Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘zh_TW
dc.contributor.advisorDer-Ming Yehen
dc.contributor.author邱湄玲zh_TW
dc.contributor.authorMei-Ling Chiuen
dc.date.accessioned2024-08-15T16:21:49Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation朱建鏞、柯勇. 2005. 玫瑰花栽培. 國立中興大學農業暨自然資源學院農業推廣中心.
余永富、余志彪、王興祥、李寧、唐秀俊、王子明、潘紅英、袁繼林. 2011. 藥用植物昆明山海棠不同長度和著生部位插穗扦插繁殖試驗. 貴州農業科學 39:179-181.
沈永根、費偉英. 2010. 影響紫薇扦插發根成活的因素研究. 綠色科技 11:37-38.
張哲嘉、林宗賢. 1995. 桶柑葉片光合作用特徵之研究. 中國園藝 41:161-173.
張嘉滿、陳忠義、沈家毅、林茌沂、賴佑翔、王經文. 2021. 不同光量對文心蘭檸檬綠氣體交換與葉綠素螢光之影響. 台灣生物多樣性研究 23:30-46.
梁曉琳、常金寶. 2016. 不同插穗長度對寬葉薰衣草綠枝扦插發根率的影響. 黑龍江農業科學:90-91.
陳彥睿、許謙信. 1997. 玫瑰花‘沙蔓莎’ 品種扦插繁殖之研究. 臺中區農業改良場研究彙報:41-50.
賈志遠、葛曉敏、唐羅忠. 2015. 木本植物扦插繁殖及其影響因素. 世界林業研究 28:36-41.
劉付東標. 1996. 三種修剪強度對月季切花產量的影響. 廣東園林:30-32.
賴允慧. 2004. 扶桑花扦插繁殖技術之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
蘇德銓、李哖. 1984. 玫瑰之增產與產期調節. 中國園藝 30:149-164.
Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W., and Kaufman, P.B. 1998. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod. Sci. 1:96-103.
Al-Yasi, H., Attia, H., Alamer, K., Hassan, F., Ali, E., Elshazly, S., Siddique, K.H., and Hessini, K. 2020. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in Damask rose. Plant Physiol. Biochem. 150:133-139.
Allen, D.J. and Ort, D.R. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6:36-42.
Álvarez, S., Navarro, A., Nicolás, E., and Sánchez-Blanco, M.J. 2011. Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions. Sci. Hortic. 129:306-312.
Álvarez, S., Rodríguez, P., Broetto, F., and Sánchez-Blanco, M.J. 2018. Long term responses and adaptive strategies of Pistacia lentiscus under moderate and severe deficit irrigation and salinity: Osmotic and elastic adjustment, growth, ion uptake and photosynthetic activity. Agric. Water Manage. 202:253-262.
Amri, E., Lyaruu, H., Nyomora, A.S., and Kanyeka, Z.L. 2010. Vegetative propagation of African Blackwood (Dalbergia melanoxylon Guill. & Perr.): effects of age of donor plant, IBA treatment and cutting position on rooting ability of stem cuttings. New For. 39:183-194.
Aro, E.M., Virgin, I., and Andersson, B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143:113-134.
Augé, R.M., Stodola, A.J., Moore, J.L., Klingeman, W.E., and Duan, X. 2003. Comparative dehydration tolerance of foliage of several ornamental crops. Sci. Hortic. 98:511-516.
Awan, A.A., Ullah, E., Abbas, S.J., Khan, O., and Masroor, S. 2012. Growth response of various olive cultivars to different cutting lengths. Pak. J. Agric. Sci. 49:283-287.
Baille, M., Romero-Aranda, R., and Baille, A. 1996. Gas-exchange responses of rose plants to CO2 enrichment and light. J. Hortic. Sci. 71:945-956.
Berry, J. and Bjorkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543.
Bertin, N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Ann. Bot. 95:439-447.
Bispo, T.M. and Vieira, E.A. 2022. Assimilatory deficit and energy regulation in young Handroanthus chrysotrichus plants under flooding stress. J. Plant Res. 135:323-336.
Black, L.A., Nell, T.A., and Barrett, J.E. 1991. Forcing irradiance, temperature and fertilization affect quality of ‘Gloria’ azalea. HortScience 26:1397-1400.
Blanusa, T., Vysini, E., and Cameron, R.W. 2009. Growth and flowering of Petunia and Impatiens: Effects of competition and reduced water content within a container. HortScience 44:1302-1307.
Bona, C., Biasetto, I., Masetto, M., Deschamps, C., and Biasi, L. 2012. Influence of cutting type and size on rooting of Lavandula dentata L. Revista Bras. Plantas Medicinais 14:8-11.
Brøndum, J.J. and Heins, R.D. 1993. Modeling temperature and photoperiod effects on growth and development of dahlia. J. Am. Soc. Hortic. Sci. 118:36-36.
Bredmose, N., Kristiansen, K., and Nielsen, B. 2004. Propagation temperature, PPFD, auxin treatment, cutting size and cutting position affect root formation, axillary bud growth and shoot development in miniature rose (Rosa hybrida L.) plants and alter homogeneity. J. Hortic. Sci. Biotechnol. 79:458-465.
Bunce, J. 1992. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ. 15:541-549.
Bussotti, F., Desotgiu, R., Cascio, C., Pollastrini, M., Gravano, E., Gerosa, G., Marzuoli, R., Nali, C., Lorenzini, G., and Salvatori, E. 2011. Ozone stress in woody plants assessed with chlorophyll a fluorescence. A critical reassessment of existing data. Environ. Expt. Bot. 73:19-30.
Byrne, T.G., Doss, R.P., and Tse, A. 1978. Flower and shoot development in the greenhouse roses,'Cara Mia' and 'Town Crier', under several temperature-photoperiodic regimes. J. Am. Soc. Hortic. Sci. 103:500-502.
Cai, X., Starman, T., Niu, G., Hall, C., and Lombardini, L. 2012. Response of selected garden roses to drought stress. HortScience 47:1050-1055.
Calatayud, Á., Roca, D., Gorbe, E., and Martínez, P.F. 2008. Physiological effects of pruning in rose plants cv. Grand Gala. Sci. Hortic. 116:73-79.
Carpenter, W. 1987. Media response and rooting response of azalea. Proc. Florida State Hortic. Soc. 98:66-68.
Carpenter, W., Hansen, E., and Carlson, W. 1973. Medium temperatures effect on geranium and poinsettia root initiation and elongation1. J. Am. Soc. Hortic. Sci. 98:64-66.
Carpenter, W.J. 1989. Medium Temperature Influences the Rooting Response of Hibiscus rosa-sinensis L. J. Environ. Hortic. 7:143-146.
Chang, J.C. and Lin, T.S. 2007. Gas exchange in litchi under controlled and field conditions. Sci. Hortic. 114:268-274.
Chen, W., Zheng, J., Li, Y., and Guo, W. 2012. Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron. Russ. J. Plant Physiol. 59:732-740.
Chyliński, W.K., Łukaszewska, A.J., and Kutnik, K. 2007. Drought response of two bedding plants. Acta Physiol. Plant 29:399-406.
Cirillo, C., De Micco, V., Rouphael, Y., Balzano, A., Caputo, R., and De Pascale, S. 2017. Morpho-anatomical and physiological traits of two Bougainvillea genotypes trained to two shapes under deficit irrigation. Trees 31:173-187.
Conory, J.P., Küppers, M., Küppers, B., Virgona, J., and Barlow, E. 1988. The influence of CO2 enrichment, phosphorus deficiency and water stress on the growth, conductance and water use of Pinus radiata D. Don. Plant Cell Environ. 11:91-98.
Cornic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends Plant Sci. 5:187-188.
DaMatta, F.M., Godoy, A.G., Menezes-Silva, P.E., Martins, S.C., Sanglard, L.M., Morais, L.E., Torre-Neto, A., and Ghini, R. 2016. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J. Expt. Bot. 67:341-352.
Day, M.E. 2000. Influence of temperature and leaf-to-air vapor pressure deficit on net photosynthesis and stomatal conductance in red spruce (Picea rubens). Tree Physiol. 20:57-63.
De Hertogh, A. and Gallitano, L. 1998. Influence of photoperiod and day/night temperatures on flowering of Amaryllis (Hippeastrum) cv. Apple Blossom. Acta Hortic. 515:129-134.
Dela, G., Or, E., Ovadia, R., Nissim-Levi, A., Weiss, D., and Oren-Shamir, M. 2003. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions. Plant Sci. 164:333-340.
DesRochers, A. and Thomas, B.R. 2003. A comparison of pre-planting treatments on hardwood cuttings of four hybrid poplar clones. New For. 26:17-32.
Druege, U. and Kadner, R. 2008. Response of post-storage carbohydrate levels in pelargonium cuttings to reduced air temperature during rooting and the relationship with leaf senescence and adventitious root formation. Postharvest Biol. Technol. 47:126-135.
Ehleringer, J.R., Schwinning, S., and Gebauer, R. 1998. Water use in arid land ecosystem, p. 347-365. In: M. C. Press, J. Scholes and M. G. Barker (eds.). Physiological plant ecology. Blackwell Science Ltd, UK.
Ellsworth, D.S., Oren, R., Huang, C., Phillips, N., and Hendrey, G.R. 1995. Leaf and canopy responses to elevated CO2 in a pine forest under free-air CO2 enrichment. Oecologia 104:139-146.
Eltayb, M.T.A., Warag, E.E.I., and Elhiuri, A. 2013. Effect of pruning height on growth on five Morus species. J. For. Products Industries 2:27-30.
Fan, S.T., Yeh, D.M., and Wang, T.T. 2009. Cultivar sensitivity to ethylene during storage and 1-methylcyclopropene protection of Aglaonema. HortScience 44:202-205.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M. 2009. Plant drought stress: effects, mechanisms and management, p. 153-188. In: E. Lichtfouse, M. Navarrete, P. Debaeke, V. Souchère and C. Alberola (eds.). Sustain. Agric., Springer, Dordrecht, Netherlands.
Farquhar, G. 1978. Feedforward responses of stomata to humidity. Funct. Plant Biol. 5:787-800.
Farquhar, G.D., von Caemmerer, S.v., and Berry, J.A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90.
Fleisher, D., Barnaby, J., Sicher, R., Resop, J., Timlin, D., and Reddy, V. 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171:270-280.
Franks, P., Cowan, I., and Farquhar, G. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20:142-145.
Geisler, D. and Ferree, D.C. 1984. Response of plants to root pruning, p. 155-188. In: J. Janick (eds.). Hortic. Rev. Vol. 6, The AVI Publishing Company, Inc, Westport, Connecticut, USA.
Gislerød, H.R. 1983. Physical conditions of propagation media and their influence on the rooting of cuttings: III. the effect of air content and temperature in different propagation media on the rooting of cuttings. Plant Soil 75:1-14.
Gomes, A.S. and Kozlowski, T. 1980. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. Plant Physiol. 66:267-271.
Greyvenstein, O., Pemberton, B., Starman, T., Niu, G., and Byrne, D. 2014. Effect of two-week high-temperature treatment on flower quality and abscission of Rosa L.‘Belinda’s Dream’and ‘RADrazz’(KnockOut®) under controlled growing environments. HortScience 49:701-705.
Halevy, A.H. 1972. Phytohormones in flowering regulation of self-inductive plants. Proc. 18th Int. Hortic. Cong. 5:187-198.
Hall, A., Catley, J., and Walton, E. 2007. The effect of forcing temperature on peony shoot and flower development. Sci. Hortic. 113:188-195.
Hansen, J. 1989. Influence of cutting position and temperature during rooting on adventitious root formation and axillary bud break of Stephanotis floribunda. Sci. Hortic. 40:345-354.
Hartmann, H., Kester, D., Davies, F., and Geneve, R. 2011. Plant propagation : principles and practices. 8th ed. Prentice Hall, Englewood Cliffs, N.J.
Hassanein, A.M. 2010. Improved quality and quantity of winter flowering in rose (Rosa spp.) by controlling the timing and type of pruning applied in autumn. World J. Agric. Sci. 6:260-267.
Hattori, Y., Nagai, K., Furukawa, S., Song, X.J., Kawano, R., Sakakibara, H., Wu, J., Matsumoto, T., Yoshimura, A., and Kitano, H. 2009. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026-1030.
Hetherington, A.M. 2001. Guard cell signaling. Cell 107:711-714.
Higuchi, H., Sakuratani, T., and Utsunomiya, N. 1999. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Sci. Hortic. 80:91-104.
Hsiao, T.C. and Acevedo, E. 1975. Plant responses to water deficits, water-use efficiency, and drought resistance. Dev. Agric. Managed For. Ecol. 1:59-84.
Huang, B. 2003. Recent advances in drought and heat stress physiology of turfgrass-A review. Acta Hortic. 661:185-192.
Iapichino, G. and Bertolino, M. 2007. Propagation techniques for Iberis semperflorens L. Acta Hortic. 813:427-434.
Ismail, M.R. and Noor, K.M. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Sci. Hortic. 65:229-238.
Iwanaga, F. and Yamamoto, F. 2008. Effects of flooding depth on growth, morphology and photosynthesis in Alnus japonica species. New For. 35:1-14.
Jalakas, P., Takahashi, Y., Waadt, R., Schroeder, J.I., and Merilo, E. 2021. Molecular mechanisms of stomatal closure in response to rising vapour pressure deficit. New Phytol. 232:468-475.
Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R., and Panneerselvam, R. 2007. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids surfaces B: Biointerfaces 60:110-116.
Jiao, J., Wang, X., and Tsujita, M. 1989. Whole plant net photosynthesis of miniature roses influenced by light, CO2, and temperature. Acta Hortic. 272:261-266.
Jing, Y., Li, G., Gu, B., Yang, D., Xiao, L., Liu, R., and Peng, C. 2009. Leaf gas exchange, chlorophyll fluorescence and growth responses of Melaleuca alternifolia seedlings to flooding and subsequent recovery. Photosynthetica 47:595-601.
Jumrani, K., Bhatia, V.S., and Pandey, G.P. 2017. Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth. Res. 131:333-350.
Kaiser, H. and Paoletti, E. 2014. Dynamic stomatal changes, p. 61-82. In: M. Tausz and N. Grulke (eds.). Trees in a changing environment. Springer, Dordrecht, The Netherlands.
Kathiravan, M., Ponnuswamy, A., and Vanitha, C. 2009. Determination of suitable cutting size for vegetative propagation and comparison of propagules to evaluate the seed quality attributes in Jatropha curcas Linn. Nat. Prod. Radiance 8:162-166.
Katsoulas, N., Kittas, C., Dimokas, G., and Lykas, C. 2006. Effect of irrigation frequency on rose flower production and quality. Biosyst. Eng. 93:237-244.
Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B.E., Salami, S.A., and Babalar, M. 2019. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9:19250.
Kim, S.H. and Lieth, J.H. 2003. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Ann. Bot. 91:771-781.
Krause, a.G. and Weis, E. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42:313-349.
Lenzi, A., Pittas, L., Martinelli, T., Lombardi, P., and Tesi, R. 2009. Response to water stress of some oleander cultivars suitable for pot plant production. Sci. Hortic. 122:426-431.
Li, C.X., Wei, H., Geng, Y.H., and Schneider, R. 2010. Effects of submergence on photosynthesis and growth of Pterocarya stenoptera (Chinese wingnut) seedlings in the recently-created Three Gorges Reservoir region of China. Wetlands Ecol. Manage. 18:485-494.
Li, K.T., Lakso, A.N., Piccioni, R., and Robinson, T. 2003. Summer pruning reduces whole-canopy carbon fixation and transpiration in apple trees. J. Hortic. Sci. Biotechnol. 78:749-754.
Lieth, J. and Pasian, C. 1990. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, leaf temperature, and leaf age. J. Am. Soc. Hortic. Sci. 115:486-491.
Litlere, B. and Strømme, E. 1975. The influence of temperature, daylength and light intensity on flowering in Hydrangea macrophylla (Thunb.) Ser. Acta Hortic. 51:285-298.
Liu, N.Y., Yang, Q.Y., Wang, J.H., Zhang, S.B., Yang, Y.J., and Huang, W. 2024. Differential effects of increasing vapor pressure deficit on photosynthesis at steady state and fluctuating light. J. Plant Growth Regul. 43:1-11.
Liu, Z., Cheng, R., Xiao, W., Guo, Q., and Wang, N. 2014. Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS One 9:1-8.
Llorens, L., Penuelas, J., and Estiarte, M. 2003. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol. Plant. 119:231-243.
Long, S.P., Ainsworth, E.A., Rogers, A., and Ort, D.R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55:591-628.
Loreti, E., van Veen, H., and Perata, P. 2016. Plant responses to flooding stress. Curr. Opin. Plant Biol. 33:64-71.
Lukatkin, A.S., Tyutyaev, E.V., Sharkaeva, E.S., Lukatkin, A.A., and Teixeira da Silva, J.A. 2017. Mild abiotic stresses have different effects on chlorophyll fluorescence parameters in leaves of young woody and herbaceous invasive plants. Acta Physiol. Plant 39:1-7.
Marcelis-van Acker, C. 1995. Effect of temperature on development and growth potential of axillary buds in roses. Sci. Hortic. 63:241-250.
Marenco, R.A., de C. Gonçalves, J., and Vieira, G. 2001. Photosynthesis and leaf nutrient contents in Ochroma pyramidale (Bombacaceae). Photosynthetica 39:539-543.
Martinazzo, E.G., Ramm, A., and Bacarin, M.A. 2012. The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Braz. J. Plant Physiol. 24:237-246.
Medrano, H., Parry, M., Socias, X., and Lawlor, D. 1997. Long term water stress inactivates Rubisco in subterranean clover. Ann. Appl. Biol. 131:491-501.
Merilo, E., Yarmolinsky, D., Jalakas, P., Parik, H., Tulva, I., Rasulov, B., Kilk, K., and Kollist, H. 2018. Stomatal VPD response: there is more to the story than ABA. Plant Physiol. 176:851-864.
Miller, N., Hinesley, L., and Blazich, F. 1982. Propagation of Fraser fir by stem cuttings: effects of type of cutting, length of cutting, and genotype. HortScience 17:827-829.
Moccaldi, L.A. and Runkle, E.S. 2007. Modeling the effects of temperature and photosynthetic daily light integral on growth and flowering of Salvia splendens and Tagetes patula. J. Am. Soc. Hortic. Sci. 132:283-288.
Moe, R. 1971a. Factors affecting flower abortion and malformation in roses. Physiol. Plant. 24:291-300.
Moe, R. 1971b. Propagation, growth and flowering of potted roses. Acta Hortic. 31:35-50.
Mu, X. and Chen, Y. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158:76-82.
Murata, N., Takahashi, S., Nishiyama, Y., and Allakhverdiev, S.I. 2007. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta 1767:414-421.
Nóia Júnior, R.d.S., Amaral, G.C., Pezzopane, J.E.M., Fonseca, M.D.S., Câmara da Silva, A.P., and Xavier, T.M.T. 2020. Ecophysiological acclimatization to cyclic water stress in Eucalyptus. J. For. Res. 31:797-806.
Niu, G. and Rodriguez, D.S. 2009. Growth and physiological responses of four rose rootstocks to drought stress. J. Am. Soc. Hortic. Sci. 134:202-209.
Niu, G., Rodriguez, D.S., and Wang, Y.T. 2006. Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411.
Norby, R.J. and Zak, D.R. 2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Syst. 42:181-203.
Nozaki, K., Takamura, T., and Fukai, S. 2006. Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J. Hortic. Sci. Biotechnol. 81:728-734.
Oren-Shamir, M., Shaked-Sachray, L., Nissim-Levi, A., and Weiss, D. 2000. Effect of growth temperature on aster flower development. HortScience 35:28-29.
Otiende, M.A., Nyabundi, J.O., Ngamau, K., and Opala, P. 2017. Effects of cutting position of rose rootstock cultivars on rooting and its relationship with mineral nutrient content and endogenous carbohydrates. Sci. Hortic. 225:204-212.
Pal, P.K., Agnihotri, V.K., and Singh, R.D. 2014. Impact of level and timing of pruning on flower yield and secondary metabolites profile of Rosa damascena under western Himalayan region. Ind. Crops Prod. 52:219-227.
Pallardy, S.G. 2010. Photosynthesis. Academic Press, Burlington, MA, USA.
Palmer, J., Avery, D., and Wertheim, S. 1992. Effect of apple tree spacing and summer pruning on leaf area distribution and light interception. Sci. Hortic. 52:303-312.
Pasian, C. and Lieth, J. 1989. Analysis of the response of net photosynthesis of rose leaves of varying ages to photosynthetically active radiation and temperature. J. Am. Soc. Hortic. Sci. 114:581-586.
Pasian, C. and Lieth, J. 1994. Prediction of flowering rose shoot development based on air temperature and thermal units. Sci. Hortic. 59:131-145.
Pawar, R., Bhatt, S.T., and Bhatt, D. 2019. Influence of time and level of pruning on flowering yield in Jasminum sambac var. Baramasi under South Gujarat condition. J. Pharmacogn. Phytochemistry 8:1975-1977.
Pearson, S., Parker, A., Adams, S., Hadley, P., and May, D. 1995. The effects of temperature on the flower size of pansy (Viola x wittrockiana Gams.). J. Hortic. Sci. 70:183-190.
Pedersen, O., Rich, S.M., and Colmer, T.D. 2009. Surviving floods: leaf gas films improve O2 and CO2 exchange, root aeration, and growth of completely submerged rice. Plant J. 58:147-156.
Pezeshki, S. 2001. Wetland plant responses to soil flooding. Environ. Expt. Bot. 46:299-312.
Potters, G., Pasternak, T.P., Guisez, Y., and Jansen, M.A. 2009. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ. 32:158-169.
Pratheesh, P. and Kumar, M.A. 2012. In vitro flowering in Rosa indica L. Int. J. Pharmacological Biol. Sci. 2:196-200.
Quinn, P.J. 1988. Effects of temperature on cell membranes. Symposia of the Society for Experimental Biology 42:237-258.
Richards, D. and Rowe, R. 1977. Effects of root restriction, root pruning and 6-benzylaminopurine on the growth of peach seedlings. Ann. Bot. 41:729-740.
Rodrigues, M., Pacheco, C., and Chaves, M. 1995. Soil-plant water relations, root distribution and biomass partitioning in Lupinus albus L. under drought conditions. J. Expt. Bot. 46:947-956.
Rossi, P. 1999. Length of cuttings in establishment and production of short-rotation plantations of Salix ‘Aquatica’. New For. 18:161-177.
Rymen, B., Fiorani, F., Kartal, F., Vandepoele, K., Inzé, D., and Beemster, G.T. 2007. Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes. Plant Physiol. 143:1429-1438.
Sairam, R., Kumutha, D., Ezhilmathi, K., Deshmukh, P., and Srivastava, G. 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52:401-412.
Saleem, M.F., Sammar Raza, M.A., Ahmad, S., Khan, I.H., and Shahid, A.M. 2016. Understanding and mitigating the impacts of drought stress in cotton-A review. Pakistan J. Agric. Sci. 53:609-623.
Sancho-Knapik, D., Mendoza-Herrer, Ó., Alonso-Forn, D., Saz, M.Á., Martín-Sánchez, R., dos Santos Silva, J.V., Ogee, J., Peguero-Pina, J.J., Gil-Pelegrín, E., and Ferrio, J.P. 2022. Vapor pressure deficit constrains transpiration and photosynthesis in holm oak: A comparison of three methods during summer drought. Agric. For. Meteorol. 327:109218.
Sauer, K. 1979. Photosynthesis-the light reactions. Annu. Rev. Phys. Chem. 30:155-178.
Sendall, K.M., Lusk, C.H., and Reich, P.B. 2015. Becoming less tolerant with age: sugar maple, shade, and ontogeny. Oecologia 179:1011-1021.
Sevelius, N., Hyttinen, T., and Somersalo, S. 2000. Selection of rose cultivars for low light greenhouse production by photosynthetic features. Acta Hortic. 547:159-166.
Severino, L.S., Lima, R.L., Lucena, A.M., Freire, M.A., Sampaio, L.R., Veras, R.P., Medeiros, K.A., Sofiatti, V., and Arriel, N.H. 2011. Propagation by stem cuttings and root system structure of Jatropha curcas. Biomass Bioenergy 35:3160-3166.
Shaked-Sachray, L., Weiss, D., Reuveni, M., Nissim-Levi, A., and Oren-Shamir, M. 2002. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment. Physiol. Plant. 114:559-565.
Shao, J., Huang, Y., and Fan, Q. 2014. Visible light initiating systems for photopolymerization: status, development and challenges. Polymer Chem. 5:4195-4210.
Shin, H.K., Lieth, J.H., and Kim, S.H. 2000. Effects of temperature on leaf area and flower size in rose. Acta Hortic. 547:185-191.
Shirke, P.A. and Pathre, U.V. 2004. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Expt. Bot. 55:2111-2120.
Singh, B., Rawat, J.S., Gusain, Y.S., Khanduri, V.P., Riyal, M.K., and Kumar, P. 2021. Shoot position, cutting types and auxin treatments influence rooting response on Tecoma stans. Ornamental Hortic. 27:213-220.
Singh, B., Yadav, R., and Bhatt, B. 2012. Vegetative propagation of Dalbergia sissoo: effect of growth regulators, length, position of shoot and type of cuttings on rooting potential in stem cuttings. For. Stud. China 14:187-192.
Smalley, T.J. and Dirr, M.A. 1987. Effect of cutting size on rooting and subsequent growth of Acer rubrum ‘Red Sunset’cuttings. J. Environ. Hortic. 5:122-124.
Smith, N.G. and Dukes, J.S. 2013. Plant respiration and photosynthesis in global‐scale models: incorporating acclimation to temperature and CO2. Global Change Biol. 19:45-63.
Sood, A., Duchin, S., Adamov, Z., Carmeli-Weissberg, M., Shaya, F., and Spitzer-Rimon, B. 2022. Abscisic acid mediates the reduction of petunia flower size at elevated temperatures due to reduced cell division. Planta 255:1-14.
Taiz, L. and Zeiger, E. 2002. Photosynthesis: physiological and ecological considerations. Plant Physiol. 9:172-174.
Tan, S., Abdullah, T., and Go, R. 2018. Effect of plant growth regulators on cutting propagation of cempaka putih (Magnolia alba) and cempaka kuning (Magnolia champaca). Trans. Malaysian Soc. Plant Physiol. 25:124-127.
Taylor, B. and Ferree, D. 1981. The Influence of summer pruning on photosynthesis, transpiration, leaf abscission, and dry weight accumulation of young apple trees1. J. Am. Soc. Hortic. Sci. 106:389-393.
Tazoe, Y., Noguchi, K., and Terashima, I. 2006. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus. Plant Cell Environ. 29:691-700.
Tchoundjeu, Z., Avana, M., Leakey, R., Simons, A., Assah, E., Duguma, B., and Bell, J. 2002. Vegetative propagation of Prunus africana: effects of rooting medium, auxin concentrations and leaf area. Agroforestry Syst. 54:183-192.
Teixido, A.L. and Valladares, F. 2015. Temperature-limited floral longevity in the large-flowered Mediterranean shrub Cistus ladanifer (Cistaceae). Int. J. Plant Sci. 176:131-140.
Teskey, R.O. and Hinckley, T.M. 1981. Influence of temperature and water potential on root growth of white oak. Physiol. Plant. 52:363-369.
Thomas, J.F., Anderson, C., Raper Jr, C.D., and Downs, R. 1975. Time of floral initiation in tobacco as a function of temperature and photoperiod. Can. J. Bot. 53:1400-1410.
Tipu, S., Hossain, K., Islam, M., and Hossain, M. 2006. Effect of pruning height on shoot biomass yield of Leucaena leucocephala. Asian J. Plant Sci. 5:1043-1046.
Toscano, S., Ferrante, A., and Romano, D. 2019. Response of Mediterranean ornamental plants to drought stress. Hortic. 5:6.
Toscano, S., Ferrante, A., Tribulato, A., and Romano, D. 2018. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability. Plant Physiol. Biochem. 127:380-392.
Toscano, S., Scuderi, D., Giuffrida, F., and Romano, D. 2014. Responses of Mediterranean ornamental shrubs to drought stress and recovery. Sci. Hortic. 178:145-153.
Trochoulias, T. and Lahav, E. 1983. The effect of temperature on growth and dry-matter production of macadamia. Sci. Hortic. 19:167-176.
Tsukahara, H. and Kozlowski, T. 1985. Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. Plant Soil 88:123-132.
Ueda, Y., Nishihara, S., Tomita, H., and Oda, Y. 2000. Photosynthetic response of Japanese rose species Rosa bracteata and Rosa rugosa to temperature and light. Sci. Hortic. 84:365-371.
Urban, J., Ingwers, M.W., McGuire, M.A., and Teskey, R.O. 2017. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra. J. Expt. Bot. 68:1757-1767.
Urban, L., Barthélémy, L., Bearez, P., and Pyrrha, P. 2001. Effect of elevated CO2 on photosynthesis and chlorophyll fluorescence of rose plants grown at high temperature and high photosynthetic photon flux density. Photosynthetica 39:275-281.
Ushio, A., Mae, T., and Makino, A. 2008. Effects of temperature on photosynthesis and plant growth in the assimilation shoots of a rose. Soil Sci. Pant Nutr. 54:253-258.
Voelker, S.L., Brooks, J.R., Meinzer, F.C., Anderson, R., Bader, M.K.F., Battipaglia, G., Becklin, K.M., Beerling, D., Bert, D., and Betancourt, J.L. 2016. A dynamic leaf gas‐exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biol. 22:889-902.
Voesenek, L., Colmer, T., Pierik, R., Millenaar, F., and Peeters, A. 2006. How plants cope with complete submergence. New Phytol. 170:213-226.
Wade, G.L. and Westerfield, R.R. 2009. Basic principles of pruning woody plants. The University of Georgia, Coop. Ext. 1-6.
Wang, S., Heins, R.D., Carlson, W.H., and Cameron, A.C. 1997. Modeling the effect of temperature on flowering of Hibiscus moscheutos. Acta Hortic. 456:161-170.
Wang, T. 2008. Effect of pruning on flowering of Rhododendron simsii planch. Acta Hortic. 769:463-466.
Way, D.A. and Sage, R.F. 2008. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana (Mill.) BSP]. Global Change Biol. 14:624-636.
Whitman, C.M., Heins, R.D., Cameron, A.C., and Carlson, W.H. 1996. Cold treatments, photoperiod, and forcing temperature influence flowering of Lavandula angustifolia. HortScience 31:1150-1153.
Wu, L.l., Li, J.a., Gu, Y.y., Zhang, F.h., Gu, L., Tan, X.f., and Shi, M.w. 2020. Effect of chilling temperature on chlorophyll florescence, leaf anatomical structure, and physiological and biochemical characteristics of two Camellia oleifera cultivars. Intl. J. Agric. Biol. 23:777-789.
Wu, Y.S. and Yang, C.Y. 2016. Physiological responses and expression profile of NADPH oxidase in rice (Oryza Sativa) seedlings under different levels of submergence. Rice 9:1-10.
Wylie, A.P. 1954. The history of garden roses. J. R. Hortic. Soc. 79:555-571.
Xu, Z., Zhou, G., and Shimizu, H. 2010. Plant responses to drought and rewatering. Plant Signaling Behavior 5:649-654.
Xuewen, X., Huihui, W., Xiaohua, Q., Qiang, X., and Xuehao, C. 2014. Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hortic. 179:388-395.
Yamane, Y., Shikanai, T., Kashino, Y., Koike, H., and Satoh, K. 2000. Reduction of Qa in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosynth. Res. 63:23-34.
Yang, J., Xie, S., Du, D., Wei, H., Zhou, W., Zhang, Y., Tang, Z., Li, D., and Liu, Y. 2023. Effect of pruning treatment on growth characteristics and metabolites in Eucommia ulmoides Oliver (E. ulmoides). For. 14:2439.
Yang, Z., Minggagud, H., Baoyin, T., and Li, F.Y. 2020. Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height. J. Environ. Manage. 253:1-8.
Yuan, J., Li, H., and Yang, Y. 2020. The compensatory tillering in the forage grass Hordeum brevisubulatum after simulated grazing of different severity. Front. Plant Sci. 11:1-11.
Zaher-Ara, T., Boroomand, N., and Sadat-Hosseini, M. 2016. Physiological and morphological response to drought stress in seedlings of ten citrus. Trees 30:985-993.
Zamski, E., Oshri, S., and Zieslin, N. 1985. Comparative morphology and anatomy of axillary buds along a rose shoot. Bot. Gaz. 146:208-212.
Zhang, P., Lyu, D., Jia, L., He, J., and Qin, S. 2017. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC genomics 18:1-14.
Zhang, Y., Duan, B., Qiao, Y., Wang, K., Korpelainen, H., and Li, C. 2008. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. For. Ecol. Manage. 255:1937-1944.
Zhao, D., Hao, Z., and Tao, J. 2012. Effects of shade on plant growth and flower quality in the herbaceous peony (Paeonia lactiflora Pall.). Plant Physiol. Biochem. 61:187-196.
Zheng, H., Zhang, X., Ma, W., Song, J., Rahman, S.U., Wang, J., and Zhang, Y. 2017. Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environ. Expt. Bot. 138:77-87.
Zieslin, N., Haaze, H., and Halevy, A. 1976. Components of axillary bud inhibition in rose plants. II. The effect of bud position on degree of inhibition. Bot. Gaz. 137:297-300.
Zieslin, N. and Halevy, A.H. 1976. Components of axillary bud inhibition in rose plants. I. The effect of different plant parts (correlative inhibition). Bot. Gaz. 137:291-296.
Zieslin, N., Hurwitz, A., and Halevy, A. 1975. Flower production and the accumulation and distribution of carbohydrates in different parts of Baccara rose plants as influenced by various pruning and pinching treatments. J. Hortic. Sci. 50:339-348.
Zieslin, N., Khayat, E., and Mor, Y. 1987. The response of rose plants to different night temperature regimes. J. Am. Soc. Hortic. Sci. 112:86-89.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94234-
dc.description.abstract玫瑰(Rosa hybrida)為薔薇科(Rosaceae)之重要花卉作物,其中‘Red Captain’被認為是對臺灣物候適應性較佳的景觀或盆花品種;但缺乏科學文獻報導。本研究探討玫瑰‘Red Captain’扦插繁殖及栽培管理對其生長、光合作用與開花之影響,期望建立有效之扦插繁殖及栽培管理之資訊,以供生產與景觀布置參考。
剪取玫瑰‘Red Captain’帶花芽可見之枝條,將花芽剪去後選取花下第1-2節、3-4節、5-6節及7-8節插穗,結果顯示7-8節插穗之存活率顯著低於其他處理,1-2節插穗之地上部長度明顯縮短,地上部乾重最低,最大根長、發根數及地下部乾重以3-4節為最高。另取花下第1節、1-2節、1-3節及1-4節插穗,結果顯示四種節數之插穗地上部長度及地上部乾重隨節數增加而上升,而根系發育及最大根長度以1-3節及1-4節插穗表現最好,發根數量及根乾重以1-4節之插穗最多。
以WET Sensor測定介質體積含水量(volumetric water content, VWC),設計淹水(70% VWC)、經常濕潤(40% VWC)、乾旱(20% VWC)、乾溼交替(20/55% VWC) 之處理。結果顯示玫瑰‘Red Captain’之植株外觀以40% VWC及20/55% VWC處理較佳;20% VWC處理之淨光合作用速率等生理及生長指標皆最低,顯示玫瑰‘Red Captain’為稍耐濕,但不耐旱之植物。
以溫積值模型評估花朵發育速率,結果顯示玫瑰‘Red Captain’ 從花芽可見到開花之基礎溫度為5 °C,花朵發育所需之溫積值為500 °Cd。植株外觀表現以25/20 °C處理較佳;高溫35/30° C及30/25 °C處理之花芽可見天數、花朵壽命、光合作用等生長指標均顯著低於其他處理;低溫15/13 ℃處理雖葉片厚實且濃綠,但側枝長明顯縮短且花辦數較少, 20/15 ℃處理雖具較長之側枝長度及最大之花朵直徑,然其花朵較垂,降低觀賞價值。
將玫瑰‘Red Captain’植株修剪至 8、16、24 cm (介質表面算起至植株最高處)及未經修剪之控制組,株高約為70 cm。結果顯示以修剪至8 cm處理之植株較為瘦弱,淨光合作用速率等生理及生長指標皆最低;整體外觀表現以修剪至16 cm及修剪至24 cm處理較為茂密、緊湊;而未經修剪之處理葉片有明顯黃化徵狀,且沒有側枝產生,花朵數較少且花朵直徑也顯著較小。
將玫瑰‘Red Captain’枝條第4、6及8節(介質表面算起)處剪除,結果顯示以修剪至4節之枯枝率較為高,而葉綠素計讀值、開花率、側枝長度、莖徑及淨光合作用速率等生理及生長指標皆最低;整體生長表現以修剪至8節處理者最佳,且花芽可見天數顯著低於其他處理。
將玫瑰‘Red Captain’ 栽培於每日平均正午光強度為647.9 µmol·m-2·s-1 PPFD平均溫度為28.2°C時,淨光合作用速率隨光度增加而上升,光飽和點約為800 µmol·m-2·s-1 PPFD,此時淨光合作用速率為16.4 μmol·CO2·m-2·s-1。其光反應曲線顯示其光補償點為21.8 µmol·m-2·s-1。二氧化碳濃度自0提升至800 μmol CO2·mol-1,使淨光合作用速率隨之增加,二氧化碳濃度在700 μmol CO2·mol-1達最高,此時之淨光合作用速率為30.8 μmol·CO2·m-2·s-1,且細胞間隙二氧化碳濃度亦提升。當VPD固定為 1.2±0.1 kPa時,玫瑰‘Red Captain’光合作用適溫為30 ℃。VPD在0.85 至2.22 kPa區間,玫瑰‘Red Captain’ 之淨光合作用速率於VPD為1.35 kPa下最佳。
zh_TW
dc.description.abstractRose (Rosa hybrida) is an important flower crop. Rose ‘Red Captain’ has been considered to suit for subtropical environmental conditions in Taiwan. However, information on the related cultivation is presently limited. This study investigates the effects of cutting propagation and cultivation management on the growth, photosynthesis, and flowering of the rose ‘Red Captain’. The aim is to establish effective information on cutting propagation and cultivation management to refer to production and landscape arrangement.
Taking cuttings of the rose ‘Red Captain’ with visible flower buds, and after removing the flower buds, cuttings from the 1st-2nd, 3rd-4th, 5th-6th, and 7th-8th nodes below the flower were selected. The results showed that the survival rate of cuttings from the 7th-8th nodes was significantly lower than the other treatments. The shoot length of cuttings from the 1st-2nd nodes was noticeably shorter, with the lowest shoot dry weight, while the longest root length, number of roots, and root dry weight were highest in cuttings from the 3rd-4th nodes. Additionally, cuttings were taken from the 1st node, 1st-2nd nodes, 1st-3rd nodes, and 1st-4th nodes below the flower. The results indicated that the shoot length and shoot dry weight of the cuttings increased with the number of nodes, with the best root development and maximum root length observed in cuttings from the 1st-3rd and 1st-4th nodes. The highest number of roots and root dry weight were found in cuttings from the 1st-4th nodes.
Using a WET Sensor to measure the volumetric water content (VWC) of the medium, treatments were designed as follows: flooding (70% VWC), constantly moist (40% VWC), drought (20% VWC), and alternating dry and wet (20/55% VWC). The results showed that plants at 40% VWC and 20/55% VWC had better growth performance. The 20% VWC treatment resulted in the lowest net photosynthetic rate and other physiological and growth indicators, indicating that the rose ‘Red Captain’ is moderately tolerant to moisture but not drought tolerant.
Using a thermal time model to evaluate the flower development rate, the results showed that the base temperature for rose ‘Red Captain’ from flower bud visibility to flowering is 5 °C, and the thermal time for flower development is 500 °Cd. Plants at 25/20°C had better growth performance. High temperature treatments of 35/30 °C and 30/25 °C resulted in significantly lower flower bud visibility days, flower longevity, photosynthesis, and other growth indicators compared to other treatments. Although the 15/13 °C treatment produced thick and dark green leaves, the length of the lateral shoot was significantly shorter, and the number of petals was fewer. The 20/15 °C treatment resulted in longer lateral shoot length and the largest flower diameter, but the flowers tended to droop, reducing their ornamental value.
The rose ‘Red Captain’ were pruned to heights of 8 cm, 16 cm, 24 cm (measured from the substrate surface to the highest point of the plant), and unpruned treatment. The results showed that plants pruned to 8 cm were weaker, with the lowest net photosynthetic rate and other physiological and growth indicators. Plants pruned to 16 cm and 24 cm had denser and more compact appearance. Unpruned plants exhibited chlorotic leaves , no lateral shoot growth, fewer flowers, and smaller flower diameters significantly.
The rose ‘Red Captain’ was pruned at the 4th, 6th, and 8th nodes (measured from the substrate surface). The results showed that pruning at the 4th node resulted in a higher rate of dead branches, and the SPAD-502 value, flowering rate, lateral shoot length, stem diameter, and net photosynthetic rate were all the lowest among the treatments. Plants pruned to 8th node had better growth performance, with a significantly lower flower bud visibility days compared to the other treatments.
The net photosynthetic rate increased with rising light intensity. The net photosynthetic rate reached saturation at light intensity 800 μmol·CO2·m-2·s-1 , with a net photosynthetic rate of 16.4 μmol·CO2·m-2·s-1. Light compensation point was estimated as 21.8 μmol·CO2·m-2·s-1. As the carbon dioxide concentration increase from 0 to 800 μmol CO2·mol-1,the net photosynthetic rate and intercellular carbon dioxide concentration increased. The concentration of carbon dioxide reached a maximum of 700 μmol·CO2·m-2·s-1, with a net photosynthesis rate of 30.8 μmol·CO2·m-2·s-1. When the vapor pressure deficit (VPD) was fixed at 1.2±0.1 kPa, the optimal temperature for rose ‘Red Captain’ was 30°C. Within the VPD range of 0.85 to 2.22 kPa, the optimal VPD for photosynthesis was 1.35 kPa.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:21:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:21:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
目次 vi
表次 ix
圖次 xi
前言(Introduction) 1
前人研究(Literature Review) 3
一、玫瑰簡介 3
(一)分類 3
(二)形態 3
(三)開花特性 4
二、影響觀賞花木扦插繁殖之因子 4
(一)取穗部位 4
(二)取穗長度 6
(三)氣溫與根溫對觀賞花木扦插繁殖之影響 7
三、水分對木本植物生長及光合作用之影響 9
(一)乾旱對木本植物生長及光合作用之影響 9
(二)淹水對木本植物生長及光合作用之影響 10
四、溫度對觀賞花木生長及開花之影響 12
(一)溫度對觀賞花木生長之影響 12
(二)溫度三積點與觀賞花木開花之溫積質 14
五、修剪對觀賞花木生長及光合作用之影響 15
六、木本植物之光合作用 16
(一)光度 16
(二)溫度 17
(三)葉片與大氣之蒸氣壓差 19
(四)大氣二氧化碳濃度 20
材料與方法 (Materials and Methods) 22
試驗一、取穗節位對玫瑰‘Red Captain’插穗生長之影響 22
試驗二、取穗節數對玫瑰‘Red Captain’插穗生長之影響 22
試驗三、介質體積含水量對玫瑰‘Red Captain’生長及光合作用之影響 23
試驗四、溫度對玫瑰‘Red Captain’生長及開花之影響 25
試驗五、修剪高度對玫瑰‘Red Captain’生長及開花之影響 26
試驗六、修剪節位對玫瑰‘Red Captain’生長及開花之影響 27
試驗七、光度、葉溫、蒸氣壓差與二氧化碳濃度對玫瑰‘Red Captain’氣體交換速率之影響 28
結果 (Results) 31
試驗一、取穗節位對玫瑰‘Red Captain’插穗生長之影響 31
試驗二、取穗節數對玫瑰‘Red Captain’插穗生長之影響 31
試驗三、介質含水量對玫瑰‘Red Captain’生長及光合作用之影響 31
試驗四、溫度對玫瑰‘Red Captain’生長及開花之影響 33
試驗五、修剪高度及節位對玫瑰‘Red Captain’生長及開花之影響 35
試驗六、修剪節位對玫瑰‘Red Captain’生長及開花之影響 36
試驗七、光度、葉溫、蒸氣壓差與二氧化碳濃度對玫瑰‘Red Captain’氣體交換速率之影響 37
討論(Discussion) 84
一、取穗節位對玫瑰‘Red Captain’插穗生長之影響 84
二、取穗節數對玫瑰‘Red Captain’插穗生長之影響 85
三、介質含水量對玫瑰‘Red Captain’生長及光合作用之影響 86
四、溫度對玫瑰‘Red Captain’生長及開花之影響 89
五、修剪高度及節位對玫瑰‘Red Captain’生長及開花之影響 93
六、光度、葉溫、蒸氣壓差與二氧化碳濃度對玫瑰‘Red Captain’氣體交換速率之影響 96
綜合討論與結論 (General Discussion and Conclusions) 100
參考文獻 (References) 102
-
dc.language.isozh_TW-
dc.title玫瑰‘紅隊長’之扦插繁殖及栽培管理zh_TW
dc.titleCutting Propagation and Cultivation of Rose ‘Red Captain’en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張育森;李國譚;陳彥銘zh_TW
dc.contributor.oralexamcommitteeYu-Sen Chang;Kuo-Tan Li ;Yen-Ming Chenen
dc.subject.keyword觀葉花木,扦插繁殖,介質體積含水量,溫度,修剪,氣體交換速率,zh_TW
dc.subject.keywordwoody ornamental,cutting propagation,volumetric water content,temperature,pruning,gas exchange,en
dc.relation.page122-
dc.identifier.doi10.6342/NTU202402748-
dc.rights.note未授權-
dc.date.accepted2024-08-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved