請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94230
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童心欣 | zh_TW |
dc.contributor.advisor | Hsin-hsin Tung | en |
dc.contributor.author | 何羿德 | zh_TW |
dc.contributor.author | Yi-De He | en |
dc.date.accessioned | 2024-08-15T16:20:37Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-08 | - |
dc.identifier.citation | Aggarwal, Srijan, Youchul Jeon, and Raymond M. Hozalski. 2015. “Feasibility of Using a Particle Counter or Flow-Cytometer for Bacterial Enumeration in the Assimilable Organic Carbon (AOC) Analysis Method.” Biodegradation 26:387–97.
Ahmad, Rasheed, and A Amirtharajah. 1998. “Detachment of Particles during Biofilter Backwashing.” Journal‐American Water Works Association 90 (12): 74–85. Akdogan, Hatice Ardag, and Nurdan Kasikara Pazarlioglu. 2011. “Fluorene Biodegradation by P. Osteratus – Part II: Biodegradation by Immobilized Cells in a Recycled Packed Bed Reactor.” Process Biochemistry 46 (4): 840–46. https://doi.org/10.1016/j.procbio.2011.01.008. Aksoğan, S., A. Baştürk, E. Yüksel, and Ö Akgiray. 2004. “On the Use of Crushed Shells of Apricot Stones as the Upper Layer in Dual Media Filters.” Water Science and Technology 48 (11–12): 497–503. Al-Jasser, AO. 2007. “Chlorine Decay in Drinking-Water Transmission and Distribution Systems: Pipe Service Age Effect.” Water Research 41 (2): 387–96. Bar-Zeev, Edo, Natalia Belkin, Boris Liberman, Tom Berman, and Ilana Berman-Frank. 2012. “Rapid Sand Filtration Pretreatment for SWRO: Microbial Maturation Dynamics and Filtration Efficiency of Organic Matter.” Desalination 286 (February):120–30. https://doi.org/10.1016/j.desal.2011.11.010. Berney, Michael, Marius Vital, Iris Hülshoff, Hans-Ulrich Weilenmann, Thomas Egli, and Frederik Hammes. 2008. “Rapid, Cultivation-Independent Assessment of Microbial Viability in Drinking Water.” Water Research 42 (14): 4010–18. Bichai, Francoise, Pierre Payment, and Benoit Barbeau. 2008. “Protection of Waterborne Pathogens by Higher Organisms in Drinking Water: A Review.” Canadian Journal of Microbiology 54 (7): 509–24. Black, Kerry E., and Pierre R. Bérubé. 2014. “Rate and Extent NOM Removal during Oxidation and Biofiltration.” Water Research 52 (April):40–50. https://doi.org/10.1016/j.watres.2013.12.017. Block, J. C., K. Haudidier, J. L. Paquin, J. Miazga, and Y. Levi. 1993. “Biofilm Accumulation in Drinking Water Distribution Systems.” Biofouling 6 (4): 333–43. Boon, Nico, Benny FG Pycke, Massimo Marzorati, and Frederik Hammes. 2011. “Nutrient Gradients in a Granular Activated Carbon Biofilter Drives Bacterial Community Organization and Dynamics.” Water Research 45 (19): 6355–61. Brown, Jess, R. Scott Summers, Mark LeChevallier, Heather Collins, J. Alan Roberson, Steve Hubbs, and Eric Dickenson. 2015. “Biological Drinking Water Treatment? Naturally.” Journal AWWA 107 (12): 20–30. https://doi.org/10.5942/jawwa.2015.107.0183. Campos, C., and P. H. Harmant. 2002. “Assessing the Impact of Dissolved Organic Carbon Changes on Disinfectant Stability in a Distribution System.” Water Science and Technology: Water Supply 2 (3): 251–57. Carlson, Kenneth H., and Gary L. Amy. 1998. “BOM Removal during Biofiltration.” Journal AWWA 90 (12): 42–52. https://doi.org/10.1002/j.1551-8833.1998.tb08550.x. Charnock, Colin, and Ocelie Kjønnø. 2000. “Assimilable Organic Carbon and Biodegradable Dissolved Organic Carbon in Norwegian Raw and Drinking Waters.” Water Research 34 (10): 2629–42. https://doi.org/10.1016/S0043-1354(00)00007-5. Chien, C.C., C.M. Kao, C.W. Chen, C.D. Dong, and C.Y. Wu. 2008. “Application of Biofiltration System on AOC Removal: Column and Field Studies.” Chemosphere 71 (9): 1786–93. https://doi.org/10.1016/j.chemosphere.2007.12.005. Choi, Yonkyu, Hyeon Park, Manho Lee, Gun-Soo Lee, and Young-june Choi. 2018a. “Seasonal Variation of Assimilable Organic Carbon and Its Impact to the Biostability of Drinking Water.” Environmental Engineering Research 24 (3): 501–12. https://doi.org/10.4491/eer.2018.299. ———. 2018b. “Seasonal Variation of Assimilable Organic Carbon and Its Impact to the Biostability of Drinking Water.” Environmental Engineering Research 24 (3): 501–12. https://doi.org/10.4491/eer.2018.299. ———. 2018c. “Seasonal Variation of Assimilable Organic Carbon and Its Impact to the Biostability of Drinking Water.” Environmental Engineering Research 24 (3): 501–12. https://doi.org/10.4491/eer.2018.299. Chu, Chenghwa, and Chungsying Lu. 2004. “Effects of Oxalic Acid on the Regrowth of Heterotrophic Bacteria in the Distributed Drinking Water.” Chemosphere 57 (7): 531–39. Çifçi, Deniz İzlen, and Süreyya Meriç. 2016. “A Review on Pumice for Water and Wastewater Treatment.” Desalination and Water Treatment 57 (39): 18131–43. https://doi.org/10.1080/19443994.2015.1124348. Delahaye, E., B. Welte, Y. Levi, G. Leblon, and A. Montiel. 2003. “An ATP-Based Method for Monitoring the Microbiological Drinking Water Quality in a Distribution Network.” Water Research 37 (15): 3689–96. Dussert, BW, and WG Tramposch. 1997. “Impact of Support Media on the Biological Treatment of Ozonated Drinking Water.” Ebrahimi, Sh., and M. Borghei. 2011. “Formaldehyde Biodegradation Using an Immobilized Bed Aerobic Bioreactor with Pumice Stone as a Support.” Scientia Iranica 18 (6): 1372–76. https://doi.org/10.1016/j.scient.2011.01.001. Edition, Fourth. 2011. “Guidelines for Drinking-Water Quality.” WHO Chronicle 38 (4): 104–8. Emelko, M. B., D. Scott, and J. Bolton. 2007. “Using Engineered Media to Minimize the Chemical Dependency of Filtration.” In Chemical Water and Wastewater Treatment IX, 247–56. IWA Publishing London. Emelko, Monica B., Peter M. Huck, Bradley M. Coffey, and E. Franklyn Smith. 2006a. “Effects of Media, Backwash, and Temperature on Full‐scale Biological Filtration.” Journal‐American Water Works Association 98 (12): 61–73. ———. 2006b. “Effects of Media, Backwash, and Temperature on Full‐scale Biological Filtration.” Journal‐American Water Works Association 98 (12): 61–73. ———. 2006c. “Effects of Media, Backwash, and Temperature on Full-Scale Biological Filtration.” Journal AWWA 98 (12): 61–73. https://doi.org/10.1002/j.1551-8833.2006.tb07824.x. ———. 2006d. “Effects of Media, Backwash, and Temperature on Full-Scale Biological Filtration.” Journal AWWA 98 (12): 61–73. https://doi.org/10.1002/j.1551-8833.2006.tb07824.x. Escobar, Isabel C, and Andrew A Randall. 2000. “Sample Storage Impact on the Assimilable Organic Carbon (AOC) Bioassay.” Water Research 34 (5): 1680–86. https://doi.org/10.1016/S0043-1354(99)00309-7. ———. 2001. “Assimilable Organic Carbon (AOC) and Biodegradable Dissolved Organic Carbon (BDOC):: Complementary Measurements.” Water Research 35 (18): 4444–54. https://doi.org/10.1016/S0043-1354(01)00173-7. Eydal, H.S.C., and K. Pedersen. 2007. “Use of an ATP Assay to Determine Viable Microbial Biomass in Fennoscandian Shield Groundwater from Depths of 3–1000 m.” Journal of Microbiological Methods 70 (2): 363–73. https://doi.org/10.1016/j.mimet.2007.05.012. Farhat, Nadia, Frederik Hammes, Emmanuelle Prest, and Johannes Vrouwenvelder. 2018. “A Uniform Bacterial Growth Potential Assay for Different Water Types.” Water Research 142 (October):227–35. https://doi.org/10.1016/j.watres.2018.06.010. Frimmel, F.H. 1998. “Characterization of Natural Organic Matter as Major Constituents in Aquatic Systems.” Journal of Contaminant Hydrology 35 (1): 201–16. https://doi.org/10.1016/S0169-7722(98)00133-8. Gillespie, Simon, Patrick Lipphaus, James Green, Simon Parsons, Paul Weir, Kes Juskowiak, Bruce Jefferson, Peter Jarvis, and Andreas Nocker. 2014. “Assessing Microbiological Water Quality in Drinking Water Distribution Systems with Disinfectant Residual Using Flow Cytometry.” Water Research 65:224–34. Hammes, Frederik A., and Thomas Egli. 2005a. “New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum.” Environmental Science & Technology 39 (9): 3289–94. Hammes, Frederik A, and Thomas Egli. 2005b. “New Method for Assimilable Organic Carbon Determination Using Flow-Cytometric Enumeration and a Natural Microbial Consortium as Inoculum.” Environmental Science & Technology 39 (9): 3289–94. Hammes, Frederik, Felix Goldschmidt, Marius Vital, Yingying Wang, and Thomas Egli. 2010a. “Measurement and Interpretation of Microbial Adenosine Tri-Phosphate (ATP) in Aquatic Environments.” Water Research 44 (13): 3915–23. https://doi.org/10.1016/j.watres.2010.04.015. ———. 2010b. “Measurement and Interpretation of Microbial Adenosine Tri-Phosphate (ATP) in Aquatic Environments.” Water Research 44 (13): 3915–23. https://doi.org/10.1016/j.watres.2010.04.015. Hasan, Jafrul, David Goldbloom-Helzner, Audrey Ichida, Tina Rouse, and Mark Gibson. 2005. “Technologies and Techniques for Early Warning Systems to Monitor and Evaluate Drinking Water Quality: A State-of-the-Art Review.” Environmental Protection Agency Washington DC Office of Water: Washington, DC, USA. Ho, Hsiao-Jung, Jing-Wen Cao, Chih-Ming Kao, and Wen-Liang Lai. 2019. “Characterization of Released Metabolic Organics during AOC Analyses by P17 and NOX Strains Using 3-D Fluorescent Signals.” Chemosphere 222 (May):205–13. https://doi.org/10.1016/j.chemosphere.2019.01.115. Hoefel, D., P.T. Monis, W.L. Grooby, S. Andrews, and C.P. Saint. 2005. “Profiling Bacterial Survival through a Water Treatment Process and Subsequent Distribution System.” Journal of Applied Microbiology 99 (1): 175–86. https://doi.org/10.1111/j.1365-2672.2005.02573.x. Hudson, Naomi, Andy Baker, and Darren Reynolds. 2007. “Fluorescence Analysis of Dissolved Organic Matter in Natural, Waste and Polluted Waters—a Review.” River Research and Applications 23 (6): 631–49. https://doi.org/10.1002/rra.1005. Inkinen, Jenni, Tuija Kaunisto, Anna Pursiainen, Ilkka T. Miettinen, Jaana Kusnetsov, Kalle Riihinen, and Minna M. Keinänen-Toivola. 2014. “Drinking Water Quality and Formation of Biofilms in an Office Building during Its First Year of Operation, a Full Scale Study.” Water Research 49:83–91. Kaplan, LOUIS A, TL Bott, and DJ Reasoner. 1993. “Evaluation and Simplification of the Assimilable Organic Carbon Nutrient Bioassay for Bacterial Growth in Drinking Water.” Applied and Environmental Microbiology 59 (5): 1532–39. Kaplan, Louis A., Richard A. Larson, and Thomas L. Bott. 1980. “Patterns of Dissolved Organic Carbon in Transport 1.” Limnology and Oceanography 25 (6): 1034–43. Karl, DAVID M. 1980. “Cellular Nucleotide Measurements and Applications in Microbial Ecology.” Microbiological Reviews 44 (4): 739–96. Kennedy, Anthony M, Allison M Reinert, Detlef RU Knappe, Imma Ferrer, and R Scott Summers. 2015. “Full-and Pilot-Scale GAC Adsorption of Organic Micropollutants.” Water Research 68:238–48. Kerneïs, Alain, Frederique Nakache, Alain Deguin, and Max Feinberg. 1995. “The Effects of Water Residence Time on the Biological Quality in a Distribution Network.” Water Research 29 (7): 1719–27. Kitis, M., S.S. Kaplan, E. Karakaya, N.O. Yigit, and G. Civelekoglu. 2007. “Adsorption of Natural Organic Matter from Waters by Iron Coated Pumice.” Chemosphere 66 (1): 130–38. https://doi.org/10.1016/j.chemosphere.2006.05.002. Kooij, D. van der, W.A.M. Hijnen, and J.C. Kruithof. 1989. “The Effects of Ozonation, Biological Filtration and Distribution on the Concentration of Easily Assimilable Organic Carbon (AOC) in Drinking Water.” Ozone: Science & Engineering 11 (3): 297–311. https://doi.org/10.1080/01919518908552443. Kooij, Dick van der. 2003. “Assimilable Organic Carbon (AOC) in Treated Water: Determination and Significance.” Encyclopedia of Environmental Microbiology. Kooij, Dick van der, Bram Martijn, Peter G. Schaap, Wim Hoogenboezem, Harm R. Veenendaal, and Paul WJJ van der Wielen. 2015. “Improved Biostability Assessment of Drinking Water with a Suite of Test Methods at a Water Supply Treating Eutrophic Lake Water.” Water Research 87:347–55. Kooij, Dirk van der. 1992. “Assimilable Organic Carbon as an Indicator of Bacterial Regrowth.” Journal‐American Water Works Association 84 (2): 57–65. Kooij, Dirk van der, A. Visser, and W.A.M. Hijnen. 1982. “Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water.” Journal AWWA 74 (10): 540–45. https://doi.org/10.1002/j.1551-8833.1982.tb05000.x. Lauderdale, Chance, Paul Chadik, Mary Jo Kirisits, and Jess Brown. 2012. “Engineered Biofiltration: Enhanced Biofilter Performance through Nutrient and Peroxide Addition.” Journal‐American Water Works Association 104 (5): E298–309. Lautenschlager, Karin, Chiachi Hwang, Wen-Tso Liu, Nico Boon, Oliver Köster, Hans Vrouwenvelder, Thomas Egli, and Frederik Hammes. 2013. “A Microbiology-Based Multi-Parametric Approach towards Assessing Biological Stability in Drinking Water Distribution Networks.” Water Research 47 (9): 3015–25. LeChevallier M W, Welch N J, and Smith D B. 1996. “Full-Scale Studies of Factors Related to Coliform Regrowth in Drinking Water.” Applied and Environmental Microbiology 62 (7): 2201–11. https://doi.org/10.1128/aem.62.7.2201-2211.1996. LeChevallier, Mark W., Nancy J. Welch, and Darrell B. Smith. 1996. “Full-Scale Studies of Factors Related to Coliform Regrowth in Drinking Water.” Applied and Environmental Microbiology 62 (7): 2201–11. Lehtola, Markku J., Tālis Juhna, Ilkka T. Miettinen, Terttu Vartiainen, and Pertti J. Martikainen. 2004. “Formation of Biofilms in Drinking Water Distribution Networks, a Case Study in Two Cities in Finland and Latvia.” Journal of Industrial Microbiology and Biotechnology 31 (11): 489–94. Leitão, João MM, and Joaquim CG Esteves da Silva. 2010. “Firefly Luciferase Inhibition.” Journal of Photochemistry and Photobiology B: Biology 101 (1): 1–8. Li, Guo-Qiang, Tong Yu, Qian-Yuan Wu, Yun Lu, and Hong-Ying Hu. 2017a. “Development of an ATP Luminescence-Based Method for Assimilable Organic Carbon Determination in Reclaimed Water.” Water Research 123 (October):345–52. https://doi.org/10.1016/j.watres.2017.06.082. ———. 2017b. “Development of an ATP Luminescence-Based Method for Assimilable Organic Carbon Determination in Reclaimed Water.” Water Research 123 (October):345–52. https://doi.org/10.1016/j.watres.2017.06.082. Li, Tianling, Zhengguo Wang, Chenxu Wang, Jiayu Huang, and Ming Zhou. 2022. “Chlorination in the Pandemic Times: The Current State of the Art for Monitoring Chlorine Residual in Water and Chlorine Exposure in Air.” Science of The Total Environment 838 (September):156193. https://doi.org/10.1016/j.scitotenv.2022.156193. Liu, G., E. J. Van der Mark, JQJC Verberk, and J. C. Van Dijk. 2013. “Flow Cytometry Total Cell Counts: A Field Study Assessing Microbiological Water Quality and Growth in Unchlorinated Drinking Water Distribution Systems.” BioMed Research International 2013. Liu, G., JQJC Verberk, and J. C. Van Dijk. 2013a. “Bacteriology of Drinking Water Distribution Systems: An Integral and Multidimensional Review.” Applied Microbiology and Biotechnology 97:9265–76. Liu, G, JQJC Verberk, and JC Van Dijk. 2013b. “Bacteriology of Drinking Water Distribution Systems: An Integral and Multidimensional Review.” Applied Microbiology and Biotechnology 97:9265–76. Liu, Wenjun, Hongwei Wu, Zhansheng Wang, SL Ong, JY Hu, and WJ Ng. 2002. “Investigation of Assimilable Organic Carbon (AOC) and Bacterial Regrowth in Drinking Water Distribution System.” Water Research 36 (4): 891–98. Liu, Xiaolu, Jingqi Wang, Tingting Liu, Weiwen Kong, Xiaoqing He, Yi Jin, and Bolin Zhang. 2015. “Effects of Assimilable Organic Carbon and Free Chlorine on Bacterial Growth in Drinking Water.” PloS One 10 (6): e0128825. Mark W. LeChevallier. 1993. “Development of a Rapid Assimilable Organic Carbon Method for Water.” Maul, A., A. H. El-Shaarawi, and J. C. Block. 1985. “Heterotrophic Bacteria in Water Distribution Systems. I. Spatial and Temporal Variation.” Science of the Total Environment 44 (3): 201–14. McKie, Michael J., Liz Taylor-Edmonds, Susan A. Andrews, and Robert C. Andrews. 2015a. “Engineered Biofiltration for the Removal of Disinfection By-Product Precursors and Genotoxicity.” Water Research 81:196–207. McKie, Michael J, Liz Taylor-Edmonds, Susan A Andrews, and Robert C Andrews. 2015b. “Engineered Biofiltration for the Removal of Disinfection By-Product Precursors and Genotoxicity.” Water Research 81:196–207. Metz, D.H., K. Reynolds, M. Meyer, and D.D. Dionysiou. 2011. “The Effect of UV/H2O2 Treatment on Biofilm Formation Potential.” Water Research 45 (2): 497–508. https://doi.org/10.1016/j.watres.2010.09.007. Nescerecka, Alina, Talis Juhna, and Frederik Hammes. 2016. “Behavior and Stability of Adenosine Triphosphate (ATP) during Chlorine Disinfection.” Water Research 101 (September):490–97. https://doi.org/10.1016/j.watres.2016.05.087. Nescerecka, Alina, Janis Rubulis, Marius Vital, Talis Juhna, and Frederik Hammes. 2014. “Biological Instability in a Chlorinated Drinking Water Distribution Network.” PloS One 9 (5): e96354. Nono, Denis, Phillimon T Odirile, Innocent Basupi, and Bhagabat P Parida. 2019. “Assessment of Probable Causes of Chlorine Decay in Water Distribution Systems of Gaborone City, Botswana.” Water SA 45 (2 April). https://doi.org/10.4314/wsa.v45i2.05. Okuda, Tetsuji, Yuki Uehara, Tsung-Yueh Tsai, Satoshi Nakai, Michihiro Akiba, Wataru Nishijima, and Mitsumasa Okada. 2009. “Production of Assimilable Organic Carbon (AOC) from Bacteria and Picophytoplankton by Chlorination.” Water Supply 9 (3): 337–42. https://doi.org/10.2166/ws.2009.322. Organization, World Health. 2022. Guidelines for Drinking-Water Quality: Incorporating the First and Second Addenda. World Health Organization. Pang, Liping, Annabelle Tham, Panan Nilprapa, Adrian Cocker, Philip MacDonald, Richard Adams, Beth Robson, David Wood, Vernon Ward, and Chris Nokes. 2022. “Cryptosporidium Surrogate Removal in Pilot-Scale Rapid Sand Filters Comprising Anthracite, Pumice or Engineered Ceramic Granular Media, and Its Correlation with Turbidity.” Journal of Water Process Engineering 46 (April):102614. https://doi.org/10.1016/j.jwpe.2022.102614. Park, Ji Won, W. H. Joe, and Sung Kyu Maeng. 2020. “Characterization of Natural Organic Matter and Assimilable Organic Carbon from an Advanced Full-Scale Drinking Water Treatment Plant to Tap, Desalin.” Water Treat 180:86–94. Park, Ji Won, Hyun-Chul Kim, Anne S. Meyer, Sungpyo Kim, and Sung Kyu Maeng. 2016. “Influences of NOM Composition and Bacteriological Characteristics on Biological Stability in a Full-Scale Drinking Water Treatment Plant.” Chemosphere 160 (October):189–98. https://doi.org/10.1016/j.chemosphere.2016.06.079. Pharand, Lizanne, Michele I. Van Dyke, William B. Anderson, and Peter M. Huck. 2014. “Assessment of Biomass in Drinking Water Biofilters by Adenosine Triphosphate.” Journal‐American Water Works Association 106 (10): E433–44. Pharand, Lizanne, Michele I. Van Dyke, William B. Anderson, Yonatan Yohannes, and Peter M. Huck. 2015. “Full-Scale Ozone–Biofiltration: Seasonally Related Effects on NOM Removal.” Journal AWWA 107 (8): E425–35. https://doi.org/10.5942/jawwa.2015.107.0121. Polanska, Monika, Koen Huysman, and Chris van Keer. 2005. “Investigation of Assimilable Organic Carbon (AOC) in Flemish Drinking Water.” Water Research 39 (11): 2259–66. https://doi.org/10.1016/j.watres.2005.04.015. Prest, E. I., Joline El-Chakhtoura, F. Hammes, P. E. Saikaly, Mark CM van Loosdrecht, and Johannes S. Vrouwenvelder. 2014. “Combining Flow Cytometry and 16S rRNA Gene Pyrosequencing: A Promising Approach for Drinking Water Monitoring and Characterization.” Water Research 63:179–89. Rice, Eugene W., Pasquale V. Scarpino, Donald J. Reasoner, Gary S. Logsdon, and Deanna K. Wild. 1991. “Correlation of Coliform Growth Response With Other Water Quality Parameters.” Journal AWWA 83 (7): 98–102. https://doi.org/10.1002/j.1551-8833.1991.tb07185.x. Roccaro, Paolo, Hyun-Shik Chang, Federico G.A. Vagliasindi, and Gregory V. Korshin. 2008. “Differential Absorbance Study of Effects of Temperature on Chlorine Consumption and Formation of Disinfection By-Products in Chlorinated Water.” Water Research 42 (8): 1879–88. https://doi.org/10.1016/j.watres.2007.11.013. Ross, P. S., F. Hammes, M. Dignum, A. Magic-Knezev, B. Hambsch, and L. C. Rietveld. 2013. “A Comparative Study of Three Different Assimilable Organic Carbon (AOC) Methods: Results of a Round-Robin Test.” Water Science and Technology: Water Supply 13 (4): 1024–33. Ross, P.S., L.T.J. van der Aa, T. van Dijk, and L.C. Rietveld. 2019. “Effects of Water Quality Changes on Performance of Biological Activated Carbon (BAC) Filtration.” Separation and Purification Technology 212 (April):676–83. https://doi.org/10.1016/j.seppur.2018.11.072. Sathasivan, A, and S Ohgaki. 1999a. “Application of New Bacterial Regrowth Potential Method for Water Distribution System – a Clear Evidence of Phosphorus Limitation.” Water Research 33 (1): 137–44. https://doi.org/10.1016/S0043-1354(98)00158-4. ———. 1999b. “Application of New Bacterial Regrowth Potential Method for Water Distribution System – a Clear Evidence of Phosphorus Limitation.” Water Research 33 (1): 137–44. https://doi.org/10.1016/S0043-1354(98)00158-4. Sathasivan, A., and S. Ohgaki. 1999c. “Application of New Bacterial Regrowth Potential Method for Water Distribution System – a Clear Evidence of Phosphorus Limitation.” Water Research 33 (1): 137–44. https://doi.org/10.1016/S0043-1354(98)00158-4. Sathasivan, A, and S Ohgaki. 1999d. “Application of New Bacterial Regrowth Potential Method for Water Distribution System – a Clear Evidence of Phosphorus Limitation.” Water Research 33 (1): 137–44. https://doi.org/10.1016/S0043-1354(98)00158-4. Schneider, O., M. Lechevallier, P. Evans, J. Smith, R. Chappell, L. Weinrich, P. Jjemba, S. Diehl, and M. Kreminskaya. 2013. “An Operational Definition of Biostability in Drinking Water.” In AWWA Biological Treatment Symposium. Scott, David James. 2008. “Cryptosporidium and Particle Removal from Low Turbidity Water by Engineered Ceramic Media Filtration.” UWSpace. http://hdl.handle.net/10012/3784. Servais, Pierre, Patrick Laurent, and Guy Randon. 1995. “Comparison of the Bacterial Dynamics in Various French Distribution Systems.” AQUA-LONDON THEN OXFORD-JOURNAL OF THE INTERNATIONAL WATER SUPPLY ASSOCIATION- 44:10–10. Seth, A., R. Bachmann, J. Boxall, A. Saul, and R. Edyvean. 2004. “Characterisation of Materials Causing Discolouration in Potable Water Systems.” Water Science and Technology 49 (2): 27–32. Sibille, Isabelle. 1998. “Stabilité Biologique Des Réseaux de Distribution d’eau Potable.” L’Année Biologique 37 (3): 117–61. Sly, L. I., M. C. Hodgkinson, and Vullapa Arunpairojana. 1990. “Deposition of Manganese in a Drinking Water Distribution System.” Applied and Environmental Microbiology 56 (3): 628–39. Srinivasan, Rangesh, and George A. Sorial. 2011. “Treatment of Taste and Odor Causing Compounds 2-Methyl Isoborneol and Geosmin in Drinking Water: A Critical Review.” Journal of Environmental Sciences 23 (1): 1–13. Srinivasan, Soumya, and Gregory W Harrington. 2007. “Biostability Analysis for Drinking Water Distribution Systems.” Water Research 41 (10): 2127–38. Stanley, Philip E. 1989. “A Review of Bioluminescent ATP Techniques in Rapid Microbiology.” Journal of Bioluminescence and Chemiluminescence 4 (1): 375–80. https://doi.org/10.1002/bio.1170040151. Stoddart, Amina K., and Graham A. Gagnon. 2015. “Full‐scale Prechlorine Removal: Impact on Filter Performance and Water Quality.” Journal‐American Water Works Association 107 (12): E638–47. Sun, Huifang, Baoyou Shi, Darren A. Lytle, Yaohui Bai, and Dongsheng Wang. 2014. “Formation and Release Behavior of Iron Corrosion Products under the Influence of Bacterial Communities in a Simulated Water Distribution System.” Environmental Science: Processes & Impacts 16 (3): 576–85. Sweet, Minoo S., and Edward M. Perdue. 1982. “Concentration and Speciation of Dissolved Sugars in River Water.” Environmental Science & Technology 16 (10): 692–98. Terry, Leigh G., and R. Scott Summers. 2018. “Biodegradable Organic Matter and Rapid-Rate Biofilter Performance: A Review.” Water Research 128 (January):234–45. https://doi.org/10.1016/j.watres.2017.09.048. Urfer, Daniel, Peter M. Huck, Stephen DJ Booth, and Bradley M. Coffey. 1997. “Biological Filtration for BOM and Particle Removal: A Critical Review.” Journal‐American Water Works Association 89 (12): 83–98. Valdes, Julio R., and Shih-Hsun Liang. 2006. “Stress-Controlled Filtration with Compressible Particles.” Journal of Geotechnical and Geoenvironmental Engineering 132 (7): 861–68. Van der Kooij, D., H. S. Vrouwenvelder, and H. R. Veenendaal. 1995. “Kinetic Aspects of Biofilm Formation on Surfaces Exposed to Drinking Water.” Water Science and Technology 32 (8): 61–65. Van Der Kooij, Dirk. 2000a. “Biological Stability: A Multidimensional Quality Aspect of Treated Water.” Environmental Challenges, 25–34. ———. 2000b. “Biological Stability: A Multidimensional Quality Aspect of Treated Water.” Environmental Challenges, 25–34. Van Der Kooij, Dirk, A. Visser, and W. A. M. Hijnen. 1982. “Determining the Concentration of Easily Assimilable Organic Carbon in Drinking Water.” Journal‐American Water Works Association 74 (10): 540–45. Velten, Silvana, Markus Boller, Oliver Köster, Jakob Helbing, Hans-Ulrich Weilenmann, and Frederik Hammes. 2011. “Development of Biomass in a Drinking Water Granular Active Carbon (GAC) Filter.” Water Research 45 (19): 6347–54. https://doi.org/10.1016/j.watres.2011.09.017. Velten, Silvana, Frederik Hammes, Markus Boller, and Thomas Egli. 2007. “Rapid and Direct Estimation of Active Biomass on Granular Activated Carbon through Adenosine Tri-Phosphate (ATP) Determination.” Water Research 41 (9): 1973–83. Vital, Marius, Frederik Hammes, and Thomas Egli. 2008. “Escherichia Coli O157 Can Grow in Natural Freshwater at Low Carbon Concentrations.” Environmental Microbiology 10 (9): 2387–96. https://doi.org/10.1111/j.1462-2920.2008.01664.x. Volk, Christian J., Catherine B. Volk, and Louis A. Kaplan. 1997. “Chemical Composition of Biodegradable Dissolved Organic Matter in Streamwater.” Limnology and Oceanography 42 (1): 39–44. Vreeburg, J.H.G., D. Schippers, J.Q.J.C. Verberk, and J.C. van Dijk. 2008. “Impact of Particles on Sediment Accumulation in a Drinking Water Distribution System.” Water Research 42 (16): 4233–42. https://doi.org/10.1016/j.watres.2008.05.024. Wang, Hong, Marc A. Edwards, Joseph O. Falkinham III, and Amy Pruden. 2013. “Probiotic Approach to Pathogen Control in Premise Plumbing Systems? A Review.” Environmental Science & Technology 47 (18): 10117–28. Wang, Qiuhua, Tao Tao, Kunlun Xin, Shuping Li, and Weifeng Zhang. 2014a. “A Review Research of Assimilable Organic Carbon Bioassay.” Desalination and Water Treatment 52 (13–15): 2734–40. ———. 2014b. “A Review Research of Assimilable Organic Carbon Bioassay.” Desalination and Water Treatment 52 (13–15): 2734–40. https://doi.org/10.1080/19443994.2013.830683. ———. 2014c. “A Review Research of Assimilable Organic Carbon Bioassay.” Desalination and Water Treatment 52 (13–15): 2734–40. Webster, JoAnn J., Ginger J. Hampton, John T. Wilson, William C. Ghiorse, and Franklin R. Leach. 1985. “Determination of Microbial Cell Numbers in Subsurface Samples.” Groundwater 23 (1): 17–25. Wielen, Paul W.J.J. van der, and Dick van der Kooij. 2010. “Effect of Water Composition, Distance and Season on the Adenosine Triphosphate Concentration in Unchlorinated Drinking Water in the Netherlands.” Microbial Ecology of Drinking Water and Waste Water Treatment Processes 44 (17): 4860–67. https://doi.org/10.1016/j.watres.2010.07.016. Wielen, Paul WJJ van der, and Dick van der Kooij. 2013. “Nontuberculous Mycobacteria, Fungi, and Opportunistic Pathogens in Unchlorinated Drinking Water in The Netherlands.” Applied and Environmental Microbiology 79 (3): 825–34. Wingender, Jost, and Hans-Curt Flemming. 2011. “Biofilms in Drinking Water and Their Role as Reservoir for Pathogens.” International Journal of Hygiene and Environmental Health 214 (6): 417–23. Xiang, Hong, Xiwu Lu, Lihong Yin, Fei Yang, Guangcan Zhu, and Wuping Liu. 2013. “Microbial Community Characterization, Activity Analysis and Purifying Efficiency in a Biofilter Process.” Journal of Environmental Sciences 25 (4): 677–87. Yu, Wen-Zheng, John Gregory, Ting Liu, Yan-lin Yang, Min Sun, and Gui-bai Li. 2011. “Effect of Enhanced Coagulation by KMnO4 on the Fouling of Ultrafiltration Membranes.” Water Science and Technology 64 (7): 1497–1502. https://doi.org/10.2166/wst.2011.586. Zhang, Shuangyi, Stephen W. Gitungo, Lisa Axe, Robert F. Raczko, and John E. Dyksen. 2017. “Biologically Active Filters – An Advanced Water Treatment Process for Contaminants of Emerging Concern.” Water Research 114 (May):31–41. https://doi.org/10.1016/j.watres.2017.02.014. Zhang, Weidong, and Francis A DiGiano. 2002. “Comparison of Bacterial Regrowth in Distribution Systems Using Free Chlorine and Chloramine: A Statistical Study of Causative Factors.” Water Research 36 (6): 1469–82. Zhu, Ivan X., Tom Getting, and Dan Bruce. 2010. “Review of Biologically Active Filters in Drinking Water Applications.” Journal‐American Water Works Association 102 (12): 67–77. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94230 | - |
dc.description.abstract | 生物可利用有機碳(Assimilable organic carbon, AOC)傳統檢測方法所需的勞力與時間成本較高,不常作為常規檢驗方法,若無法即時得知配水管網中AOC濃度升高時,會使微生物增生導致水質惡化。本研究旨在探討在不同空床接觸時間(Empty bed contact time ,EBCT)操作條件下,具生物附著潛力之濾材作為生物濾床是否能有效提高自來水中AOC降解程度,並評估三磷酸腺苷(adenosine triphosphate, ATP)冷光分析法在檢測自來水中AOC濃度方面的應用。因此,本研究先經優化試驗各別取得AOC代表菌株Pseudomonas fluorescens P17 及 Spirillum strain NOX 所產生ATP相對於每單位醋酸根碳之生產係數(yield coefficients),再將配水點水樣進行培養後以ATP冷光法取代傳統塗盤數菌方式,利用生產係數回推AOC濃度,並比較傳統方法與ATP冷光分析法之相關性。再使用ATP冷光分析法與其他生物穩定性之參數評估傳統與具有生物附著潛力之濾材作為生物濾床之適用性。研究結果顯示P17與NOX菌株生產係數分別為141620和203900 (RLU/μg acetate-c),且兩種方法分析結果具高度正相關R = 0.8535。根據ATP冷光分析法與其他生物穩定性參數評估結果顯示,在EBCT 7.5min、10min、15min條件下最佳之濾材分別為石英砂、GAC與浮石。本研究認為ATP冷光法有望應用於配水管網生物穩定性的監測,同時也為淨水廠在選擇生物濾床之過濾濾材方面提供新選擇。 | zh_TW |
dc.description.abstract | Traditional methods for detecting assimilable organic carbon (AOC) are labor-intensive and time-consuming, limiting their use in routine water quality monitoring. If the AOC concentration levels in the water distribution system cannot be monitored in real-time, microbial growth may increase, leading to water quality deterioration.This study investigates the effectiveness of biofiltration materials with biofilm-forming potential in degrading AOC under different empty bed contact times (EBCT). It also evaluates the application of the adenosine triphosphate (ATP) bioluminescence assay for measuring AOC in drinking water. Optimized tests established the yield coefficients for AOC model strains Pseudomonas fluorescens P17 and Spirillum strain NOX. Water samples were cultured, and ATP bioluminescence was used instead of traditional plate counting to estimate AOC concentrations. The results showed a high correlation (R²=0.7284) between traditional methods and ATP bioluminescence. The optimal filter materials at EBCTs of 7.5, 10, and 15 minutes were identified as quartz sand, GAC, and pumice, respectively. The study concludes that the ATP bioluminescence assay holds promise for monitoring biological stability in distribution networks and provides new options for selecting biofiltration materials in water treatment plants. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:20:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:20:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii 目 次 iv 圖 次 vii 表 次 ix 1 前言 1 1.1 研究背景 1 1.2 研究動機與目的 3 2 第二章 文獻回顧 4 2.1 淨水程序中生物可利用有機物的來源 4 2.2 配水管網中的生物穩定性 4 2.2.1 自來水生物穩定性的定義與標準 4 2.2.2 生物可利用有機碳對配水管網的影響 5 2.3 生物濾床 7 2.3.1 生物濾床濾材的選擇 7 2.3.2 生物濾床之空床接觸時間(Empty bed contact time ,EBCT)的操作 9 2.3.3 生物濾床中附著之生物量 9 2.4 自來水生物穩定性監測 10 2.4.1 傳統生物可利用有機碳檢測方法之原理與挑戰 10 2.4.2 ATP冷光分析方法檢測生物可利用有機碳方法之現況 11 2.4.3 其他生物穩定性評估參數 12 3 第三章 材料與研究方法 14 3.1 研究架構 14 3.2 實驗材料準備 16 3.2.1 無碳玻璃瓶與瓶蓋清洗方法 16 3.2.2 P17與NOX接種物的備製 16 3.2.3 藥品配置 17 3.3 三磷酸線苷(Adenosine triphosphate , ATP)冷光分析檢測AOC方法建立 17 3.3.1 ATP 冷光分析法 17 3.3.2 植菌濃度優化實驗 18 3.3.3 培養溫度優化實驗 18 3.3.4 ATP-AOC方法生產係數備製 18 3.3.5 ATP-AOC方法適用性驗證實驗 19 3.4 生物濾床連續流實驗 24 3.4.1 生物濾床過濾濾材與設計參數 24 3.5 水質分析 27 3.5.1 溫度、pH、溶氧測量 27 3.5.2 總氯與自由餘氯分析 27 3.5.3 水中溶解性有機碳(Dissolved organic carbon, DOC) 27 3.6 生物穩定性分析 29 3.6.1 水中之總異營數(Heterotrophic Plate Count, HPC) 29 3.6.2 水中之ATP濃度 30 3.6.3 細菌再生潛力( Bacterial regrowth potential, BRP) 30 3.7 生物可利用有機碳生長潛勢(Assimilable Organic Carbon Formation Potential, AOCFP)與需氯量(Chlorine demand) 31 3.8 過濾濾材生物量濃度分析 31 3.9 數據處理與統計分析 32 4 第四章 實驗結果 33 4.1 ATP-AOC方法開發 33 4.1.1 培養條件優化實驗 33 4.1.2 建立ATP-AOC檢測方法之生產係數備實驗結果 37 4.1.3 ATP-AOC方法驗證實驗 41 4.2 生物濾床連續流水質分析 45 4.2.1 溫度、pH與DO 45 4.2.2 總氯及自由餘氯 48 4.2.3 水中溶解性有機碳(DOC) 50 4.3 生物濾床生物穩定性分析 52 4.3.1 水中總異營數(HPC)及三磷酸線苷(ATP) 52 4.3.2 ATP冷光分析檢測生物可利用有機碳 (ATP-AOC) 55 4.3.3 細菌再生潛力 (BRP) 59 4.3.4 生物可利用有機碳生成潛力 (AOCFP) 63 4.4 生物濾床濾材生物量分析 65 5 第五章 結果討論 67 5.1 傳統AOC與ATP-AOC方法檢測台灣雙北地區自來水AOC濃度的相關性 67 5.2 不同EBCT操作條件對於不同濾材生物濾床出流水之影響 68 6 第六章 結論與建議 74 6.1 結論 74 6.2 建議 75 7 參考文獻 76 8 附錄 85 8.1 附錄一 生物濾床各濾床進出流水水質參數相關性分析 85 | - |
dc.language.iso | zh_TW | - |
dc.title | 以三磷酸腺苷(ATP)檢測生物可利用有機碳方法探討不同生物濾床濾材對出水生物穩定性之影響 | zh_TW |
dc.title | Exploration of the Impact of Different Biofilter Media on Effluent Biostability Using an Adenosine Triphosphate (ATP) Detection Method for Assimilable Organic Carbon | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝季吟;陳冠中;吳佳真 | zh_TW |
dc.contributor.oralexamcommittee | Chi-Ying Hsieh;Kuan-chung Chen;Chia-Chen Wu | en |
dc.subject.keyword | 生物可利用有機碳,三磷酸腺苷,生物過濾,過濾濾材,生物穩定性,空床接觸時間, | zh_TW |
dc.subject.keyword | Assimilable organic carbon (AOC),Adenosine triphosphate (ATP),biofiltration,Filter media,biological stability,Empty bed contact time (EBCT), | en |
dc.relation.page | 88 | - |
dc.identifier.doi | 10.6342/NTU202403469 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。