Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94227
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李雨zh_TW
dc.contributor.advisorU Leien
dc.contributor.author林柏宇zh_TW
dc.contributor.authorPo-Yu Linen
dc.date.accessioned2024-08-15T16:19:41Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation[1] Sze, S. M. (2008). Semiconductor devices: physics and technology. John wiley & sons.
[2] Lee, D., Lee, H., & Jeong, H. (x2016). Slurry components in metal chemical mechanical planarization (CMP) process: A review. International Journal of Precision Engineering and Manufacturing, 17, 1751-1762.
[3] Lee, H., Park, B., & Jeong, H. (2008). Influence of slurry components on uniformity in copper chemical mechanical planarization. Microelectronic Engineering, 85(4), 689-696.
[4] Paul, E., Kaufman, F., Brusic, V., Zhang, J., Sun, F., and Vacassy, R. (2005). A model of copper CMP. Journal of the Electrochemical Society, 152(4), G322-G328.
[5] Shin, C. B., and Economou, D. J. (1989). Effect of transport and reaction on the shape evolution of cavities during wet chemical etching. Journal of the Electrochemical Society, 136(7), 1997-2004.
[6] COMSOL Multiphysics (2024). C. COMSOL Example of Chemical Etching User’s Guide. Available from: https://www.comsol.com/model/download/1166161/models.mph.chemical_etching.pdf
[7] Sundararajan, S., Thakurta, D. G., Schwendeman, D. W., Murarka, S. P., & Gill, W. N. (1999). Two‐dimensional wafer‐scale chemical mechanical planarization models based on lubrication theory and mass transport. Journal of the electrochemical society, 146(2), 761-766.
[8] Liu, D., Zhang, Z., Feng, J., Yu, Z., Meng, F., Xu, G., Wang, J., Wen, W. and Liu, W. (2022). Atomic-level flatness on oxygen-free copper surface in lapping and chemical mechanical polishing. Nanoscale Advances, 4(20), 4263-4271.
[9] Preston, F. W. (1927). The Theory and Design of Plate Glass Polishing Machines. J. Soc. Glass Technol., 11, 214-257
[10] Luo, Q., Ramarajan, S. and Babu, S. V. (1998). Modification of the Preston equation for the chemical–mechanical polishing of copper. Thin solid films, 335(1-2), 160-167.
[11] Téllez-Arriaga, L., Cordero-Dávila, A., Robledo-Sánchez, C. I., and Cuautle-Cortés, J. (2007). Correction of the Preston equation for low speeds. Applied optics, 46(9), 1408-1410.
[12] Nolan, L. and Cadien, K. (2012). Copper CMP: The relationship between polish rate uniformity and lubrication. ECS Journal of Solid State Science and Technology, 1(4), P157.
[13] Pennathur, S. and Santiago, J. G. (2005). Electrokinetic transport in nanochannels. 1. Theory. Analytical chemistry, 77(21), 6772-6781.
[14] Probstein, R. F. (2005). Physicochemical hydrodynamics: an introduction. John Wiley & Sons.
[15] Pennathur, S. and Santiago, J. G. (2005). Electrokinetic transport in nanochannels. 2. Experiments. Analytical chemistry, 77(21), 6782-6789.
[16] Mai, P. T., Lu, L. S., Chen, C. C. A. and Lin, Y. M. (2021). Effective Particle Analysis on Wafer in the EKF-CMP System. ECS Journal of Solid State Science and Technology, 10(2), 024004.
[17] Stynes, M. and Stynes, D. (2018). Convection-diffusion problems (Vol. 196). American Mathematical Society.
[18] Xing, W., Yin, G. and Zhang, J. (2014). Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier.
[19] Liu, P., Bae, S., Hong, S., Bae, C., Seo, H., Lee, J., Tang, C. and Kim, T. (2022). Investigation of thermal effects in copper chemical mechanical polishing. Precision Engineering, 73, 195-202.
[20] Robert J. Hunter (1981), “Zeta potential in colloid science - Principles and Applications,” Academic Press, 1981.
[21] 袁啟文, 陳宗麟, & 林家瑞. (2007). 化學機械研磨製程之控片與樣片之移除率及不平坦度預測與分析 (Doctoral dissertation).
[22] 陳靖函(工研院) (2022, August 7). 半導體用矽晶圓材料發展概況. 產業技術評析. Available from: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=436
[23] Gerhart, A. L., Hochstein, J. I. and Gerhart, P. M. (2020). Munson, Young and Okiishi's fundamentals of fluid mechanics. John Wiley & Sons.
