Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇zh_TW
dc.contributor.advisorGuang-Yu Guoen
dc.contributor.author巴布普雷薩zh_TW
dc.contributor.authorBabu Baijnath Prasaden
dc.date.accessioned2024-08-15T16:22:42Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citation[1] S. Velury and T. L. Hughes, Embedded topological semimetals, Phys. Rev. B 105, 184105 (2022).
[2] B. Q. Lv, T. Qian, and H. Ding, Experimental perspective on three-dimensional topological semimetals, Rev. Mod. Phys. 93, 025002 (2021).
[3] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).
[4] M. Z. Hasan, G. Chang, I. Belopolski, G. Bian, S.-Y. Xu, and J.-X. Yin, Weyl, Dirac and high-fold chiral fermions in topological quantum matter, Nat. Rev. Mater. 6, 784 (2021).
[5] H. Liu, J. Liang, T. Sun, and L. Wang, Recent progress in topological semimetal and its realization in Heusler compounds, Mater. Today Phys. 41, 101343 (2024).
[6] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient topological materials discovery using symmetry indicators, Nat. Phys. 15, 470 (2019).
[7] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature 566, 475 (2019).
[8] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature 566, 480 (2019).
[9] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature 566, 486 (2019).
[10] É. L.-Hurtubise and M. Franz, Topology in abundance, Nat. Rev. Phys. 1, 183 (2019).
[11] Y. Sun, Y. Zhang, C. Felser, and B. Yan, Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals, Phys. Rev. Lett. 117, 146403 (2016).
[12] Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Dirac nodal lines and induced spin Hall effect in metallic rutile oxides, Phys. Rev. B 95, 235104 (2017).
[13] Y. Yen and G.-Y. Guo, Tunable large spin Hall and spin Nernst effects in the Dirac semimetals ZrXY (X = Si, Ge; Y = S, Se, Te), Phys. Rev. B 101, 064430 (2020).
[14] V. Johnson and W. Jeitschko, ZrCuSiAs: A “filled” PbFCl type, J. Solid State Chem. 11, 161 (1974).
[15] P. E. R. Blanchard, R. G. Cavell, and A. Mar, Electronic structure of ZrCuSiAs and ZrCuSiP by X-ray photoelectron and absorption spectroscopy, J. Solid State Chem. 183, 1536 (2010).
[16] A. M. Baergen, P. E. R. Blanchard, S. S. Stoyko, and A. Mar, Quaternary germanide arsenides ZrCuGeAs and HfCuGeAs, Z. Anorg. Allg. Chem. 637, 2007 (2011).
[17] V. V. Bannikov, I. R. Shein, and A. L. Ivanovskii, Structural, elastic, electronic properties and stability trends of 1111-like silicide arsenides and germanide arsenides MCuXAs (M = Ti, Zr, Hf; X = Si, Ge) from first principles, J. Alloys Compd. 533, 71 (2012).
[18] I. V. Kavich and L. P. Shevchuk, X-ray diffraction and X-ray spectrum examinations of the Co-Si-Ge system alloys, Ukr. Fiz. Zh. (Russ. Ed.) 23, 624 (1978).
[19] P. Demchenko, J. Kończyk, O. Bodak, R. Matvijishyn, L. Muratova, and B. Marciniak, Single crystal investigation of the new phase Er0.85Co4.31Si and of CoSi, Chem. Met. Alloys 1, 50 (2008).
[20] H. Takizawa, T. Sato, T. Endo, and M. Shimada, High-pressure synthesis and electrical and magnetic properties of MnGe and CoGe with the cubic B20 structure, J. Solid State Chem. 73, 40 (1988).
[21] I. Engström and T. Johnsson, Least-squares refinement of the structure of RhSi (FeSi-type), Acta Chem. Scand. 19, 1508 (1965).
[22] V. I. Larchev and S. V. Popova, The polymorphism of transition metal monogermanides at high pressures and temperatures, J. Less-Common Met. 87, 53 (1982).
[23] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals, Science 353, aaf5037 (2016).
[24] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M. Huang, I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, and M. Z. Hasan, Unconventional chiral fermions and large topological Fermi arcs in RhSi, Phys. Rev. Lett. 119, 206401 (2017).
[25] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple types of topological fermions in transition metal silicides, Phys. Rev. Lett. 119, 206402 (2017).
[26] G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I. Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T. Neupert, S.-Y. Xu, H. Lin, and M. Z. Hasan, Topological quantum properties of chiral crystals, Nat. Mater. 17, 978 (2018).
[27] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, and H. Ding, Observation of unconventional chiral fermions with long Fermi arcs in CoSi, Nature 567, 496 (2019).
[28] S. Zhong, J. E. Moore, and I. Souza, Gyrotropic magnetic effect and the magnetic moment on the Fermi surface, Phys. Rev. Lett. 116, 077201 (2016).
[29] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Quantized circular photogalvanic effect in Weyl semimetals, Nat. Commun. 8, 15995 (2017).
[30] K. Tang, Y.-C. Lau, K. Nawa, Z. Wen, Q. Xiang, H. Sukegawa, T. Seki, Y. Miura, K. Takanashi, and S. Mitani, Spin Hall effect in a spin-1 chiral semimetal, Phys. Rev. Research 3, 033101 (2021).
[31] R. de Sousa, The “holy grail” of multiferroic physics, Phys. Can. 72, 57 (2016).
[32] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3, Phys. Rev. B 71, 014113 (2005).
[33] J. F. Ihlefeld, N. J. Podraza, Z. K. Liu, R. C. Rai, X. Xu, T. Heeg, Y. B. Chen, J. Li, R. W. Collins, J. L. Musfeldt, X. Q. Pan, J. Schubert, R. Ramesh, and D. G. Schlom, Optical band gap of BiFeO3 grown by molecular-beam epitaxy, Appl. Phys. Lett. 92, 142908 (2008).
[34] S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Above-bandgap voltages from ferroelectric photovoltaic devices, Nat. Nanotechnol. 5, 143 (2010).
[35] I. Grinberg, D. V. West, M. Torres, G. Gou, D. M. Stein, L. Wu, G. Chen, E. M. Gallo, A. R. Akbashev, P. K. Davies, J. E. Spanier, and A. M. Rappe, Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials, Nature 503, 509 (2013).
[36] A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, Linear and nonlinear optical properties of BiFeO3, Appl. Phys. Lett. 92, 121915 (2008).
[37] S. Ju, T.-Y. Cai, and G.-Y. Guo, Electronic structure, linear, and nonlinear optical responses in magnetoelectric multiferroic material BiFeO3, J. Chem. Phys. 130, 214708 (2009).
[38] S. M. Young, F. Zheng, and A. M. Rappe, First-principles calculation of the bulk photovoltaic effect in bismuth ferrite, Phys. Rev. Lett. 109, 236601 (2012).
[39] D. S. Knoche, M. Steimecke, Y. Yun, L. Mühlenbein, and A. Bhatnagar, Anomalous circular bulk photovoltaic effect in BiFeO3 thin films with stripe-domain pattern, Nat. Commun. 12, 282 (2021).
[40] J. Puebla, J. Kim, K. Kondou, and Y. Otani, Spintronic devices for energy-efficient data storage and energy harvesting, Commun. Mater. 1, 24 (2020).
[41] M. I. D’yakonov and V. I. Perel, Spin orientation of electrons associated with the interband absorption of light in semiconductors, Sov. J. Exp. Theor. Phys. 33, 1053 (1971).
[42] J. E. Hirsch, Spin Hall effect, Phys. Rev. Lett. 83, 1834 (1999).
[43] S. Murakami, N. Nagaosa, and S.-C. Zhang, Dissipationless quantum spin current at room temperature, Science 301, 1348 (2003).
[44] L. Liu, C.-F. Pai, Y. Li, H.-W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin-torque switching with the giant spin Hall effect of tantalum, Science 336, 555 (2012).
[45] S. Cheng, Y. Xing, Q.-F. Sun, and X. C. Xie, Spin Nernst effect and Nernst effect in two-dimensional electron systems, Phys. Rev. B 78, 045302 (2008).
[46] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Spin caloritronics, Nat. Mater. 11, 391 (2012).
[47] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Room-temperature reversible spin Hall effect, Phys. Rev. Lett. 98, 156601 (2007).
[48] G. Y. Guo, S. Murakami, T.-W. Chen, and N. Nagaosa, Intrinsic spin Hall effect in platinum: First-principles calculations, Phys. Rev. Lett. 100, 096401 (2008).
[49] T. Tanaka, H. Kontani, M. Naito, D. S. Hirashima, K. Yamada, and J. Inoue, Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals, Phys. Rev. B 77, 165117 (2008).
[50] C.-F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl. Phys. Lett. 101, 122404 (2012).
[51] A. Hoffmann, Spin Hall effects in metals, IEEE Trans. Mag. 49, 5172 (2013).
[52] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213 (2015).
[53] S. Meyer, Y.-T. Chen, S. Wimmer, M. Althammer, T. Wimmer, R. Schlitz, S. Geprägs, H. Huebl, D. Ködderitzsch, H. Ebert, G. E. W. Bauer, R. Gross, and S. T. B. Goennenwein, Observation of the spin Nernst effect, Nat. Mater. 16, 977 (2017).
[54] P. Sheng, Y. Sakuraba, Y.-C. Lau, S. Takahashi, S. Mitani, and M. Hayashi, The spin Nernst effect in tungsten, Sci. Adv. 3, e1701503 (2017).
[55] N. Okuma and M. Ogata, Unconventional spin Hall effect and axial current generation in a Dirac semimetal, Phys. Rev. B 93, 140205(R) (2016).
[56] D. MacNeill, G. M. Stiehl, M. H. D. Guimaraes, R. A. Buhrman, J. Park, and D. C. Ralph, Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers, Nat. Phys. 13, 300 (2017).
[57] S. Shi, S. Liang, Z. Zhu, K. Cai, S. D. Pollard, Y. Wang, J. Wang, Q. Wang, P. He, J. Yu, G. Eda, G. Liang, and H. Yang, All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures, Nat. Nanotechnol. 14, 945 (2019).
[58] B. Zhao, D. Khokhriakov, Y. Zhang, H. Fu, B. Karpiak, A. Md. Hoque, X. Xu, Y. Jiang, B. Yan, and S. P. Dash, Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature, Phys. Rev. Research 2, 013286 (2020).
[59] B. B. Prasad and G.-Y. Guo, Tunable spin Hall and spin Nernst effects in Dirac line-node semimetals XCuYAs (X = Zr, Hf; Y = Si, Ge), Phys. Rev. Materials 4, 124205 (2020).
[60] T. Ng, Y. Luo, J. Yuan, Y. Wu, H. Yang, and L. Shen, Origin and enhancement of the spin Hall angle in the Weyl semimetals LaAlSi and LaAlGe, Phys. Rev. B 104, 014412 (2021).
[61] T.-Y. Hsieh, B. B. Prasad, and G.-Y. Guo, Helicity-tunable spin Hall and spin Nernst effects in unconventional chiral fermion semimetals XY (X = Co, Rh; Y = Si, Ge), Phys. Rev. B 106, 165102 (2022).
[62] R. W. Boyd, Nonlinear Optics (Elsevier, Amsterdam, 2003).
[63] Y. R. Shen, The Principle of Nonlinear Optics (Wiley, Hoboken, NJ, 2003).
[64] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of optical harmonics, Phys. Rev. Lett. 7, 118 (1961).
[65] D. A. Kleinman, Theory of second harmonic generation of light, Phys. Rev. 128, 1761 (1962).
[66] A. M. Glass, D. von der Linde, and T. J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3, Appl. Phys. Lett. 25, 233 (1974).
[67] W. T. H. Koch, R. Munser, W. Ruppel, and P. Würfel, Bulk photovoltaic effect in BaTiO3, Solid State Commun. 17, 847 (1975).
[68] W. Kraut and R. von Baltz, Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory, Phys. Rev. B 19, 1548 (1979).
[69] R. von Baltz and W. Kraut, Theory of the bulk photovoltaic effect in pure crystals, Phys. Rev. B 23, 5590 (1981).
[70] V. M. Fridkin, Bulk photovoltaic effect in noncentrosymmetric crystals, Crystallogr. Rep. 46, 654 (2001).
[71] M. Fiebig, V. V. Pavlov, and R. V. Pisarev, Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: Review, J. Opt. Soc. Am. B 22, 96 (2005).
[72] J. E. Sipe and A. I. Shkrebtii, Second-order optical response in semiconductors, Phys. Rev. B 61, 5337 (2000).
[73] J. Ahn, G.-Y. Guo, and N. Nagaosa, Low-frequency divergence and quantum geometry of the bulk photovoltaic effect in topological semimetals, Phys. Rev. X 10, 041041 (2020).
[74] V. K. Gudelli and G.-Y. Guo, Antiferromagnetism-induced second-order nonlinear optical responses of centrosymmetric bilayer CrI3, Chin. J. Phys. 68, 896 (2020).
[75] R. Fei, W. Song, and L. Yang, Giant photogalvanic effect and second-harmonic generation in magnetic axion insulators, Phys. Rev. B 102, 035440 (2020).
[76] H. Wang and X. Qian, Electrically and magnetically switchable nonlinear photocurrent in PT symmetric magnetic topological quantum materials, npj Comput. Mater. 6, 199 (2020).
[77] J. Ahn, G.-Y. Guo, N. Nagaosa, and A. Vishwanath, Riemannian geometry of resonant optical responses, Nat. Phys. 18, 290 (2022).
[78] H. Pi, S. Zhang, and H. Weng, Magnetic bulk photovoltaic effect as a probe of magnetic structures of EuSn2As2, Quantum Front. 2, 6 (2023).
[79] K. T. Butler, J. M. Frost, and A. Walsh, Ferroelectric materials for solar energy conversion: Photoferroics revisited, Energy Environ. Sci. 8, 838 (2015).
[80] L. Z. Tan, F. Zheng, S. M. Young, F. Wang, S. Liu, and A. M. Rappe, Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond, npj Comput. Mater. 2, 16026 (2016).
[81] A. M. Cook, B. M. Fregoso, F. de Juan, S. Coh, and J. E. Moore, Design principles for shift current photovoltaics, Nat. Commun. 8, 14176 (2017).
[82] T. A. Papadopoulos (unpublished).
[83] P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
[84] W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
[85] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
[86] G.-Y. Guo and T.-C. Wang, Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X=Sn, Ge, Ga), Phys. Rev. B 96, 224415 (2017); Phys. Rev. B 100, 169907 (E) (2019).
[87] C. Aversa and J. E. Sipe, Nonlinear optical susceptibilities of semiconductors: Results with a length-gauge analysis, Phys. Rev. B 52, 14636 (1995).
[88] S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, Efficient ab initio method for the calculation of frequency-dependent second-order optical response in semiconductors, Phys. Rev. B 57, 3905 (1998).
[89] Guan-Fu Liu, Nonlinear optical properties of PT-symmetric materials: A GGA+U study, Master’s thesis, National Taiwan University, 2023.
[90] B. B. Prasad, G.-F. Liu, and G.-Y. Guo, Magnetism-induced second-order nonlinear optical responses in multiferroic BiFeO3, Phys. Rev. B 110, 014422 (2024).
[91] F. Nastos and J. E. Sipe, Optical rectification and shift currents in GaAs and GaP response: Below and above the band gap, Phys. Rev. B 74, 035201 (2006).
[92] F. Nastos and J. E. Sipe, Optical rectification and current injection in unbiased semiconductors, Phys. Rev. B 82, 235204 (2010).
[93] J. Ibañez-Azpiroz, S. S. Tsirkin, and I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97, 245143 (2018).
[94] H.-C. Hsu, J.-S. You, J. Ahn, and G.-Y. Guo, Nonlinear photoconductivities and quantum geometry of chiral multifold fermions, Phys. Rev. B 107, 155434 (2023).
[95] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).
[96] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953 (1994).
[97] G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
[98] G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996).
[99] O. Jepson and O. K. Anderson, The electronic structure of h.c.p. Ytterbium, Solid State Commun. 9, 1763 (1971).
[100] W. M. Termmerman, P. A. Sterne, G. Y. Guo, and Z. Szotek, Electronic structure calculations of high Tc materials, Mol. Simul. 4, 153 (1989).
[101] B. Adolph, J. Furthmüller, and F. Beckstedt, Optical properties of semiconductors using projector-augmented waves, Phys. Rev. B 63, 125108 (2001).
[102] G. Y. Guo, Q. Niu, and N. Nagaosa, Anomalous Nernst and Hall effects in magnetized platinum and palladium, Phys. Rev. B 89, 214406 (2014).
[103] J. Qiao, J. Zhou, Z. Yuan, and W. Zhao, Calculation of intrinsic spin Hall conductivity by Wannier interpolation, Phys. Rev. B 98, 214402 (2018).
[104] J. H. Ryoo, C.-H. Park, and I. Souza, Computation of intrinsic spin Hall conductivities from first principles using maximally localized Wannier functions, Phys. Rev. B 99, 235113 (2019).
[105] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012).
[106] G. Pizzi et al., Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32, 165902 (2020).
[107] M. Seemann, D. Kodderitzsch, S. Wimmer, and H. Ebert, Symmetry-imposed shape of linear response tensors, Phys. Rev. B 92, 155138 (2015).
[108] S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, and J. M. Perez-Mato, Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao Crystallographic Server, Acta Crystallogr. Sect. A 75, 438 (2019).
[109] E. Skoug, C. Zhou, Y. Pei, and D. T. Morelli, High thermoelectric power factor in alloys based on CoSi, Appl. Phys. Lett. 94, 022115 (2009).
[110] N. Kanazawa, Y. Onose, Y. Shiomi, S. Ishiwata, and Y. Tokura, Band-filling dependence of thermoelectric properties in B20-type CoGe, Appl. Phys. Lett. 100, 093902 (2012).
[111] L. Z. Maulana, K. Manna, E. Uykur, C. Felser, M. Dressel, and A. V. Pronin, Optical conductivity of multifold fermions: The case of RhSi, Phys. Rev. Res. 2, 023018 (2020).
[112] V. A. Sidorov, A. E. Petrova, N. M. Chtchelkatchev, M. V. Magnitskaya, L. N. Fomicheva, D. A. Salamatin, A. V. Nikolaev, I. P. Zibrov, F. Wilhelm, A. Rogalev, and A. V. Tsvyashchenko, Magnetic, electronic and transport properties of the high-pressure-synthesized chiral magnets Mn1−xRhxGe, Phys. Rev. B 98, 125121 (2018).
[113] H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/Metal spin pumping, Phys. Rev. Lett. 112, 197201 (2014).
[114] F. Kubel and H. Schmid, Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3, Acta Crystallogr. Sect. B 46, 698 (1990).
[115] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57, 1505 (1998).
[116] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface properties from Wannier interpolation, Phys. Rev. B 75, 195121 (2007).
[117] H. T. Stokes and D. M. Hatch, FINDSYM: Program for identifying the space-group symmetry of a crystal, J. Appl. Cryst. 38, 237 (2005).
[118] S. Ju and G.-Y. Guo, First-principles study of crystal structure, electronic structure, and second-harmonic generation in a polar double perovskite Bi2ZnTiO6, J. Chem. Phys. 129, 194704 (2008).
[119] P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freimuth, Y. Mokrousov, J. Kuneš, J. S. Chauhan, M. J. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Electrical switching of an antiferromagnet, Science 351, 587 (2016).
[120] J. Godinho, H. Reichlová, D. Kriegner, V. Novák, K. Olejník, Z. Kašpar, Z. Šobáň, P. Wadley, R. P. Campion, R. M. Otxoa, P. E. Roy, J. Železný, T. Jungwirth, and J. Wunderlich, Electrically induced and detected Néel vector reversal in a collinear antiferromagnet, Nat. Commun. 9, 4686 (2018).
[121] V. Grigorev, M. Filianina, S. Yu. Bodnar, S. Sobolev, N. Bhattacharjee, S. Bommanaboyena, Y. Lytvynenko, Y. Skourski, D. Fuchs, M. Kläui, M. Jourdan, and J. Demsar, Optical readout of the Néel vector in the metallic antiferromagnet Mn2Au, Phys. Rev. Appl. 16, 014037 (2021).
[122] Y.-H. Zhang, T.-C. Chuang, D. Qu, and S.-Y. Huang, Detection and manipulation of the antiferromagnetic Néel vector in Cr2O3, Phys. Rev. B 105, 094442 (2022).
[123] S. M. Young and A. M. Rappe, First principles calculation of the shift current photovoltaic effect in ferroelectrics, Phys. Rev. Lett. 109, 116601 (2012).
[124] T. H. Chowdhury, I. Ryu, G. Choe, H. Ullah, B. B. Prasad, G.-Y. Guo, T. A. Papadopoulos, A. Soultati, L. C. Palilis, B. Zhao, S. Yim, J. I. Jang, A. Fakharuddin, N. Gasparini, M. Vasilopoulou, D. Di, and A. R. bin M. Yusoff, Efficient and stable near infrared perovskite light-emitting diodes with ultra-high radiance (To be submitted).
[125] I. Lutsyk, M. Rogala, P. Dabrowski, P. Krukowski, P. J. Kowalczyk, A. Busiakiewicz, D. A. Kowalczyk, E. Lacinska, J. Binder, N. Olszowska, M. Kopciuszynski, K. Szalowski, M. Gmitra, R. Stepniewski, M. Jalochowski, J. J. Kolodziej, A. Wysmolek, and Z. Klusek, Electronic structure of commensurate, nearly commensurate, and incommensurate phases of 1T-TaS2 by angle-resolved photoelectron spectroscopy, scanning tunneling spectroscopy, and density functional theory, Phys. Rev. B 98, 195425 (2018).
[126] F. Brivio, J. M. Frost, J. M. Skelton, A. J. Jackson, O. J. Weber, M. T. Weller, A. R. Goñi, A. M. A. Leguy, P. R. F. Barnes, and A. Walsh, Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide, Phys. Rev. B 92, 144308 (2015).
[127] A. Spijkerman, J. L. de Boer, A. Meetsma, and G. A. Wiegers, X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)-dimensional superspace, Phys. Rev. B 56, 13757 (1997).
[128] M. T. Weller, O. J. Weber, P. F. Henry, A. M. Di Pumpo, and T. C. Hansen, Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K, Chem. Commun. 51, 4180 (2015).
[129] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100, 136406 (2008).
[130] L. Despont, F. Clerc, M. G. Garnier, H. Berger, L. Forró, and P. Aebi, Multiple scattering investigation of the 1T-TaS2 surface termination, Eur. Phys. J. B 52, 421 (2006).
[131] T. Shimada, F. S. Ohuchi, and B. A. Parkinson, Work function and photothreshold of layered metal dichalcogenides, Jpn. J. Appl. Phys. 33, 2696 (1994).
[132] B. J. Foley, J. Girard, B. A. Sorenson, A. Z. Chen, J. S. Niezgoda, M. R. Alpert, A. F. Harper, D.-M. Smilgies, P. Clancy, W. A. Saidi, and J. J. Choi, Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives, J. Mater. Chem. A 5, 113 (2017).
[133] T. Oku, Crystal structures of perovskite halide compounds used for solar cells, Rev. Adv. Mater. Sci. 59, 264 (2020).
[134] L. Jelver, P. M. Larsen, D. Stradi, K. Stokbro, and K. W. Jacobsen, Determination of low-strain interfaces via geometric matching, Phys. Rev. B 96, 085306 (2017).
[135] J. He, W.-H. Fang, and R. Long, Weak temperature-dependent hole injection and electron–hole recombination at the CH3NH3PbI3/NiO heterojunction: A time-domain ab initio study, J. Mater. Chem. A 8, 607 (2020).
[136] L. Lodeiro, F. Barría-Cáceres, K. Jiménez, R. Contreras, A. L. Montero-Alejo, and E. Menéndez Proupin, Methodological issues in first-principle calculations of CH3NH3PbI3 perovskite surfaces: Quantum confinement and thermal motion, ACS Omega 5, 29477 (2020).
[137] S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132, 154104 (2010).
[138] S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comp. Chem. 32, 1456 (2011).
[139] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst. 44, 1272 (2011).
[140] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes, Appl. Phys. Express 7, 032302 (2014).
[141] H. Li, P. Winget, and J.‐L. Bredas, Surface modification of indium‐tin‐oxide via self‐assembly of a donor‐acceptor complex: A density functional theory study, Adv. Mater. 24, 687 (2012).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94237-
dc.description.abstract自旋電子學已經成為凝聚態物理學中一個引人入勝的領域,展示了其在高效利用能量存儲數據和能量收集方面的潛力。最近的理論研究揭示了自然界中近三分之一的非磁性無機化合物的拓撲特性,其中約15-18%表現出拓撲半金屬的特徵。
在此背景下,拓撲半金屬為探索自旋霍爾效應和自旋能斯特效應提供了一個有趣的途徑。而理解能帶拓撲、自旋霍爾效應和自旋能斯特效應之間的複雜相互作用也非常重要。因此,在本文中,我們採用第 一原理密度泛函理論系統地探討了 XCuYAs(X = Zr, Hf;Y = Si, Ge)化合物的電子結構、自旋霍爾效應和自旋能斯特效應。
我們的研究表明,XCuYAs 化合物是狄拉克線節點半金屬,在布里淵區的 A-M 和 X-R 方向上表現出受非對稱保護的節點線。此外,某些化合物的計算本徵自旋霍爾和能斯特電導率顯示出顯著的大小,並可以通過化學摻雜或電門控進行調節。對能帶劈裂和總自旋貝里曲率的細緻分析將這些顯著的電導率和可調性主要歸因於費米能級附近由於自旋軌道耦合而產生的狄拉克點和無間隙的狄拉克節點線。
擴展我們的探索,我們還研究了手性拓撲半金屬 CoSi 家族中的這些效應,建立了自旋霍爾電導率、結構螺旋性和手性費米子手性之間的獨特關係。我們的研究認為這些化合物是推進自旋電子學和自旋熱電子設備的有前途的材料。
與探索拓撲半金屬中的自旋霍爾效應和納斯特效應同時進行的,我們的論文還深入研究了著名的室溫多鐵性化合物 BiFeO3 中的非線性光學(NLO)響應。我們研究的重點是磁性引起的非線性光學響應,作為控制光物質相互作用的新工具。
我們的研究發現顯著的磁性引起的二次諧波產生(SHG)響應。此外,SHG 強度可以通過反轉磁化方向或 Néel 矢量進行調節。值得注意的是,在 4.82 eV 的 SHG 光子能量下,我們觀察到了高達 440%的 SHG 信號的顯著磁性對比度。計算的體光伏效應(BPVE)響應也很突出,我們對這些響應進行了與相關量子幾何量的深入分析。
本研究強調了 BiFeO3 中磁性引起的 NLO 響應的重要性、各向異性和可調性,表明其在基於多鐵性的光伏設備中的潛在應用。此外,我們的研究確立了量子幾何在理解磁性引起的 NLO 響應中的關鍵作用。
最後,我們的論文揭示了 1T-TaS2 和 CH3NH3PbI3 界面的電荷轉移。我們的理論研究揭示了 1T-TaS2 和鈣鈦礦界面的不同電子行為。1T-TaS2 表現出金屬性,而鈣鈦礦顯示出半導體性。此外,界面處的態密度(DOS)主要由 Ta 和 S 原子控制。我們還注意到鈣鈦礦向 1T-TaS2 的電荷轉移,估計約為每個鈣鈦礦薄膜片約 0.12 個電子。這種界面電荷轉移引發了界面電偶極,由分離的正電荷與負電荷定義,界面電偶極可以修改 TaS2 的功函數,並調整電荷聚集的障壁。此外,我們研究了 Rb 取代對(MAFA)PbI3 的影響,其中 MA 代表甲基銨(CH3NH3),FA 代表甲脒 [CH(NH2)2]。我們的研究發現 Rb 4p 軌道在-11 eV 附近具有明顯的 DOS 尖取代我們還發現 Rb 4p 和 5s 軌道在不同取代水平下在能隙附近有微小貢獻,能隙中沒有 Rb 態。這意味著由於不存在能隙態,電子在電荷傳遞過程中可能不會被捕獲,潛在地提升裝置的性能。
zh_TW
dc.description.abstractSpintronics has emerged as a captivating domain within condensed matter physics, showcasing its potential in energy-efficient data storage and energy harvesting. Recent theoretical investigations have unveiled the topological nature of nearly one-third of nonmagnetic inorganic compounds in nature, with approximately 15-18% exhibiting characteristics of topological semimetals.
In this context, topological semimetals present an intriguing avenue for the exploration of spin Hall and spin Nernst effects. Also, it is important to understand the intricate interplay between band topology, spin Hall, and spin Nernst effects. Therefore, in this dissertation, we systematically delve into the electronic structure, spin Hall, and spin Nernst effects within the XCuYAs (X = Zr, Hf; Y = Si, Ge) compounds, employing ab initio density functional theory calculations.
Our investigations reveal that the XCuYAs compounds are Dirac line-node semimetals, exhibiting nonsymmorphic symmetry-protected nodal lines along the A-M and X-R directions in the Brillouin zone. Moreover, the calculated intrinsic spin Hall and Nernst conductivities in some of these compounds show substantial magnitudes and tunability through chemical doping or electric gating. A meticulous analysis of band-decomposed and total spin Berry curvatures attributes these considerable conductivities and tunabilities primarily to spin-orbit coupling gapped Dirac points near the Fermi level and gapless Dirac nodal lines.
Extending our exploration, we investigate these effects in the chiral topological semimetal, the CoSi family, establishing a unique relationship between spin Hall conductivity, structural helicity, and chiral fermion chirality. Our study posits these compounds as promising materials for advancing spintronic and spin caloritronic devices.
In tandem with the exploration of spin Hall and Nernst effects in topological semimetals, our dissertation also delves into nonlinear optical (NLO) responses within the well-known room temperature multiferroic compound, BiFeO3. The focal point of our study is the investigation of magnetism-induced nonlinear optical responses, serving as a novel tool for controlling light-matter interactions.
Our findings reveal substantial magnetism-induced second harmonic generation (SHG) susceptibilities. Also, the SHG intensity is tunable with the reversal of magnetization direction or Néel vector. Remarkably, we notice a significant magnetic contrast of the SHG signal, reaching as high as 440%, at an SHG photon energy of 4.82 eV. Calculated bulk photovoltaic (BPVE) responses are also prominent, and we provide an in-depth analysis of these responses in terms of associated quantum geometric quantities.
This study highlights the significance, anisotropy, and tunability of magnetism-induced NLO responses in BiFeO3, suggesting their potential utilization in multiferroic-based photovoltaic devices. Furthermore, our investigation establishes the pivotal role of quantum geometry in comprehending magnetism-induced NLO responses.
Finally, our dissertation sheds light on the charge transfer at the interface of 1T-TaS2 and CH3NH3PbI3. Our theoretical investigation uncovers distinct electronic behaviors at the interface of 1T-TaS2 and the perovskite. While 1T-TaS2 exhibits metallic properties, the perovskite displays semiconducting behavior. Furthermore, the DOS at the interface is primarily governed by Ta and S atoms. We also notice the charge transfer from the perovskite to 1T-TaS2, estimated at approximately 0.12 electrons per perovskite thin film slab. This interfacial charge transfer induces an interface dipole, defined by the separation of positive and negative charges, which can modify the work function of TaS2 and adjust the barrier for charge collection. Additionally, we investigate the effect of Rb substitution in (MAFA)PbI3, with MA representing methyl ammonium (CH3NH3) and FA representing formamidinium [CH(NH2)2]. Our study reveals distinct DOS peaks attributed to Rb 4p orbitals around -11 eV. We also find minor contributions from Rb 4p and 5s orbitals in the vicinity of the band gap across varying Rb concentrations, with no Rb states in the gap. This implies that, due to the absence of gap states, electrons may not be trapped during charge transport, potentially improving device performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:22:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:22:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
List of Publications v
List of Conference Presentations and Awards vii
摘要 ix
Abstract xi
1 Introduction 1
1.1 Topological semimetals 1
1.1.1 Dirac line-node semimetals XCuYAs (X = Zr, Hf; Y = Si, Ge) 4
1.1.2 Multifold chiral fermion semimetals XY (X = Co, Rh; Y = Si, Ge) 5
1.2 Room-temperature multiferroic BiFeO3 6
1.3 Spin Hall and Nernst effects 6
1.4 Nonlinear optical effects 8
1.5 Electronic structure modeling of perovskites 8
2 Theoretical background 11
2.1 Density functional theory 11
2.1.1 The Hohenberg-Kohn theorems 11
2.1.2 Kohn-Sham formalism 12
2.2 Berry-phase formalism for calculating intrinsic spin Hall and Nernst conductivities 14
2.3 Mathematical expressions for calculating nonlinear optical responses 15
2.3.1 Second harmonic generation 15
2.3.2 Bulk photovoltaic responses 16
3 Spin Hall and spin Nernst effects in Dirac line-node semimetals XCuYAs (X = Zr, Hf; Y = Si, Ge) and multifold chiral fermion semimetals XY (X = Co, Rh; Y = Si, Ge) 21
3.1 Crystal structure and symmetry 22
3.2 Computational methodology 24
3.3 Electronic structure 25
3.3.1 Electronic structure of XCuYAs (X = Zr, Hf; Y = Si, Ge) compounds 25
3.3.2 Electronic structure of XY (X = Co, Rh; Y = Si, Ge) compounds 27
3.4 Spin Hall and spin Nernst effects in XCuYAs (X = Zr, Hf; Y = Si, Ge) compounds 30
3.4.1 Spin Hall effect 30
3.4.2 Spin Nernst effect 36
3.4.3 Spin Berry curvature analysis 39
3.5 Spin Hall and spin Nernst effects in XY (X = Co, Rh; Y = Si, Ge) compounds 41
3.5.1 Spin Hall effect 41
3.5.2 Spin Nernst effect 45
3.5.3 Spin Berry curvature analysis 47
4 Nonlinear optical responses of multiferroic BiFeO3 49
4.1 Crystal structure and symmetry 49
4.2 Computational methodology 50
4.3 Electronic structure 52
4.4 Second harmonic generation 54
4.4.1 Inversion asymmetry-induced SHG 55
4.4.2 Magnetism-induced SHG 57
4.4.3 Magnetization-direction tunable SHG pattern 60
4.5 Bulk photovoltaic effect 66
4.5.1 Crystallographic linear shift and circular injection current 67
4.5.2 Magnetism-induced circular shift and linear injection current 71
5 Electronic structure modeling of perovskite materials 75
5.1 Charge transfer at 1T-TaS2/CH3NH3PbI3 interface 76
5.1.1 Crystal structure and symmetry 76
5.1.2 Computational methodology 77
5.1.3 Electronic structure 79
5.1.4 Charge-density difference and charge transfer at the interface 82
5.2 Ab initio study of Rb substitution in (MAFA)PbI3 83
5.2.1 Crystal structure and symmetry 83
5.2.2 Computational methodology 86
5.2.3 Effect of Rb substitution on electronic structure 86
6 Conclusions and outlooks 91
Bibliography 95
-
dc.language.isoen-
dc.subject第一原理計算zh_TW
dc.subject密度泛函理論zh_TW
dc.subject自旋霍爾效應zh_TW
dc.subject自旋能斯特效應zh_TW
dc.subject自旋電子學zh_TW
dc.subject二次非線性光學zh_TW
dc.subject二次諧波產生zh_TW
dc.subject塊材光伏打效應zh_TW
dc.subject位移電流zh_TW
dc.subject注入電流zh_TW
dc.subject拓樸半金屬zh_TW
dc.subject狄拉克線節點半金屬zh_TW
dc.subject非傳統手性費米子半金屬zh_TW
dc.subject複鐵材料zh_TW
dc.subject鈣鈦礦zh_TW
dc.subjectperovskitesen
dc.subjectmultiferroic materialen
dc.subjectunconventional chiral fermion semimetalen
dc.subjectDirac line-node semimetalen
dc.subjecttopological semimetalen
dc.subjectinjection currenten
dc.subjectshift currenten
dc.subjectbulk photovoltaic effecten
dc.subjectsecond harmonic generationen
dc.subjectsecond-order nonlinear opticsen
dc.subjectspintronicsen
dc.subjectspin Nernst effecten
dc.subjectspin Hall effecten
dc.subjectdensity functional theoryen
dc.subjectFirst-principles calculationen
dc.title第一原理計算研究拓樸半金屬的自旋傳輸、多鐵性鐵酸鉍的非線性光學效應與光伏材料鈣鈦礦的電子結構模擬及電荷傳輸zh_TW
dc.titleFirst-principles studies of spin transport in topological semimetals, nonlinear optical effects in multiferroic bismuth ferrite, and electronic structure and charge transport in photovoltaic perovskitesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee薛宏中;詹楊皓;蔡政達;溫昱傑zh_TW
dc.contributor.oralexamcommitteeHung-Chung Hsueh;Yang-Hao Chan;Jeng-Da Chai;Yu-Chieh Wenen
dc.subject.keyword第一原理計算,密度泛函理論,自旋霍爾效應,自旋能斯特效應,自旋電子學,二次非線性光學,二次諧波產生,塊材光伏打效應,位移電流,注入電流,拓樸半金屬,狄拉克線節點半金屬,非傳統手性費米子半金屬,複鐵材料,鈣鈦礦,zh_TW
dc.subject.keywordFirst-principles calculation,density functional theory,spin Hall effect,spin Nernst effect,spintronics,second-order nonlinear optics,second harmonic generation,bulk photovoltaic effect,shift current,injection current,topological semimetal,Dirac line-node semimetal,unconventional chiral fermion semimetal,multiferroic material,perovskites,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202402912-
dc.rights.note未授權-
dc.date.accepted2024-08-07-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
20.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved