.Matlock, H. (1970). “Correlations for design of laterally loaded piles in soft clay.” Offshore Technology Conference, 577-594. 33.Scott, R.F. (1981). Foundation Analysis. Prentice-Hall 34.Seed, H.B., and Idriss, I.M. (1970). “Soil moduli and damping factors for dynamic response analysis.” Earthquake Engineering Research Center, EERC-70-10. 35.Tabesh, A., and Poulos, H. G. (2001). “Pseudostatic approach for seismic analysis of single piles.” Journal of Geotechnical and Geoenvironmental Engineering, 127(9), 757–765. 36.Tanaka, Y., and Hudspeth, R. T. (1988). “Restoring forces on vertical circular cylinders forced by earthquakes.” Earthquake engineering and structural dynamics, 16(1), 99-119. 37.Tokimatsu, K., Suzuki, H., and Sato, M. (2005). “Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation.” Soil Dynamics and Earthquake Engineering, 25(7-10), 753-762. 38.Truty, A., and Obrzud, R. (2011). “The Hardening Soil Model a Practical Guidebook.” Zace Services Ltd, Software engineering. Lausanne. 39.Wang, P., Zhao, M., Li, H., and Du, X. (2018). “An accurate and efficient time-domain model for simulating water-cylinder dynamic interaction during earthquakes.” Engineering Structures, 166, 263-273. 40.Wang, P., Zhao, M., and Du, X. (2019a). “Simplified formula for earthquake-induced hydrodynamic pressure on round-ended and rectangular cylinders surrounded by water.” Journal of Engineering Mechanics, 145(2), 04018137. 41.Wang, P., Zhao, M., and Du, X. (2019b). “A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action.” Ocean Engineering, 179, 351-360. 42.Wang, P., Zhao, M., Du, X., and Cheng, X. (2019c). “A finite element solution of earthquake-induced hydrodynamic forces and wave forces on multiple circular cylinders.” Ocean Engineering, 189, 106336. 43.Yang, W., and Li, Q. (2013). “A new added mass method for fluid-structure interaction analysis of deep-water bridge.” KSCE Journal of Civil Engineering, 17, 1413-1424. 44.Yang, W., Li, A., Feng, X., Deng, L., and Li, F. (2020a). “Calculation method of hydrodynamic force on one column of the twin columns under earthquake.” Ocean Engineering, 197, 106874. 45.Yang, W., Li, A., Deng, L., Liu, T., and Li, F. (2020b). “Study on characteristics and calculation method of hydrodynamic force on pile group under earthquake.” Ocean Engineering, 207, 107375. 46.Zhang, C., Wu, C., and Wang, P. (2020). “Seismic fragility analysis of bridge group pile foundations considering fluid-pile-soil interaction.” Shock and Vibration, 2020, 1-17. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94242 | - |
| dc.description.abstract | 樁是離岸結構常見的基礎形式,受震時不僅受到結構慣性力之作用,亦受到動態水壓力及地盤運動之影響,其行為複雜,且直接以水-樁-土互制模型分析其反應相當耗時。針對此課題,本研究透過理論與數值分析探討樁受動水壓作用之反應,並發展了簡化動態分析模型,可考量動水壓與地盤運動效應,以完整模擬水-樁-土互制行為。本研究進一步探討以擬靜力方法分析樁在地盤運動作用下反應的適用性,並發展改良方法。
首先,本研究修正前人提出之理論解,用以分析水下樁基礎水中段之受震反應特性,並與數值模擬結果相互驗證,能同時適用於剛性和柔性基盤條件。利用此修正理論解進行參數研究,發現動態水壓力會降低共振頻率並放大樁頂位移的共振反應,而影響的程度隨著土壤勁度的增加而減少。在受震反應分析中,動態水壓力會顯著改變反應大小,但其改變的方向與地震反應譜有關,並不固定。 接著,本研究驗證附加質量法於水下樁基礎的適用性。附加質量法係將額外的質量附加於水下結構以模擬動態水壓力影響。本研究分別介紹了精確和簡化的附加質量分布之表達式,儘管兩種分佈並不相同,但在數值分析中皆能夠得到足夠精確的樁基礎受震反應。此外,本研究以修正理論解作為驗證目標,評估簡化附加質量分布在不同條件下的適用性。將經過驗證之簡化附加質量分布應用於模擬完整的水下樁基礎之受震反應,發現地盤運動會降低水對樁反應的影響。 最後,本研究改良分析樁受地盤運動作用下之反應的擬靜力方法。針對不同地震類型、樁頭束制與土壤條件下,評估幾種常用決定特徵地盤位移剖面方法的適用性,然而沒有能適用於所有條件的方法。因此,本研究提出基於地盤在不同深度處之尖峰相對變形或旋轉之多特徵地盤位移剖面方法。考慮加載順序後,此改良方法在單層黏土層、強度遞增或夾弱層的三層黏土層中皆有良好的表現。然而,在砂土層中可能因阻尼力過大而低估樁在自由樁頭條件下的剪力反應。 | zh_TW |
| dc.description.abstract | Piles serve as a common foundation for offshore structures, enduring inertial forces, hydrodynamic pressure, and ground movement during seismic events. This study employs theoretical and numerical analyses to investigate the response of piles under hydrodynamic pressures and simplifies the dynamic analysis model considering both hydrodynamic pressures and ground movement effects. Furthermore, the study examines the applicability of a pseudo-static method for analyzing pile response under ground movement and proposes an improved method.
First, this study modified theoretical solutions to examine seismic responses of underwater piles, validated by numerical analysis under both rigid and flexible base conditions. Parametric studies reveal that hydrodynamic pressure decreases resonance frequency and increases pile-head displacement, with reduced impact as soil stiffness increases. The magnitude of seismic response is influenced by hydrodynamic pressure. This study also verified the added mass method for underwater piles, in which additional mass is applied to simulate hydrodynamic pressure. Both precise and simplified added mass distributions yielded good seismic response prediction in numerical analyses. Application of the simplified distribution to complete underwater piles indicated that ground movement diminishes the water’s influence on pile responses. Lastly, this study improved the pseudostatic method for assessing ground movement effects on pile responses by evaluating numerous characteristic ground displacement profiles under various conditions. Since no single method suits all conditions, this study developed a multi-characteristic profile method. This improved method forecasts dynamic responses in various soil conditions more accurately than previous methods. Keywords: Pile foundations, earthquake excitation, hydrodynamic force, ground movement, pseudostatic analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:24:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:24:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 viii 表次 xiii 第一章 緒論 1-1 1.1研究背景與目的 1-1 1.2 研究方法 1-2 1.3 研究內容 1-3 第二章 文獻回顧 2-1 2.1受水-樁-土互制作用之延伸樁基礎 2-1 2.1.1 考慮水-樁-土互制作用之樁反應解析解 2-2 2.1.2 水下結構之數值模擬 2-3 2.2 水動力附加質量的決定方法 2-5 2.2.1 基於輻射波理論之水動力附加質量 2-6 2.2.2 基於水中結構主頻之水動力附加質量 2-10 2.2.3 群樁之水動力附加質量修正 2-11 2.3 基礎受地震動下之分析模式 2-13 2.3.1 動態分析方法 2-14 2.3.2 擬靜力分析方法 2-15 2.4 綜合評述 2-19 第三章 水下樁基礎受震反應之修正理論解 3-1 3.1問題陳述與假設條件 3-1 3.2理論推導 3-2 3.2.1 基於加速度剖面之水動力分布剖面表達式 3-2 3.2.2結構動力反應 3-4 3.2.3求解方法 3-6 3.3驗證 3-9 3.3.1 結構-聲學互制模型 3-9 3.3.2 水的可壓縮性對樁反應的影響 3-11 3.3.3 以數值分析驗證理論解 3-13 3.4水動力矩陣之不正交特性 3-14 3.4.1 模態化等效水壓力係數 3-14 3.4.2 本研究方法與傳統方法之比較 3-15 3.5 參數分析 3-17 3.5.1共振反應 3-17 3.5.2 真實地震分析 3-18 3.6 小結 3-21 第四章 水動力附加質量於水下樁基礎之應用 4-1 4.1附加質量法之理論基礎 4-1 4.1.1 附加質量表達式 4-1 4.1.2 分析對象 4-3 4.1.3 單頻率輸入運動 4-5 4.1.4 真實地震歷時分析 4-6 4.2阻尼對反應之影響 4-7 4.3附加質量法與精確理論解比較 4-8 4.3.1 共振反應 4-9 4.3.2 真實地震歷時分析 4-10 4.4應用附加質量法於完整水下樁基礎 4-12 4.4.1 動態分析模型 4-12 4.4.2 案例分析 4-14 4.5小結 4-15 第五章 地盤運動對樁基礎影響之擬靜力分析方法 5-1 5.1 分析案例 5-1 5.2分析模型 5-2 5.2.1 動態分析模型 5-2 5.2.2 擬靜力分析模式 5-4 5.3 常用特徵地盤位移剖面評估 5-4 5.3.1分析結果 5-5 5.3.2 綜合評價 5-7 5.4 決定特徵地盤位移剖面的改良方法 5-8 5.4.1 改良方法介紹 5-8 5.4.2 操作實例 5-9 5.4.3 改良方法之準確性評估 5-10 5.5 動態特性對擬靜力方法的影響 5-11 5.5.1 加載順序之影響 5-11 5.5.2 阻尼力之影響 5-11 5.6 小結 5-13 第六章 結論與建議 6-1 6.1結論 6-1 6.2建議 6-2 參考文獻 R-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 動態水壓力 | zh_TW |
| dc.subject | 地震動 | zh_TW |
| dc.subject | 樁基礎 | zh_TW |
| dc.subject | 地盤運動 | zh_TW |
| dc.subject | 擬靜力分析 | zh_TW |
| dc.subject | earthquake excitation | en |
| dc.subject | pseudostatic analysis | en |
| dc.subject | ground movement | en |
| dc.subject | hydrodynamic force | en |
| dc.subject | pile foundations | en |
| dc.title | 水下樁基礎受震反應分析方法之改良-考量動態水壓力與地盤運動效應 | zh_TW |
| dc.title | Improved Seismic Analysis of Underwater Piles Considering Effects of Hydrodynamic Pressure and Ground Movement | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡祁欽;許尚逸 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Chin Tsai;Shang-Yi Hsu | en |
| dc.subject.keyword | 樁基礎,地震動,動態水壓力,地盤運動,擬靜力分析, | zh_TW |
| dc.subject.keyword | pile foundations,earthquake excitation,hydrodynamic force,ground movement,pseudostatic analysis, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202402705 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 17.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