[24] Zhao, D. and Lu, X. (2013). Chemical mechanical polishing: theory and experiment. Friction, 1, 306-326.
[25] Bergman, T. L. (2011). Fundamentals of heat and mass transfer. John Wiley & Sons.
[26] Chapra, S. C. (2012). Applied numerical methods. Columbus: McGraw-Hill.
[27] Tian P., Sheng Y., Sun Y., Ding D., Xu J. and Han Y., (2018). Formation efficiency of hydroxyl radical from H2O2 decomposition over Cu/Al2O3 catalyst[J]. CIESC Journal, 69(11), 4713-4721.
[28] Behera, M. and Giri, G. (2014). Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant. Materials Science-Poland, 32(4), 702-708.
[29] COMSOL Multiphysics (2024). C. COMSOL AC/DC Module User’s Guide. Available from: https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf
[30] Walter Frei(2015, September 4). Model Translational Motion with the Deformed Mesh Interfaces. COMSOL Blog. Available from: https://www.comsol.com/blogs/model-translational-motion-with-the-deformed-mesh-interfaces
[31] Cheng, D. K. (1989). Field and wave electromagnetics. Pearson Education India.
[32] Peckler, L., Han, R., Sampurno, Y., & Philipossian, A. (2018). Real-Time Shear and Normal Force Trends in Copper Chemical Mechanical Planarization with Different Conditioning Discs. ECS Journal of Solid State Science and Technology, 7(3), P125.
[33] Schasfoort, R. B., Schlautmann, S., Hendrikse, J. and Van Den Berg, A. (1999). Field-effect flow control for microfabricated fluidic networks. Science, 286(5441), 942-945.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94227-
dc.description.abstract濕蝕刻,是通過液體環境中的化學反應以及流體流動的攪動來去除固體材料的過程,在半導體製造中是一個重要的製程。隨著半導體器件的關鍵尺寸縮小到奈米級,在製造過程中基板上會出現微米和奈米通道。通常在進行進一步製程之前,會需要清潔通道底部,而濕蝕刻是其中一個有發展性的清潔方法。本研究提出使用電滲流來增強蝕刻性能,因為其與晶圓和拋光板相對運動所產生的庫埃特流動(Couette flow)相比,電滲流可能可以提供更大及均勻的壁面剪切應力、而剪切應力的大小與濕蝕刻的效果呈正相關的變化。本研究回顧傳統濕蝕刻所使用之剪切機制驅動與具平移效應驅動之剪切機制對其進行理論分析,並將其與電滲機制驅動之理論進行比較,研究電滲機制驅動之濕蝕刻是否具有優勢。
在假設二維電滲流和均勻電滲流速度的情況下,通過解連續方程式、含靜電力項的Navier-Stokes方程式和質量傳遞方程式,本文解得速度場、蝕刻劑濃度場和材料去除率(Material Remove Rate,簡稱為MRR)之分析解。另通過使用COMSOL軟件本文也進行了詳細的數值計算(本文所有蝕刻的質傳模擬均為三維,並採用電滲流速度的解析解),進一步計算MRR與不均勻度(Degree of Non-Uniformity of Material Removal Rate,簡稱為MRRNU),並和分析解結果相互驗證。對於純庫埃特驅動情況,本研究亦進行分析與計算,其所獲的MRR與文獻中銅蝕刻的實驗結果相符(解析和計算的誤差分別為10.1%和10.3%)。比較庫埃特流和電滲流驅動機制的結果,以對銅進行蝕刻為例,當輸入電場為1000 V/m時,前者的MRR及MRRNU分別比後者高10.8%及低6.2%;當輸入電場提升為10000 V/m時,則分別高出8.3%及高15.8%。電滲流驅動所得之MRR在輸入電場為10000 V/m時雖稍差於傳統的庫埃特流所驅動者,但其蝕刻的均勻度(MRRNU愈低)卻可獲相當幅度的提升。若要同時提升電滲機制蝕刻之MRR與MRRNU,可將流場效電晶體(FlowFET)結合電滲機制,以提升電滲機制濕蝕刻之應用潛力。
zh_TW
dc.description.abstractWet etching, removing solid material via chemical reaction in liquid environment together with the agitation from fluid flow, is an important process in semiconductor manufacturing. As the critical dimensions of semiconductor devices are down to nano sizes, micro and nano channels occur on the substrate during the manufacturing processes. It is usually required to clean the bottom of the channels prior to further processes, and wet etching is one of the promising tools for cleaning. It is proposed in this study to enhance the etching performance using electroosmosis as it might provide larger and more uniform shear stress at wall in comparing with that through the relative motion of the wafer and the polishing pad (Couette-type). This study reviews and theoretically analyzes the Couette-type and sweeping Couette-type driving mechanisms used in traditional wet etching, comparing them with the theory of electroosmotic mechanisms to investigate whether electroosmotic-driven wet etching has advantages.
The velocity field, the concentration field of the etchant and the material removal rate (MRR), were obtained analytically by solving the continuity, the Navier-Stokes equation with electrical force term, and the mass transfer equation, under the assumptions of 2D electroosmosis flow and uniform electroosmosis velocity. The degree of nonuniformity in polishing rate (MRRNU) and the analytical results were further calculated/validated through detailed numerical calculation via the aid of COMSOL software (etching simulation are all 3D with substituting analytical solution of electroosmosis velocity). For the purely Couette-type driving case, the present study for MRR agrees with the experiment in literatures of copper etching (with discrepancies 10.1% and 10.3% for analysis and calculation). For the comparison of the Couette-type and electroosmotic driving mechanisms, the former is 10.8% better for MRR and 6.2% better for MRRNU than the latter when the applied electric field for electroosmosis is 1000 V/m. For the comparison of the 10000 V/m and 1000 V/m electric field condition, the former is 8.3% better for MRR and 15.8% better for MRRNU. The MRR driven by electroosmosis at an electric field of 10,000 V/m is slightly less than that driven by traditional Couette flow, but the etching uniformity (with a lower MRRNU) is significantly improved. To simultaneously enhance the MRR and MRRNU of the electroosmotic driving mechanism, a flow field-effect transistor (FlowFET) can be combined with the electroosmotic driving mechanism to increase the application potential of electroosmotic wet etching.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:19:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:19:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目次 vi
圖次 viii
表次 xi
符號說明 xii
第一章 緒論 1
1.1 銅濕蝕刻介紹 2
1.2 文獻回顧 3
1.3 研究動機 7
第二章 理論分析 9
2.1 物理模型 9
2.2 剪切機制驅動下流場之理論分析 11
2.3 具平移效應剪切驅動機制之理論分析 15
2.4 電滲驅動機制之流場與濃度之理論分析 19
第三章 計算方法 26
3.1 Comsol簡介 26
3.2 物理模式的建構 26
3.3 流體性質與參數設定 28
3.4 統御方程式 34
3.4.1 潛變流法(Creeping flow) 34
3.4.2 稀薄質傳法(Transport of Diluted Species) 35
3.4.3 電流法(Electric Currents) 36
3.4.4 變形幾何法(Deformed geometry) 37
3.5 邊界條件(Boundary Condition) 37
3.5.1 潛變流法 38
3.5.2 稀薄質傳法 39
3.5.3 電流法 41
3.5.4 變形幾何法 43
3.6 初始條件 44
3.6.1 潛變流法 44
3.6.2 稀薄質傳法 45
3.6.3 電流法 45
3.7 COMSOL求解流程 45
第四章 結果與討論 46
4.1 網格設定 46
4.1.1 剪切驅動機制 46
4.1.2 電滲驅動機制 48
4.2 理論驗證 48
4.2.1 剪切驅動下分析解之理論驗證 49
4.2.2 具平移效應剪切驅動機制理論分解析解之理論驗證 51
4.2.3 電滲驅動分析解之理論驗證 54
4.3 參數敏感度分析 60
4.4 蝕刻方法比較 66
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 70
參考文獻 71
-
dc.language.isozh_TW-
dc.title利用電滲流蝕刻微/奈米管道之輸送現象之理論研究zh_TW
dc.titleTheoretical study of the transport phenomena of etching process using electroosmosis in micro/nano channelsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee雷顯宇;田華忠zh_TW
dc.contributor.oralexamcommitteeHsien-Yu Lei;Hua-Chung Tienen
dc.subject.keyword濕蝕刻,製程,庫埃特流,電滲流,材料去除率(MRR),材料去除率不均勻度(MRRNU),zh_TW
dc.subject.keywordWet etching,Process,Couette flow,electroosmosis,Material Removal Rate (MRR),Degree of Non-Uniformity of Material Removal (MRRNU),en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202401238-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf3.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved