Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94228
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉立偉zh_TW
dc.contributor.advisorLi-wei Liuen
dc.contributor.author陳泊赫zh_TW
dc.contributor.authorPo-Ho Chenen
dc.date.accessioned2024-08-15T16:20:00Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citationF. Auricchio and R. Taylor. Two material models for cyclic plasticity: Nonlinear kinematic hardening and generalized plasticity. International Journal of Plasticity, 11(1):65–98, 1995.
I. Basuroychowdhury and G. Voyiadjis. A multiaxial cyclic plasticity model for non-proportional loading cases. International Journal of Plasticity, 14(9):855–870, 1998.
R. Cardoso and O. Adetoro. A generalisation of the hill’s quadratic yield function for planar plastic anisotropy to consider loading direction. International Journal of Mechanical Sciences, 128-129:253–268, 2017.
J. Chaboche and G. Cailletaud. Integration methods for complex plastic constitutive equations. Computer Methods in Applied Mechanics and Engineering, 133(1):125–155, 1996.
J. L. Chaboche and G. Rousselier. On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept. Journal of Pressure Vessel Technology, 105(2):153–158, 05 1983.
F. Cortellino, J. P. Rouse, B. Cacciapuoti, W. Sun, and T. H. Hyde. Experimental and numerical analysis of initial plasticity in p91 steel small punch creep samples.EXPERIMENTAL MECHANICS, 57(8):1193–1212, OCT 2017.
A. Cuitiño and M. ORTIZ. A material independent method for extending stress update algorithms to finite plasticity with multiplicative kinematics. Engineering Computations, 9:437–451, 12 1992.
C. Frederick and P. Armstrong. A mathematical representation of the multiaxial bauschinger effect. Materials at High Temperatures, 24(1):1–26, 2007.
K. Gaber, A. Škrlec, J. Klemenc, and D. Šeruga. Design, testing, and sensitivity analysis of a torsional cyclic test adapter. Machines, 12(2), 2024.
J. Hahm and K. Kim. Anisotropic work hardening of steel sheets under plane stress. International Journal of Plasticity, 24(7):1097–1127, 2008.
S. Hamidinejad, M. Noban, and A. Varvani-Farahani. Ratcheting of 304 stainless steel alloys subjected to stress-controlled and mixed stress- and strain-controlled conditions evaluated by kinematic hardening rules. Fatigue Fracture of Engineering Materials Structures, 39, 10 2015.
Q. He, M. C. Yam, Z. Xie, H. Ho, and K.-F. Chung. Experimental and modelling study of cyclic plasticity of high strength steel q690. Journal of Constructional Steel Research, 196:107433, 2022.
H.-K. Hong and C.-S. Liu. Internal symmetry in bilinear elastoplasticity. International Journal of Non-Linear Mechanics, 34(2):279–288, 1999.
H.-K. Hong and C.-S. Liu. Internal symmetry in the constitutive model of perfect elastoplasticity. International Journal of Non-Linear Mechanics, 35(3):447–466, 2000.
O. S. Hopperstad and S. Remseth. A return mapping algorithm for a class of cyclic plasticity models. International Journal for Numerical Methods in Engineering, 38(4):549–564, 1995.
M. Klisinski, Z. Mroz, and K. Runesson. Structure of constitutive equations in plasticity for different choices of state and control variables. International Journal of Plasticity, 8(3):221–243, 1992.
W. Lankford. New criteria for predicting the performance of deep drawing sheets.Trans. ASM, 42:1197, 1950.
Z. Li, H. Yang, J. Liu, and F. Liu. An improved yield criterion characterizing the anisotropic and tension-compression asymmetric behavior of magnesium alloy. Journal of Magnesium and Alloys, 10(2):569–584, 2022.
C.-S. Liu. Symmetry groups and the pseudo-riemann spacetimes for mixed-hardening elastoplasticity. International Journal of Solids and Structures, 40:251–269, 01 2003.
C.-S. Liu. Internal symmetry groups for the Drucker-Prager material model of plasticity and numerical integrating methods. International Journal of Solids and Structures, 41(14):3771–3791, jul 2004.
C.-S. Liu and H.-K. Hong. The contraction ratios of perfect elastoplasticity under biaxial controls. European Journal of Mechanics - A/Solids, 19(5):827–848, 2000.
C.-S. Liu, L.-W. Liu, and H.-K. Hong. A scheme of automatic stress-updating on yield surfaces for a class of elastoplastic models. International Journal of Non-Linear Mechanics, 85:6–22, 2016.
L.-W. Liu, Z.-C. Ciou, and P.-H. Chen. A return-free integration for anisotropic-hardening elastoplastic models. Computers Structures, 301:107423, 2024.
L.-W. Liu and H.-K. Hong. A description of three-dimensional yield surfaces by cubic polynomials. Journal of Engineering Mechanics, 143(11):04017129, 2017.
B. Loret and J. Prevost. Accurate numerical solutions for drucker-prager elastic-plastic models. Computer Methods in Applied Mechanics and Engineering, 54(3):259–277, Mar. 1986. Copyright: Copyright 2014 Elsevier B.V., All rights reserved.
J. Perry, M. Perl, R. Shneck, and S. Haroush. The influence of the bauschinger effect on the yield stress, young's modulus, and poisson's ratio of a gun barrel steel. Journal of Pressure Vessel Technology-transactions of The Asme - J PRESSURE VESSEL TECHNOL, 128, 05 2006.
L. Portier, S. Calloch, D. Marquis, and P. Geyer. Ratchetting under tension–torsion loadings: experiments and modelling. International Journal of Plasticity, 16(3):303–335, 2000.
D. Potts and D. Ganendra. An evaluation of substepping and implicit stress point algorithms. Computer Methods in Applied Mechanics and Engineering, 119(3):341–354, 1994.
W. Prager. A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids. Journal of Applied Mechanics, 23(4):493–496, 06 2021.
L. Qian, M. Paredes, T. Wierzbicki, Y. Sparrer, M. Feuerstein, P. Zeng, and G. Fang.Experimental and numerical study on shear-punch test of 6060 t6 extruded aluminum profile. International Journal of Mechanical Sciences, 118:205–218, 2016.
A. Raj, R. K. Verma, P. K. Singh, S. Shamshoddin, P. Biswas, and K. Narasimhan.Experimental and numerical investigation of differential hardening of cold rolled steel sheet under non-proportional loading using biaxial tensile test. International Journal of Plasticity, 154:103297, 2022.
M. Rezaiee-Pajand and C. Nasirai. On the integration schemes for Drucker-Prager’s elastoplastic models based on exponential maps. International Journal for Numerical Methods in Engineering, 74(5):799–826, 2008.
M. Rezaiee-Pajand, M. Sharifian, and M. Sharifian. Accurate and approximate integrations of Drucker-Prager plasticity with linear isotropic and kinematic hardening.European Journal of Mechanics - A/Solids, 30(3):345–361, may 2011.
M. Rezaiee-Pajand, M. Sharifian, and M. Sharifian. Angles based integration for generalized non-linear plasticity model. International Journal of Mechanical Sciences, 87:241–257, 2014.
M. Ritto-Corrêa and D. Camotim. Integration algorithm for j2 elastoplasticity under arbitrary mixed stress–strain control. International Journal for Numerical Methods in Engineering, 50(5):1213–1232, 2001.
T. Sakaki, K. Ohnuma, K. Sugimoto, and Y. Ohtakara. Plastic anisotropy of dual-phase steels. International Journal of Plasticity, 6(5):591–613, 1990.
J. Schellekens and R. de Borst. The use of the hoffman yield criterion in finite element analysis of anisotropic composites. Computers Structures, 37(6):1087–1096, 1990.
J. C. Simo and R. L. Taylor. A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22(3):649–670,1986.
S. W. Sloan and J. R. Booker. Integration of tresca and mohr–coulomb constitutive relations in plane strain elastoplasticity. International Journal for Numerical Methods in Engineering, 33(1):163–196, 1992.
H. Vegter and A. van den Boogaard. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. International Journal of Plasticity, 22(3):557–580, 2006.
Y. Wang, T. Chang, Y. Shi, H. Yuan, L. Yang, and D. Liao. Experimental study on the constitutive relation of austenitic stainless steel s31608 under monotonic and cyclic loading. Thin-Walled Structures, 83:19–27, 2014. ADVANCES IN STRUCTURAL STAINLESS STEEL RESEARCH.
Z. WEI, D. PERIĆ, and D. R. J. OWEN. Consistent linearization for the exact stress update of prandtl–reuss non-hardening elastoplastic models. International Journal for Numerical Methods in Engineering, 39(7):1219–1235, 1996.
Z. Xie and Y. Chen. Experimental and modeling study of uniaxial cyclic behaviors of structural steel under ascending/descending strain amplitude-controlled loading. Construction and Building Materials, 278:122276, 2021.
J.-W. Yoon, F. Barlat, R. E. Dick, K. Chung, and T. J. Kang. Plane stress yield function for aluminum alloy sheets—part ii: Fe formulation and its implementation.International Journal of Plasticity, 20(3):495–522, 2004. Owen Richmond Memorial Special Issue.
T. Zhang, X. Wang, D. Zhou, R. Wang, Y. Jiang, X. Zhang, J. Gong, and S. Tu. A universal constitutive model for hybrid stress-strain controlled creep-fatigue deformation. International Journal of Mechanical Sciences, 225:107369, 2022.
Y. Zhu, G. Kang, Q. Kan, and O. T. Bruhns. Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. International Journal of Plasticity, 54:34–55, 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94228-
dc.description.abstract混合控制問題,為彈塑性模式在部分應力與部分應變已知,求解對應(其餘)部分的應力和應變響應之數學問題,如平面應力問題就是一個常見的混合控制問題。實際上,大多數「應變控制」實驗,都屬於混合控制問題:例如單軸應變控制試驗、軸扭應變控制試驗和雙軸應變控制試驗。處理混合控制問題時,基於純應力或純應變控制的塑性數值積分法是無法滿足混合控制的已知給定條件,因此需要額外的處理方法。在本研究中,我們針對異向性材料彈塑性模型,引入了Armstrong-Frederick和Chaboche硬軟化規則,探討在混合控制條件下,彈塑性模型中微分方程組和降伏面之間的內在對稱性,並透過利用李代數(Lie algebra)和李群(Lie group)的特性來更新未知應力與應變,而所獲的應力可自動滿足降伏條件,不需進一步迭代,也不需額外的處理方法來滿足混合控制的已知給定條件。此數值積分方法,我們稱為免映射(Return-free)法。再者,針對依據李代數和李群理論發展出的無需預測/修正的數值積分方法,我們進行了誤差分析,確認免映射法在不同初始條件下的精度。接著,我們利用免映射法研究了異性向材料的收縮比和塑性應變比,也與模擬密質骨與鬆質骨在不同加載路徑的力學行為。最後,本研究發展出免映射法在商用有限元素軟體ABAQUS 的UMAT,以利未來應用免映射法在複雜幾何外型物體的應力分析。zh_TW
dc.description.abstractThe mixed control problem refers to the mathematical problem of solving for the corresponding (remaining) stresses and strains in an elasto-plastic model when some stresses and strains are known, such as the plane stress problem, which is a common mixed control problem. In fact, most "strain-controlled" experiments belong to the mixed control problem category, e.g., uniaxial strain-controlled tests, torsion strain-controlled tests, and biaxial strain-controlled tests. When dealing with mixed control problems, plastic numerical integration methods based on pure stress or pure strain control cannot satisfy the known given conditions of mixed control, thus requiring additional treatment methods. In this study, we introduced the Armstrong-Frederick and Chaboche hardening/softening rules for anisotropic elasto-plastic material models and explored the intrinsic symmetry between the differential equation system and yield surface in the elasto-plastic model under mixed control conditions. By utilizing the properties of Lie algebra and Lie groups, we updated the unknown stresses and strains, where the obtained stresses automatically satisfy the yield condition without further iterations or additional treatment methods to meet the known given conditions of mixed control. We refer to this numerical integration method as the return-free method. Furthermore, for the predictor/corrector-free numerical integration method developed based on the Lie algebra and the Lie group theory, we performed error analysis to confirm the accuracy of the return-free method under different initial conditions. We then used the return-free method to study the contraction ratios and plastic strain ratios of anisotropic materials, as well as the mechanical behavior of cortical and trabecular bones under different loading paths. Finally, we developed a user material subroutine (UMAT) for the return-free method in the commercial finite element software ABAQUS to facilitate future applications of the return-free method in stress analysis of complex geometric bodies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:20:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:20:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xv
Denotation xvii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Revisiting on stress and strain states in testing experiments 2
1.3 Return-free integrations of elastoplastic models in mixed controlled cases 4
1.4 Applications of the mixed control return-free integrations 6
1.5 Finite element analysis 7
1.6 Outline 8
Chapter 2 Elastoplastic models and their mixed control formulations 11
2.1 Generalized associate flow rule 11
2.2 An anisotropic-kinematic hardening model for strain control 12
2.2.1 Generalized associate flow rule models Armstrong-Frederick hard-ening rule for strain control 15
2.2.2 Mixed control stress-strain state 17
2.3 An elastoplastic model with Armstrong-Frederick hardening rule for mixed control 24
2.3.1 Reshaping of the elastoplastic model for mixed control systems 24
2.3.2 Generalized associate flow rule models Armstrong-Frederick hard-ening rule for mixed control 28
2.4 An elastoplastic model with Chaboche hardening rule for mixed and strain control 29
2.4.1 Generalized associate flow rule models for an elastoplastic model with Chaboche hardening rule for strain control 31
2.4.2 Generalized associate flow rule models for an elastoplastic model with Chaboche hardening rule for mixed control 33
2.5 Two-phase system and necessary conditions 35
Chapter 3 Return-free integrations and error analysis 37
3.1 Return-free integration 37
3.1.1 Internal symmetry 37
3.1.2 Lie-group integration 38
3.1.3 Pull-back module 41
3.2 Comparisons with the return-mapping integration 43
3.3 Influence of hardening parameters 45
3.4 Error analysis of return-free integrations with mixed control 49
3.4.1 Consistency error maps 53
3.4.2 Convergence analysis 59
3.4.3 Iso-error maps 61
Chapter 4 Applications of return-free integrations 65
4.1 Investigation on contraction ratio 65
4.2 Investigation on r-value 70
4.3 Computational study of axial-torsional experiments 74
4.3.1 Definition and assumptions of stress-strain state for test specimens 74
4.3.2 Material behavior and determination of parameters for elastoplastic models 76
4.3.3 Cyclic axial displacement and torsional angle controlled experiments 85
4.4 A user material subroutine (UMAT) for the return-free method 90
4.4.1 User-defined material (UMAT) 91
4.4.2 Consistent tangent matrix 94
4.4.3 Computational simulation of real axial-torsional experiments 96
4.4.4 Computational simulation for the plane stress problem 100
4.5 Investigation on behavior of trabecular bone 103
4.5.1 Cyclic behavior of trabecular bone 110
Chapter 5 Conclusions and future works 117
5.1 Conclusions 117
5.2 Future works 121
References 123
Appendix A — Matrix notation 131
Appendix B — Runge-Kutta method (RK4) 135
B.1 Runge-Kutta method (RK4) 135
Appendix C — Experiment 137
C.1 Experimental material 137
C.2 Experimental specimen 137
C.3 Experimental equipment 139
C.3.1 MTS 809 axial/torsional test system 139
C.3.2 FlexTest 60 139
C.3.3 MTS 632.80c-04 axial-torsional extensometer 140
Appendix D — Cubic yield function 141
D.1 Cubic yield surfaces and fitting method 141
D.1.1 Convex closed cubic polynomial 142
D.2 Compare with two different dimensional fitting methods 146
D.3 Fitting result for biomimetic materials 148
-
dc.language.isoen-
dc.subject免映射數值積分法zh_TW
dc.subject各向異性材料zh_TW
dc.subject混合加載zh_TW
dc.subject非線性硬化zh_TW
dc.subjectAnisotropic materialen
dc.subjectReturn-free integrationen
dc.subjectNonlinear hardeningen
dc.subjectMixed controlen
dc.title免映射數值積分法於混合加載異向性非線性硬化彈塑性模型之發展及其在金屬材料和生物力學中的應用zh_TW
dc.titleDevelopment of return-free integrations for anisotropic nonlinear mixed hardening elastoplastic models and their applications in metal mechanics and biomechanics under mixed controlen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳東陽;舒貽忠;王建凱zh_TW
dc.contributor.oralexamcommitteeTung-Yang Chen ;Yi-Chung Shu;Chien-Kai Wangen
dc.subject.keyword免映射數值積分法,各向異性材料,混合加載,非線性硬化,zh_TW
dc.subject.keywordReturn-free integration,Anisotropic material,Mixed control,Nonlinear hardening,en
dc.relation.page149-
dc.identifier.doi10.6342/NTU202403620-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
28.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved